ACTA MATHEMATICA UNIVERSITATIS COMENIANAE
Vol. LXXI, 2(2002)
p. 139
Topological Transitivity and Strong Transitivity
A. Kameyama
Abstract. 
We discuss the relation between (topological) transitivity
and strong transitivity of dynamical systems.
We show that a transitive and open self-map of a compact metric space
satisfying a certain expanding condition is strongly transitive.
We also prove a couple of results for interval maps; for example it is
shown
that a transitive piecewise monotone interval map is strongly transitive.
AMS subject classification: 
37E05, 37B05
Keywords: 
Transitivity, strong transitivity, interval map
Download:     Adobe PDF     Compressed Postscript      
Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic
Telephone: + 421-2-60295111 Fax: + 421-2-65425882
e-Mail: amuc@fmph.uniba.sk
  Internet: www.iam.fmph.uniba.sk/amuc
©
Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE