ACTA MATHEMATICA UNIVERSITATIS COMENIANAE

Vol. LXXI, 2(2002)
p. 139

Topological Transitivity and Strong Transitivity
A. Kameyama


Abstract.  We discuss the relation between (topological) transitivity and strong transitivity of dynamical systems. We show that a transitive and open self-map of a compact metric space satisfying a certain expanding condition is strongly transitive. We also prove a couple of results for interval maps; for example it is shown that a transitive piecewise monotone interval map is strongly transitive.

AMS subject classification:  37E05, 37B05
Keywords:  Transitivity, strong transitivity, interval map

Download:     Adobe PDF     Compressed Postscript      

Acta Mathematica Universitatis Comenianae
Institute of Applied Mathematics
Faculty of Mathematics, Physics and Informatics
Comenius University
842 48 Bratislava, Slovak Republic  

Telephone: + 421-2-60295111 Fax: + 421-2-65425882  
e-Mail: amuc@fmph.uniba.sk   Internet: www.iam.fmph.uniba.sk/amuc

© Copyright 2002, ACTA MATHEMATICA UNIVERSITATIS COMENIANAE