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EFFECTIVE ASYMPTOTICS FOR SOME NONLINEAR RECURRENCES AND ALMOST
DOUBLY-EXPONENTIAL SEQUENCES

E. IONASCU and P. STANICA

Abstract. We develop a technique to compute asymptotic expansions for recurrent sequences of the form an+1 = f(an),

where f(x) = x − axα + bxβ + o(xβ) as x → 0, for some real numbers α, β, a, and b satisfying a > 0, 1 < α < β. We
prove a result which summarizes the present stage of our investigation, generalizing the expansions in [Amer. Math
Monthly, Problem E 3034[1984, 58], Solution [1986, 739]]. One can apply our technique, for instance, to obtain the

formula: an =
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)
, where an+1 = sin(an), a1 ∈ IR. Moreover, we consider the

recurrences an+1 = a2
n + gn, and we prove that under some technical assumptions, an is almost doubly-exponential,

namely an = bk2nc, an = bk2nc+ 1, an = bk2n − 1
2
c, or an = bk2n

+ 5
2
c for some real number k, generalizing a result

of Aho and Sloane [Fibonacci Quart. 11 (1973), 429–437].

1. Introduction

Obtaining an exact formula for the terms of a sequence given by a recurrence may not, in general, be possible.
It is the intent of this paper to investigate and give asymptotics for sequences given by recurrences of the
form an+1 = f(an), where f(x) = x − axα + bxβ + o(xβ) as x → 0, for some real numbers α, β, a, and b
satisfying a > 0, 1 < α < β. We also consider the same recurrence where f(x) = x − x2 and give more detailed
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asymptotics. Moreover, we prove a few results concerning almost doubly-exponential sequences an+1 = a2
n + gn,

where −an + 1 < gn < 2an, generalizing a result of Aho and Sloane [1]. For standard notations consult [3], or
any other book on differential and integral calculus.

2. Asymptotics of Nonlinear Recurrences

The first part of the next lemma is known as Cesàro’s lemma, and the second part is just a small variation of the
first. For completeness, we include a proof of the second part of this lemma.

Lemma 1 (Cesàro). Let {un}n∈IN, {vn}n∈IN two sequences of real numbers satisfying one of the following
conditions:

(i) {vn}n∈IN is eventually a strictly increasing sequence converging to infinity, or
(ii) {vn}n∈IN is eventually a strictly decreasing sequence converging to zero, and un converges to zero.

If the limit of the sequence un+1−un

vn+1−vn
exists, then the limit of the sequence un

vn
exists, and we have the equality

lim
n→∞

un

vn
= lim

n→∞

un+1 − un

vn+1 − vn
.(1)

Proof. Suppose we are given an ε > 0, and by our hypothesis, for some integer n0 and some real number l we
have ∣∣∣∣un+1 − un

vn+1 − vn
− l

∣∣∣∣ < ε, n ≥ n0.

Using (ii), the above inequality can be equivalently written in the form

−ε(vn − vn+1) < un − un+1 − l(vn − vn+1) < ε(vn − vn+1), n ≥ n0.

Adding up these inequalities from n ≥ n0 to some larger integer m > n ≥ n0, we get

−ε(vn − vm+1) < un − um+1 − l(vn − vm+1) < ε(vn − vm+1), m > n ≥ n0.
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Letting m go to infinity in the above inequality and taking into account that um → 0 and vm → 0, we obtain

−εvn ≤ un − lvn ≤ εvn, n ≥ n0,

which gives finally, after dividing by vn, the conclusion of our lemma. �

Theorem 2. Suppose f is a real-valued continuous function defined on the interval I = (0, δ) (for some δ),
which has the form f(x) = x−axα + bxβ + o(xβ) as x → 0, for some real numbers α, β, a, and b satisfying a > 0,
1 < α < β. Then, for a0 sufficiently small, the orbit sequence an = f(an−1), satisfies one of the following:

(i) if β = 2α− 1, then

an =
1

[a(α− 1)]
1

α−1

(
1
n

)1/(α−1)

+
b− a2α

2

[a(α− 1)]
2α−1
α−1

lnn

nα/(α−1)
+ o

(
lnn

nα/(α−1)

)
,

(ii) if β > 2α− 1, then

an =
1

[a(α− 1)]
1

α−1

(
1
n

)1/(α−1)

−
a2α
2

[a(α− 1)]
2α−1
α−1

lnn

nα/(α−1)
+ o

(
lnn

nα/(α−1)

)
.

(iii) if β < 2α− 1 and b 6= 0, then

an =
1

[a(α− 1)]
1

α−1

(
1
n

)1/(α−1)

+
b [a(α− 1)]

α−β−1
α−1

a(2α− 1− β)

(
1
n

) β−1
α−1

+ o

((
1
n

) β−1
α−1
)

.

Proof. We give the idea of the proof only in the case (i). Since f(x) < x, for x in a small neighborhood of
zero, the sequence an is decreasing to zero if we assume also that a0 is positive. Then we apply Cesáro’s lemma
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for the sequences un = 1
aα−1

n
, and vn = n:

lim
n

1
naα−1

n

= lim
n

(
1

aα−1
n+1

− 1
aα−1

n

)
= lim

n

(
1

f(an)α−1
− 1

aα−1
n

)
.

Using the well-known formula from calculus limx→0
1− (1− x)γ

x
= γ, we obtain

lim
n

1
naα−1

n

= lim
n

1
aα−1

n

(
1−

(
1− aaα−1

n + baβ−1
n + o(aβ−1

n )
)α−1

)
(
1− aaα−1

n + baβ−1
n + o(aβ−1

n )
)α−1

= lim
n

1−
(
1− aaα−1

n + baβ−1
n + o(aβ−1

n )
)α−1

aaα−1
n − baβ−1

n − o(aβ−1
n )

aaα−1
n − baβ−1

n − o(aβ−1
n )

aα−1
n

= (α− 1)a.

Equivalently, this means that an =
1

[a(α− 1)]
1

α−1

(
1
n

)1/(α−1)

+ o

((
1
n

)1/(α−1)
)

, which is the first approx-

imation in the statements (i)–(iii). Now let us assume that β = 2α − 1. To simplify the computations we
will denote c = a(α − 1), and yn = aaα−1

n − baβ−1
n − o(aβ−1

n ), which under the above assumption becomes
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yn = aaα−1
n − ba2(α−1)

n − o(a2(α−1)
n ). We want to apply Cesàro’s lemma again for un = cn− 1

aα−1
n

and vn = ln n:

lim
n

cn− 1
aα−1

n

lnn
= lim

n

c− 1
aα−1

n+1
+ 1

aα−1
n

ln(1 + 1
n )

= lim
n

n
(1− yn)α−1 + caα−1

n (1− yn)α−1 − 1
aα−1

n (1− yn)α−1

= c lim
n

n2y2
n

(1− yn)α−1 − 1 + (α− 1)yn

y2
n

+ n2
(
caα−1

n (1− yn)α−1 − (α− 1)yn

)
.

Taking into account that limn→∞ nyn = a
c and limy→0

(1−y)γ−1+γy
y2 = γ(γ−1)

2 , we may continue the above
computation as follows:

lim
n

cn− 1
aα−1

n

lnn
=

a(α− 2)
2

+ c lim
n

(α− 1)n2[aaα−1
n (1− yn)α−1

− aaα−1
n + ba2(α−1)

n + o(a2(α−1)
n )] =

a(α− 2)
2

+
b

a

+ a(α− 1) lim
n

n2aα−1
n

(
(1− yn)α−1 − 1

)
=

b− a2α
2

a

This finally says that

lim
n

[
(cn)1/(α−1)an − 1

]
n

lnn
=

b− a2α
2

c2
,

from which (i) can be easily derived. The rest of the cases are treated similarly. �
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In Odlyzko’s excellent paper [5], a few methods are studied for approximating nonlinear recurrences by linear
ones. If f(x) = x−x2, the following method for determining an approximation of an is presented. Let xn = 1/an.
By iteration we obtain (cf. [2])

xn = xn−1 + 1 +
an−1

1− an−1
= · · · = 1

a0
+ n +

n−1∑
j=0

aj

1− aj
.

If 0 < a0 < 1, then we get that

n ≤ xn ≤ n + O(log n),

therefore xn = n + log n + o(log n). In our next theorem, we push further the technique (by a somewhat similar
method). We would like to mention that the function of which orbit is studied here constitutes an important case
of an one-dimensional dynamical system (see Theorem 10.1, Chap. II of [4]).

Theorem 3. Assume an+1 = f(an), where f(x) = x−x2. For each a1 ∈ I = (0, 1), the function g defined by

(2) g(a1) = lim
n→∞

(
1
an

− n− lnn

)
,

has the properties:

(i) g is continuously differentiable on I, and for all x ∈ I we have
g(x) = g(1− x), and g(f(x)) = g(x) + 1;

(ii) g is strictly decreasing on (0, 1/2), strictly increasing on (1/2, 1), and its minimum value g(1/2) is a positive
number;

(iii) the measure dξ(x) = g′(x)dx is invariant under the action of f on (0, 1/2), i.e., for any measurable subset
A of (0, 1/2) we have ξ(A) = ξ(f(A));
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(iv) if we denote Gk(a1) =
∑∞

n≥1

(
an

1−an

)k

, k ≥ 2, then for x ∈ (0, 1/2)

g(x) = ln

(
C +

∫ 1/2

x

1
t

exp

(
1
t
− 1−

∞∑
k=2

1
k

Gk(t)

)
dt

)
,(3)

where C = exp(g(1/2)) is a constant approximately equal to 2.15768....
(v) the following expansions hold:

an =
1
n
− lnn

n2
− g(a0)

n2
+

(lnn)2

n3
+

(2g(a0)− 1) ln n

n3
+ o

(
lnn

n3

)
,(4)

1
an

= n + lnn + g(x) +
lnn

n
+

(− 1
2 + g)
n

− 1
2

(lnn)2

n2

+
( 3
2 − g) ln n

n2
+
(

3
2
g − 1

2
g2 − 5

6

)
1
n2

+
1
3

(lnn)3

n3

+ (−2 + g)
(lnn)2

n3
+
(

19
6
− 4g + g2

)
lnn

n3
+ o

(
lnn

n3

)
.

Proof. The sequence xn = 1
an

, n ≥ 1, satisfies the recurrence relation xn+1 = h(xn), where h(x) = x+1+ 1
x−1 ,

for x ∈ (1,∞). If we define r(x1) = limn→∞ yn with yn = xn − n − ln n, clearly g(x) = r(1/x) for all
x ∈ I. Since all the properties of r transfer to g in a corresponding way, we prefer to work with the function r
instead of g. Directly from the recurrence relation for xn we easily see that xn is a strictly increasing sequence,
x2 ≥ 4, (h(1,∞)) = [4,∞)), and we get

xn+1 = x2 + n− 1 +
n∑

k=2

1
xk − 1

, n ≥ 2.(5)
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From this we obtain that xn ≥ n + 2 for all n ≥ 2. This shows, in particular, that the limit defining r exists,
since yn is a decreasing sequence:

yn − yn+1 = ln(1 +
1
n

)− 1
xn − 1

>
1

n + 1
− 1

xn − 1
≥ 0, n ≥ 2.

Secondly, going back to (5), the next better estimation from above of xn results:

xn+1 ≤ x2 + n− 1 +
n∑

k=2

1
k + 1

< x2 + n− 1 + ln(n + 1)− ln 2, n ≥ 2.(6)

Since for u > v ≥ 2 or 1 < u < v ≤ 2, we get h(u) > h(v) ≥ 4, and then h(h(u)) > h(h(v) ≥ 4, a simple induction
argument shows that r is decreasing on (1, 2] and increasing on [2,∞). Therefore, in order to prove that r has
finite values, it is enough to show that r(2) > 0. Hence, if x1 = 2, (6) becomes

xn ≤ n + ω + lnn, n ≥ 2,(7)

where ω = 2− ln 2 > 1. Using (7) in (5), we obtain

xn+1 ≥ n + 3 +
n∑

k=2

1
k − 1 + ω + ln k

, n ≥ 2.

This implies that for n ≥ 2

yn+1 ≥ 2− ln(n + 1) +
n−1∑
k=1

1
k + ω + ln(k + 1)

> 2− ln(n + 1) +
∫ n

1

dx

x + ω + ln(x + 1)
.
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Since
1

x + ω + ln(x + 1)
>

1
(x + ω)

− ln(x + 1)
(x + ω)2

on the interval [1,∞), we can continue the above sequence of

inequalities as follows:

yn+1 ≥ 2− ln(n + 1) +
∫ n

1

dx

(x + ω)
−
∫ n

1

ln(x + 1)dx

(x + ω)2

= 2− ln(1 + ω) + + ln(
n + ω

n + 1
)−

∫ n

1

ln(x + 1)dx

(x + ω)2

> 2− ln(1 + ω)−
∫ ∞

1

ln(x + 1)dx

(x + ω)2

= 2 +
2 ln 2
ω2 − 1

− ω

ω − 1
ln(1 + ω).

Since ln(1 + ω) = ln 2(1 + ω−1
2 ) < ln 2 + ω−1

2 = 3−ω
2 , we obtain from the above computation that

r(2) = lim
n

yn+1(2) ≥ (ω − 1)(ω + 4)
2(ω + 1)

> 0.

Hence we have proved the second part of the statement (ii) in Theorem 3.
We next look at the sequence of the derivatives of the functions xn(x) = hn(x)(x1 = x), where hn+1(x) =

h(hn(x)), n ≥ 1. Since h′(x) = 1− 1
(x−1)2 , and (hn)′(x) = h′(hn−1(x))h′(hn−2(x)) . . . h′(x), we get

y′n = x′n =
n−1∏
k=1

(
1− 1

(xk − 1)2

)
, n ≥ 2.(8)

Using the inequality xn ≥ n + 2, n ≥ 2, the product appearing in (8) is absolutely convergent. Therefore the

sequence yn(x) = yn(2) +
∫ x

2

y′n(t)dt converges to r(x) = r(2) +
∫ x

2

∞∏
k=1

(1 − 1
(xk(t)− 1)2

)dt. In particular, this
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shows that r is continuously differentiable. In order to complete the proof of (i), let us observe that

r(h(x)) = lim
n

yn(h(x)) = lim
n

xn+1(x)− n− lnn =

= lim
n

xn(x) + 1 +
1

xn − 1
− n− lnn

= r(x) + 1.

Hence g(f(x)) = r(1/f(x)) = r(h(1/x)) = r(1/x) + 1 and g(1− x) = g(f(1− x))− 1 = g(f(x))− 1 = g(x),
for x ∈ I, which completes the proof of (i). Because

r′(x) =
∞∏

k=1

(
1− 1

(xk(x)− 1)2

)
=

x(x− 2)
(x− 1)2

∞∏
k=2

(
1− 1

(xk(x)− 1)2

)
,(9)

it is easy to see that r′(x) > 0 for x > 2 and r′(x) < 0 for 1 < x < 2. This completes the proof of (ii).
To get (iii) we can use (i) to obtain g′(f(x))f ′(x) = g′(x), and hence by the change of variable formula,

ξ(f(A)) =
∫

f(A)

dξ(x) =

=
∫

f(A)

g′(x)dx =
∫

f(A)

g′(f(x))f ′(x)dx

=
∫

f(A)

g′(f(x))f ′(x)dx =
∫

A

g′(x)dx

=
∫

A

dξ(x) = ξ(A).
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In order to prove (iv), let us compute ln(r′(x)) for x > 2, using formula (9) and the recursive relation:

ln(r′(x)) = ln

( ∞∏
k=1

(
1− 1

(xk(x)− 1)2

))
= ln

(
lim
n

n∏
k=1

(
1− 1

xk(x)− 1

) n∏
k=1

(
1 +

1
xk(x)− 1

))

= lim
n

(
n∑

k=1

ln
(

1− 1
xk(x)− 1

)
+ ln

(
n∏

k=1

xk(x)
xk(x)− 1

))
= lim

n

− n∑
k=1

∞∑
j=1

1
j

(
1

xk(x)− 1

)j

+ ln

(
n∏

k=1

xk+1(x)
xk(x)

) .

Here, we used the definition of {xk}k, that is, xk+1 = h(xk) = xk + 1 + 1
xk−1 , therefore xk

xk−1 = xk+1
xk

, hence the
last equality. After we interchange the sums, using (5) we can continue the above computation as follows:

ln(r′(x)) = lim
n

ln(xn+1(x))− ln x−
n∑

k=1

1
xk(x)− 1

−
∞∑

j=2

n∑
k=1

1
j

(
1

xk(x)− 1

)j


= − ln x + lim
n

ln(xn+1(x))− xn+1(x) + n + x−
∞∑

j=2

n∑
k=1

1
j

(
1

xk(x)− 1

)j


= x− 1− lnx− lim
n

(
xn+1(x)− (n + 1)− ln(n + 1) + ln

(
n + 1

xn+1(x)

))

− lim
n

 ∞∑
j=2

n∑
k=1

1
j

(
1

xk(x)− 1

)j
 .
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Since the double sum
∞∑

j=2

∞∑
k=1

1
j

(
1

xk(x)− 1

)j

is absolutely convergent we can interchange the limit sign with the

sum sign in the above computation, and using the definition of r we obtain the following differential equation in
r:

ln(r′(x)) = x− 1− lnx− r(x)−
∞∑

j=2

∞∑
k=1

1
j

(
1

xk(x)− 1

)j

,

or

r′(x) exp(r(x)) =
1
x

exp(x− 1−R(x)),(10)

where R(x) =
∞∑

j=2

∞∑
k=1

1
j

(
1

xk(x)− 1

)j

. Integrating (10), we obtain a formula which gives us another way of

approximating the values of r:

r(x) = ln
(

C +
∫ x

2

1
t

exp (t− 1−R(t)) dt

)
, x > 2.(11)

In terms of the function g and the sequence {an}, after a change of variable, the formula (11) becomes

g(x) = ln

(
C +

∫ 1
2

x

1
u

exp
(

1
u
− 1−G(u)

)
du

)
, x ∈ (0, 1/2),

where G(u) = R(1/u) =
∞∑

j=2

∞∑
k=1

1
j

(
1

xk(1/u)− 1

)j

=
∞∑

j=2

∞∑
k=1

1
j

(
ak(u)

1− ak(u)

)j

, and (iv) is proved.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

To prove (v), we apply several times part (ii) of Cesàro’s Lemma. First we take un = xn(x)− n− ln n− r(x)
and vn = (1/n) lnn :

lim
n

n(xn(x)− n− lnn− r(x))
lnn

= lim
n

1
xn−1 − ln(1 + 1

n )
ln(n+1)

n+1 − ln n
n

= 1.

Using the same technique we can compute the other terms in (11), and (10) is easily obtained from (11). �

We point out that there are cases when it is easy to determine expansions as in (4) for all k ≥ 2. For example,
if f(x) = x/(1 + x), then {an}n has the expansion of the form

an =
m∑

j=0

(−1)j

nj+1aj
0

+ o

(
1

nm+1

)
, n ≥ 1, a0 ∈ (0,∞).

That can be seen easily by linearizing the recurrence an+1 = f(an) replacing
1
an

by bn. We obtain the linear

equation bn+1 = bn+1, which obviously produces an =
1

n + a−1
0

, from which we infer the previous approximation.

On the other hand, if f(x) = sin x, we computed using Theorem 2 the following expansion:

an =
√

3√
n
− 3

√
3

10
lnn

n
√

n
+

9
√

3
50

lnn

n2
√

n
+ o

(
lnn

n2
√

n

)
,

where the coefficients do not seem to depend on the initial value of the sequence.

3. Almost Doubly-Exponential Sequences

Aho and Sloane [1] considered the sequences of the form an+1 = a2
n + gn, where |gn| ≤ an/4, an ≥ 1 and

| log(an+1a
−2
n )| is decreasing, for n ≥ n0. They proved that under these conditions, there exists a constant k such
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that an = nearest integer to k2n

. Obviously, the sequence of Theorem 3 is not among the ones considered by
Aho and Sloane, since it does not satisfy the mentioned conditions. In the spirit of [1], relaxing the conditions,
using a somewhat different method, we prove the next theorem, involving what we call almost doubly-exponential
recurrences. We denote by exp(x) the exponential function ex with Euler’s constant base.

Theorem 4. Let the sequence of positive integers an+1 = a2
n + gn, satisfying −an + 1 < gn < an, an > 1 and∣∣log

(
an+1a

−2
n

)∣∣ is decreasing (for n ≥ n0). Then there exists α such that an = bexp (2nα)c, or an = bexp(2nα)c+1
(for n ≥ n0).

Proof. Since the entire proof refers to n ≥ n0, we may as well assume that n0 = 0. The proof uses some
ideas of [1] and [5]. Let un := log an, and δn := log(gna−2

n + 1). Thus un+1 = 2un + δn. Iterating we get

un = 2nu0 + 2n
n−1∑
k=0

δk2−k−1.

The series α := u0+
∞∑

k=0

δk2−k−1 is absolutely convergent since |δk| < log(1+a−1
k ) < log 2. Taking rn := 2nα−un,

we get that an = exp(un) = exp(2nα− rn). Now,

exp(2nα) = an exp(rn), and

rn = 2n
∞∑

k=n

δk2−k−1 =
∞∑

k=0

δk+n2−k−1.
(12)

Since
∣∣log(an+1a

−2
n )
∣∣ = ∣∣log(gna−2

n + 1)
∣∣ = |δn| is decreasing, we get

|rn| ≤
∞∑

k=0

|δk+n|2−k−1 ≤ |δn|
∞∑

k=0

2−k−1 = |δn|
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which implies

an exp(−|δn|) ≤ exp(2nα) ≤ an exp(|δn|).(13)

We use now the definition of δn, and deduce

exp(δn) = gna−2
n + 1,

exp(−δn) = (gna−2
n + 1)−1.

(14)

Therefore, using (13) and (14), if δn > 0, then

an − exp(2nα) ≤ an − an exp(−δn) = an

(
1− (gna−2

n + 1)−1
)
,(15)

an − exp(2nα) ≥ an − an exp(δn) = an

(
1− (gna−2

n + 1)
)

= −gna−1
n .(16)

Now, in (15) to have an

(
1− (gna−2

n + 1)−1
)

< 1, it is necessary to have (gna−2
n + 1)−1 > 1 − 1/an which in

turn is equivalent to gn <
a2

n

an − 1
= an + 1 +

1
an − 1

. The last inequality is true since gn < an. In (16) to have

−gna−1
n > −1, it is necessary to have gn < an.

If δn < 0, by (13) and (14), then

an − exp(2nα) ≤ an − an exp(δn) = an

(
1− (gna−2

n + 1)
)

= −gna−1
n ,(17)

an − exp(2nα) ≥ an − an exp(−δn) = an

(
1− (gna−2

n + 1)−1
)
.(18)

Now, in (17), −gna−1
n < 1 is equivalent to gn > −an, and the last inequality is certainly true, since gn > −an +1.

In (18) to have an

(
1− (gna−2

n + 1)−1
)

> −1, it is necessary to have gna−2
n + 1 >

an

an + 1
= 1 − 1

an + 1
. That

is equivalent to gn >
−a2

n

an + 1
= −an + 1 − 1

an + 1
, which is certainly true, as gn is an integer, an > 1 and

gn > −an + 1.
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Thus, we obtain, in any case, that |an − exp(2nα)| < 1, which implies (since an is an integer) that an =
bexp(2nα)c, or an = bexp(2nα)c+ 1. �

Remark 5. The previous theorem does not consider the case of gn = −an +1 (the lower bound). However, in
that case we get an+1 = a2

n − an + 1, which was dealt with by Aho and Sloane (Recurrence 2.4), if a1 = 2, being
transformed into a recurrence satisfying their conditions, deriving the solution bk2n

+ 1
2c, for some real number

k.

Consider now that case of an < gn < 2an in the recurrence an+1 = a2
n + gn, an > 1 positive integers. Let

g′n = gn − an. Thus, 0 < g′n < an and the recurrence can be written as

an+1 = a2
n + an + g′n.

Let bn = an + 1
2 and hn = g′n − 3

4 = gn − an − 3
4 . It follows that

bn+1 = b2
n + hn, with − 3

4
< hn < an −

3
4

< an,

which is of the first type, but (beware!) this sequence does not consist of integers. We start with one observation:
since an < gn, it follows that gn − an ≥ 1, therefore hn ≥ 1

4 , so hn satisfies 0 < hn < an.
Let un := log bn, and δn := log(hnb−2

n +1). If | log(bn+1b
−2
n | is decreasing, the same technique as before renders,

since hn > 0,

bn − exp(2nβ) ≤ bn(1− (hnb−2
n + 1)−1),

bn − exp(2nβ) ≥ −hnb−1
n ,

where β := u0 +
∞∑

k=0

δk2−k−1. Moreover, bn(1 − (hnb−2
n + 1)−1) < 1 if and only if

bn − 1
bn

<
1

hnb−2
n + 1

. This is

equivalent to hn <
b2
n

bn − 1
= bn + 1 +

1
bn − 1

, which is certainly true as hn < an < an + 1
2 = bn. Furthermore,
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since −hnb−1
n > −1, then

−3
2

< an − exp (2nβ) <
1
2
.

The right hand side inequality is improved by the simple observation that since δk > 0, then 2nβ > un, therefore,
exp(2nβ) > bn = an + 1

2 , which implies

−3
2

< an − exp (2nβ) < −1
2

and so,

an < exp(2nβ)− 1
2

< an + 1.

To cover the whole range −an + 1 < gn < 2an, it suffices to study the case of gn = an. In that case, we get the
recurrence of positive integers an+1 = a2

n + an. Taking bn = an + 1/2, we get

bn+1 = b2
n −

3
4
,

which was dealt with by Aho and Sloane, if b1 = 3
2 , obtaining bn = 3

2 +
⌊
k2n

+ 3
2

⌋
, n ≥ 3, for some real k.

Thus, we have proved

Theorem 6. Let the recurrence of positive integers an+1 = a2
n + gn, where an < gn < 2an, an > 1 (if n ≥ n0).

Also assume that | log
(
(an+1 + 1/2)(an + 1/2)−2

)
| is decreasing. Then there exists a real number β such that

an =
⌊
exp(2nβ)− 1

2

⌋
, if n ≥ n0.

If an+1 = a2
n + an and a1 = 1, then

an =
⌊
exp(2nβ) +

5
2

⌋
, if n ≥ 3.
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Certainly the theorem can be further extended by taking various other intervals for gn and imposing the
restrictive decreasing property on an.

The sequence gn may or may not depend on an. If gn = an − 2a2
n, we end up with a recurrence of the form

an+1 = f(an), where f(x) = x− x2. Obviously, in this case Theorem 4 is not true, since the inequality imposed
on gn does not hold. But this case was dealt with by Theorem 3.

Can we relax the conditions of Theorem 4 and Theorem 6 even further? The answer is yes, but the result
is not that accurate. Let the recurrence of positive integers an+1 = a2

n + hn with |hn| < (1 + ε)an, an ≥ 1,
where ε > 0 is a fixed parameter. In the same manner as before, we denote by δn(ε) = log(hna−2

n + 1) and

un = log an. The series α(ε) = u0 +
∞∑

k=0

δk(ε)2−k−1 is convergent since − log(2 + ε) ≤ log(1 − 1 + ε

ak
) < δk(ε) <

log(1 +
1 + ε

ak
) < log(2 + ε), for k sufficiently large so that ak > 1 + ε. Taking rn = 2nα − un, we get that

an = exp(un) = exp(2nα− rn). We did not impose the decreasing property on |δn(ε)|, so we can only infer at this
stage that

− log(2 + ε) ≤ rn =
∞∑

k=0

δk+n(ε)2−k−1 ≤ log(2 + ε),(19)

using the double inequality on δn(ε).
With a bit more work, we conclude

Proposition 7. Let an+1 = a2
n + hn with |hn| < (1 + ε)an, an ≥ 1, where ε ≥ 0 is a fixed parameter. Then

there exists a constant α such that
1

2 + ε
exp(2nα) ≤ an ≤ (2 + ε) exp(2nα),

if n is sufficiently large so that an > 1 + ε.
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