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THE PLANAR MOTION WITH BOUNDED DERIVATIVE

OF THE CURVATURE AND ITS SUBOPTIMAL PATHS∗

V. P. KOSTOV and E. V. DEGTIARIOVA-KOSTOVA

Abstract. We describe the construction of suboptimal trajectories of the problem
of a planar motion with bounded derivative of the curvature and we prove their
suboptimality. ‘Suboptimal’ means longer than the optimal by no more than a
constant depending only on the bound B for the curvature’s derivative. The initial
and final coordinates, curvatures and tangent angles are given. The tangent angle
and the curvature of the path are assumed to be continuous. The bound B and
the distance d between the initial and final points satisfy an inequality of the kind
d� 1/

√
B.

1. Introduction

We consider the problem of finding the shortest path connecting two given

points of the Euclidian plane which has given initial and final tangent angles and

initial and final curvatures, whose tangent angle and curvature vary continuously,

the speed of changing the curvature being bounded by some constant B. We

consider paths which contain no cusps.

The problem has a real background — this is the problem to find a (the) shortest

path(s) for a car to go from one given point to another with the above mentioned

initial and final conditions. One can turn the wheels of a car with a bounded

speed. Hence, the speed of changing the curvature of the path of a real car is

bounded.

This and similar problems have been the object of several efforts recently. Du-

bins (1957, see [7]) considers the problem of constructing the optimal trajectory

between two given points with given tangent angles and with bounded curvature

(cusps are not allowed). He proves that there exists a unique optimal trajectory

which is a concatenation of at most three pieces: every piece is either a straight

line segment or an arc of a circle of fixed radius. The same model is considered by
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Cockayne and Hall (1975, see [6]) but from another point of view: they provide

the classes of trajectories by which a moving “oriented point” can reach a given

point in a given direction and they obtain the set of all the points reachable at a

fixed time.

Reeds and Shepp (1990, see [14]) solve a similar problem, when cusps are al-

lowed. They obtain the list of all possible optimal trajectories. This list contains

forty eight types of trajectories. Each of them is a finite concatenation of pieces

each of which is either a straight line or an arc of a circle.

Laumond and Souères (1992, see [11]) obtain a complete synthesis for the Reeds-

Shepp model in the case without obstacles.

A complete synthesis for the Dubins model in the case without obstacles is

obtained by Boissonnat, Bui, Laumond and Souères (1994, see [3] and [4]).

All these authors use very particular methods in their proofs. It seems very

difficult to generalize them. That is why the same problem is solved by Sussman

and Tang (1991, see [15]) and by Boissonnat, Cérézo and Leblond (1991, see [1])

by means of simpler arguments based on the Maximum Principle of Pontryagin.

Using these arguments allows to treat more difficult models as the one consid-

ered in this paper. Here we consider a similar problem but now with a bounded

derivative of the curvature (cusps are not allowed). The same problem is con-

sidered by Boissonnat, Cerezo and Leblond (1994, see [2]). After applying the

Maximum Principle of Pontryagin they obtain the following result: any extremal

path is the C2 concatenation of line segments in one and the same direction and of

arcs of clothoids with the same value of the parameter B (all of finite length). They

study the possible variants of concatenation of arcs of clothoid and line segments

and obtain that if an extremal path contains but is not reduced to a line segment,

then it contains an infinite number of concatenated arcs of clothoids which accu-

mulate towards each endpoint of the segment which is a switching point. Thus, in

the generic case, an optimal path can have at most a finite number of switching

points only if it is a finite concatenation of arcs of clothoids with the same value

of the parameter B.

The readers familiar with chattering control theory can remark after examining

Section 2 that the singular trajectories of our problem (i.e. the line segments in

one and the same direction) have intrinsic order 2 (see the definition in [12]). The

complete theory of such chattering controls known to the present day is exposed

in the monograph of Zelikin and Borisov (1994, see [16]).

We solve the problem of the irregularity of optimal paths in the generic case (see

[10]) and we obtain the following result: if the distance between the initial and the

final points is greater than some constant C depending only on the parameter B

of the clothoid, then, in the generic case, optimal paths have an infinite number of

switching points. We prove this by showing that a path which is a finite concate-

nation of arcs of clothoids can be shortened while preserving the initial and final
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conditions, the continuity of the tangent angle and curvature and the boundedness

of the curvature’s derivative.

That is why in this paper we concentrate our attention on the explicit descrip-

tion of suboptimal trajectories (i.e. not more than a constant longer than the

optimal one) and of their construction. Two students — A. Casta and Ph. Cohen

— wrote a programme in MAPLE which draws such suboptimal paths.

We consider the same problem in the case when cusps are allowed in [8] (1993).

In §2 we consider the theoretical aspect of the problem, using the Maximum

Principle of Pontryagin. We obtain that if an optimal trajectory is piecewise

regular then it must be a concatenation of arcs of clothoids and of straight line

segments. We construct suboptimal paths from such pieces in §4. We prove the

suboptimality of the constructed path in §5 by means of some geometric properties

of clothoids which are exposed in §3.

2. Statement of the Problem, Existence of an Optimal

Solution and Application of the Maximum

Principle of Pontryagin to This Problem

We study the shortest C2 path on the plane joining two given points with

given tangent angles and curvatures along which the derivative of the curvature

remains bounded. The tangent angle α(t) between the axis Ox and the tangent-

vector to the path is a continuous and piecewise C1 function, the curvature u(t)

is continuous.

We have the following system (from now on we denote “d/dt” by “.”):

(1) Ẋ(t) =


ẋ(t) = cosα(t)

ẏ(t) = sinα(t)

α̇(t) = u(t)

u̇(t) = w(t) |w(t)| ≤ B

with initial and final conditions:

(2) X(0) = (x0, y0, α0, u0), X(T ) = (xT , yT , αT , uT )

We control the derivative of the curvature by the control function w. The

control function w is a measurable, real-valued function and w ∈ W , where W =

[−B,+B]. We want to find such X(t) that the associated control function w(t)

should minimize the length of the path

(3) J(w) = T =

∫ T

0

dt

Here the variable t is the arc length but it will be called the time because the

point moves with a constant speed 1, that is why this “minimum length problem”

is also a “minimum time problem”.
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Of special interest are paths which are piecewise C3 (whose tangent angle is

piecewise C2 and whose curvature is piecewise C1). They are obtained for a piece-

wise continuous control w. At a point where the control function w is continuous

the path is called regular. However as it was mentioned in the introduction

optimal paths have, in general, infinitely many points of irregularity.

On the other hand-side, one can construct in practice a path with only finitely

many points of irregularity.

We use the same ideas as the ones developed by Boissonnat et al. (1994, see [2])

to prove the existence of an optimal solution to system (1); as in [2] we apply the

Maximum Principle of Pontryagin to obtain necessary conditions upon the control

function in order the solution to be optimal.

Prove at first the controllability of system (1).

If dist ((x0, y0), (xT , yT )) � 1/
√
B (see exact definition in Section 4), then

one can construct a suboptimal path from (x0, y0, α0, u0) to (xT , yT , αT , uT ) (see

Section 4). If not, then one can construct a suboptimal path from (x0, y0, α0, u0)

to a point (x∗, y∗, α0, u0) such that

dist ((x0, y0), (x∗, y∗))� 1/
√
B and dist((xT , yT ), (x∗, y∗))� 1/

√
B,

then a suboptimal path from (x∗, y∗, α0, u0) to (xT , yT , αT , uT ). Both suboptimal

paths belong to the class of paths under consideration. So, the controllability of

system (1) is proved.

In order to prove the existence of an optimal solution we can use Filippov’s

existence theorem, see [5, Th. 5.1ii]. So, rewrite system (1) in the form

Ẋ = F (X,w), X(t) ∈ R4, w ∈W.

All requirements of the theorem of Filippov are satisfied: all functions F (X,w)

are continuous together with their partial derivatives; the function under the sign

of the integral in (3) is continuous; the control function w is bounded and the

range of control is convex; X(t) ∈ R4 (R4 is closed); the initial and final points

(X(0),X(T )) are fixed; one can verify that there exists a constant C > 0 such that

for every X(t) ∈ R4 and w ∈ W the following inequality is satisfied: XF (X) ≤
C(|X|2 + 1). Thus we can assume the existence of an optimal solution and an

optimal control for problem (1), (2), (3).

We are going to apply the Maximum Principle of Pontryagin to obtain necessary

conditions for the control function w(t) and for the trajectory (x(t), y(t), α(t), u(t))

to be optimal. Rewrite system (1), (2) and integral (3) as the following system:

ẋ(t) = cosα(t) x(0) = x0 x(T ) = xT

ẏ(t) = sinα(t) y(0) = y0 y(T ) = yT

α̇(t) = u(t) α(0) = α0 α(T ) = αT

u̇(t) = w(t) u(0) = u0 u(T ) = uT |w(t)| ≤ B

ẋ0(t) = 1 x0(0) = 0
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If we denote by Ψ(t) = (p, q, β, r, e) the vector of “dual” variables then the

Hamiltonian H would be defined by

H(X,Ψ, w) = p(t) cosα(t) + q(t) sinα(t) + β(t)u(t)

+ r(t)w(t) + e, for every t ∈ [0, T ].(4)

So we have the adjoint system (for every t ∈ [0, T ]):

(5) Ψ̇(t) =



ṗ(t) = 0

q̇(t) = 0

β̇(t) = p(t) sinα(t) − q(t) cosα(t)

ṙ(t) = −β(t)

ė(t) = 0

Thus p, q, e, are constant on [0, T ]. Setting p = λ cosϕ, q = λ sinϕ (here

λ =
√
p2 + q2, λ ≥ 0, tanϕ = q/p) we can rewrite the adjoint system (5) and the

Hamiltonian (4) as follows:

(6)



p(t) ≡ λ cosϕ

q(t) ≡ λ sinϕ

β̇(t) = λ sin(α(t) − ϕ)

ṙ(t) = −β(t)

e(t) ≡ e0

(7) H(X,Ψ, w) = λ cos(α(t) − ϕ) + β(t)u(t) + r(t)w(t) + e0.

Define

M(X,Ψ) = min
w∈[−B,+B]

H(X,Ψ, w)

where (p, q, β, r, e), (x, y, α, u), w are considered as independent variables.

We shall use the Maximum Principle of Pontryagin as it is formulated in

[5, Th. 5.1i] and [13, Chapter 1, Th. 1]. It asserts that if w∗ is an optimal control,

then

(a) there exists a non-zero absolutely continuous vector-function Ψ(t) which is

a continuous solution to (5);

(b) for almost every fixed t ∈ [0, T ] the function H(X,Ψ, w) (considered as a

function of the variable w ∈ [−B,+B] only) attains its minimum at the point

w = w∗:

M(X(t),Ψ(t)) = H(X(t),Ψ(t), w∗(t)), t ∈ [0, T ];
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(c) the function M(t) = M(X(t),Ψ(t)) is absolutely continuous in [0, T ] and

dM

dt
(X(t),Ψ(t)) =

∂H

∂t
(X(t),Ψ(t), w(t));

(d) at any time t ∈ [0, T ] the relations e0 ≥ 0 and M(X(t),Ψ(t)) = 0 are

satisfied.

From condition (b) with respect to w(t) we obtain two cases:

1) ∂H/∂w ≡ 0 for t ∈ [t1, t2] ⊂ [0, T ],

2) ∂H/∂w 6≡ 0 for t ∈ (t1, t2) ⊂ [0, T ].

Hence in case 1) r(t) ≡ 0 from (7), then from (6) we obtain that β(t) ≡ 0,

hence β̇(t) ≡ 0 and α(t) = ϕ(modπ) for every t ∈ [t1, t2] (we don’t consider the

case λ = 0 because it contradicts (a)). So α̇(t) ≡ 0, u(t) ≡ 0 and w(t) ≡ 0 for all

t ∈ [t1, t2].

The corresponding path is a line segment in the direction ϕ.

In case 2) w = −B sgn (r(t)) (it follows from (7)). The corresponding path is a

clothoid. A clothoid is a curve along which the curvature u(t) depends linearly on

the arc length t and varies continuously from −∞ to +∞. That is why w(t) = ±B
determines a single clothoid (modulo the group of symmetries of the plane).

We can define the clothoid as the curve satisfying the following equation

u(t) = ±Bt, t ∈ (−∞,+∞).

We can also define the clothoid by its parametrized form (setting x(0) = y(0) =

0, α(0) = 0, u(0) = 0) 
x(t) =

√
2/B

∫ t
√
B/2

0

cos(τ2) dτ

(t) = ±
√

2/B

∫ t
√
B/2

0

sin(τ2) dτ

The two possible choices of the sign correspond to the two possible orientations

of the clothoid.

Call B the parameter of the clothoid. The sign ± defines the orientation

of the clothoid, the variable t is the natural parameter and the curvature equals

±Bt. For t = 0 the clothoid has a (unique) inflexion point which is its centre

of symmetry. Call half-clothoid its part corresponding to t ∈ [0,+∞) or to

t ∈ (−∞, 0].

A measurable control function w and its associated trajectory of (1) satisfying

all conditions of the Maximum Principle of Pontryagin will be called extremal

control and extremal trajectory. A point X(tp) of an extremal trajectory

will be called a switching point if at t = tp the control function w(t) has a

discontinuity.

From the preceding reasonings we can deduce
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Lemma 2.1. Any extremal path is the C2 concatenation of the line segments

in one and the same direction (w = 0) and of arcs of clothoids (w = ±B), all of

finite length.

In [10] we prove the following theorem:

Theorem 2.2. If the distance between the initial and the final point is greater

than the constant C which depends only on the value of the parameter B, then, in

the generic case, optimal paths have an infinite number of switching points.

That is why in the present paper we construct (in §4) regular suboptimal paths

in the case when the distance between the initial and the final point is much greater

than 1/
√
B (the exact definition is given in §4).

The suboptimal path consists of a line segment and of four pieces of clothoids, its

curvature and tangent angle are continuous, it has four switching points, see §4.

One needs at least 4 switching points in order to be able to attain the 4 final

conditions — coordinates, tangent angle and curvature. Using more switching

points could lead to shortening of the path but it must certainly be connected

with formulas more difficult to deal with. Therefore we have chosen the simplest

possible way to construct suboptimal paths.

In order to prove the suboptimality of the path constructed in §4, i.e. that it

is no more than a fixed constant (depending only on B) longer than the optimal

one, we prove some geometric properties of clothoids in §3. Its suboptimality is

proved in §5.

3. Geometric Properties of the Clothoid

Consider a half-clothoid

(8)

{
ẋ(t) = cos(Bt2/2) x(0) = 0 t ≥ 0

ẏ(t) = sin(Bt2/2) y(0) = 0 B > 0 .

Define as the centre of the half-clothoid the point Oc with coordinates (xOc ,

yOc) defined as follows:

(9)



xOc =

∫ ∞
0

cos (Bτ2/2)dτ =
√

2/B

∫ ∞
0

cos ν2 dν =
√

2/B
√

2π/4

=
√
π/(2
√
B)

yOc =

∫ ∞
0

sin (Bτ2/2)dτ =
√

2/B

∫ ∞
0

sin ν2 dν =
√

2/B
√

2π/4

=
√
π/(2
√
B) .
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Consider the circle with centre at the centre of the half-clothoid (8) and take

the radius of this circle (denote it by rB) to be equal to the distance between the

centre of the half-clothoid (8) and its point with zero curvature. Then, from (9)

we obtain (see Figure 1)

(10) rB = |
−−→
OOc| =

√
x2
Oc

+ y2
Oc

=
√
π/(2B) .

Remark 3.1. A half-clothoid of the opposite orientation is defined by equa-

tions {
ẋ(t) = cos(Bt2/2) x(0) = 0 t ≥ 0

ẏ(t) = sin(−Bt2/2) y(0) = 0 B > 0 .

Figure 1. A half-clothoid and its corresponding polar coordinate system.

Further in the text we set B = 2 in the proofs of these statements whose

formulations don’t depend on the concrete value of the parameter B. If on the

contrary, a statement or an estimation depends essentially on B, then we say this

explicitely.

For B = 2 we consider the half-clothoid

(11)

{
ẋ = cos t2 x(0) = 0 t ≥ 0

ẏ = sin t2 y(0) = 0 .
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3.1 Fundamental Properties of an Individual Clothoid

Fix a direction α∗ (modπ, not mod2π in R2 and let P1, P2, . . . denote the

consecutive points on the half-clothoid with a tangent line at them of the chosen

direction (with t1 < t2 < . . . ). Set Pi = (xi, yi), xi = x(ti), yi = y(ti) (see

Figure 2).

Figure 2. Consecutive tangent lines to a half-clothoid.

Proposition 3.2. P̂1P2 is the longest among the arcs P̂iP i+1. Its length de-

pends continuously and monotonously on the choice of the direction α∗.

Proof.

|P̂iP i+1| =

∫ √α∗+iπ
√
α∗+(i−1)π

√
cos2 t2 + sin2 t2 dt =

√
α∗ + iπ −

√
α∗ + (i− 1)π

=
π

√
α∗ + iπ +

√
α∗ + (i− 1)π

.

Both statements follow directly from these equalities. The proposition is

proved. �
For B = 2 the coordinates (xOc , yOc) is defined as follows:

xOc =

∫ ∞
0

cos τ2 dτ

yOc =

∫ ∞
0

sin τ2 dτ
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Consider the coordinate system with the centre at the centre Oc of the half-

clothoid and with the axes Ocxc, Ocyc parallel to the corresponding axes of the

coordinate system Oxy (see Figure 1). In the coordinate system Ocxcyc the coor-

dinates of the point (xc, yc) of the half-clothoid (11) are defined by the formulas:

(12)


xc(t) = x(t) − xOc = −

∫ ∞
t

cos τ2 dτ

yc(t) = y(t)− yOc = −

∫ ∞
t

sin τ2 dτ

Denote by ~ρ the radius-vector of a point of the half-clothoid in the coordinate

system Ocxcyc.

Then

ρ2 = xc
2 + yc

2

and

ρ̇(t) =
1

ρ
(xcẋc + ycẏc) =

1

ρ

(
− cos t2

∫ ∞
t

cos τ2 dτ − sin t2
∫ ∞
t

sin τ2 dτ

)
= −

1

ρ

∫ ∞
t

cos(τ2 − t2) dτ = −
1

ρ

∫ ∞
t2

cos(η − t2) dη

2
√
η

= −
1

ρ

∫ ∞
0

cos ν dν

2
√
ν + t2

.

Thus

(13) ρ̇(t) = −
1

2ρ

∫ ∞
0

cos τ dτ
√
τ + t2

.

Lemma 3.3. The length of the radius-vector ~ρ(t) of a half-clothoid is a mono-

tonously decreasing function of t:

ρ̇ < 0 .

Proof. Set

t2 = a,

∫ ∞
0

cos τ dτ
√
τ + a

= I(a) .

The function cos τ is periodic with period 2π. So using the property of the

symmetry of the function cos τ (cos(π − τ) = cos(π + τ) = − cos τ , cos(2π − τ) =

cos τ) we can consider instead of the integral I(a) the following integral:

∫ π/2

0

Σ cos τ dτ,
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where

Σ =
∞∑
k=0

(
1

√
a+ τ + 2kπ

−
1

√
π − τ + a+ 2kπ

−
1

√
π + τ + a+ 2kπ

+
1

√
2π − τ + a+ 2kπ

)
.

This series is convergent because

1
√
a+ τ + 2kπ

−
1

√
π − τ + a+ 2kπ

= O

(
1

k
√
k

)
and

−
1

√
π + τ + a+ 2kπ

+
1

√
2π − τ + a+ 2kπ

= O

(
1

k
√
k

)
.

Consider the first four terms of the series. The function f(ξ) = 1/
√
ξ is convex

and monotonously decreasing, see Figure 3.

Figure 3. Application of the convexity of the function 1/
√
ξ.

For the middle lines KM and LM of the trapezoids EABF and GCDH re-

spectively we have LM ⊂ KM . We have the followings formulas:

1
√
τ + a

+
1

√
2π − τ + a

= 2|KM |,

1
√
π − τ + a

+
1

√
π + τ + a

= 2|LM |,

|LM | < |KM |.
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Hence

1
√
τ + a

−
1

√
π − τ + a

−
1

√
π + τ + a

+
1

√
2π − τ + a

> 0 .

Every following sum of four terms in the series can be considered analogously.

This proves that the sum of the series under consideration is positive. The function

cos τ , τ ∈ [0, π/2] is non-negative. Hence, the integral I(a) is positive and the

derivative of the length of the radius-vector ~ρ(t) is negative.

The lemma is proved. �
Lemma 3.4. The derivative of the length of the radius-vector ~ρ(t) of a half-

clothoid is a monotonously increasing function of t, i.e.

(14) ρ̈ > 0 .

The lemma is proved in Appendix A.

We give a geometric interpretation of the inequality ρ̈ > 0. Denote by γ(t) the

angle between the radius-vector ~ρ(t) and the tangent vector ~τ(t) of the point of

the clothoid (11). We have

(15) ρ̇ = cos γ

The angle γ is in the interval (π/2, π)( mod 2π) (because ρ̇ < 0, see Lemma 3.3).

Hence, the function sin γ is positive. We have

(16) ρ̈ = −γ̇ sin γ

and obtain, from (14), that

(17) γ̇ < 0 .

So we obtain the geometric interpretation of Lemma 3.4:

Remark 3.5. The angle γ(t) between the radius-vector ~ρ(t) and the tangent

vector ~τ(t) is a monotonously decreasing function of t; γ(t) → 3π/4 for t → 0,

γ(t)→ π/2 for t→ +∞.

Corollary 3.6. If we have an “unwinding” half-clothoid (i.e. half-clothoid with

decreasing absolute value of the curvature) defined by the equations:
x(t) =

∫ t

0

cos (τ2 + u0τ + α0) dτ x(0) = x0 u0 < 0

y(t) =

∫ t

0

sin (τ2 + u0τ + α0) dτ y(0) = y0 t ≥ 0

then for such a clothoid we have the following conditions:

ρ̇ > 0,

ρ̈ > 0 .
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Corollary 3.7. If two half-clothoids clA and clB have the same centre Oc, the

same orientation and the same parameter B then either they coincide or they have

no common point.

Consider the circle C with centre at the centre Oc of clA and with radius equal

to the distance between the centre of clA and its point of zero curvature. Denote by

∂C the circumference with centre at Oc and with the same radius. Then C \ Oc is

the union of non-intersecting half-clothoids. The mapping which maps each half-

clothoid on its point of zero curvature (lying on ∂C) is a bijection from the set of

half-clothoids onto ∂C.

Proof. If clA and clB intersect, then at the intersection point they have equal

radius-vectors, hence, equal curvatures (see Lemma 3.3), hence, equal values of

ρ̇ (see Lemma 3.4), hence, they must coincide, because they are obtained by in-

tegrating the equations ẋ = cos (t− t0)2, ẏ = sin (t− t0)2 with equal initial data

(x0, y0, t0).

The corollary is proved. �

Estimate now the maximal possible distance between two points of the half-

clothoid (8). Consider some point E belonging to the half-clothoid (8) (see Fig-

ure 4). The length of the chord OE is defined as follows:

(18)

|OE| =
√
x2(t) + y2(t) =

√(∫ t

0

cos (Bτ2/2) dτ

)2

+

(∫ t

0

sin (Bτ2/2) dτ

)2

.

Denote by K the point of a half-clothoid where the chord has maximal length.

Proposition 3.8. The tangent angle α at the point K belongs to the interval

(π/2, 3π/4).

Proof. At the point K the tangent vector ~τ is perpendicular to the chord OK

(because at K the derivative of the length of the chord is equal to zero). Denote

by W the point of the half-clothoid where the tangent angle is equal to π/2 (see

Figure 4). Evidently, αK > π/2, because d|OW |
dt

= cos γ, and γ ∈ (0, π/2) at the

point W , hence, d|OW |
dt

> 0.

The angle OKL is equal to π/2. The angle OcKL is smaller than π/2 (because

OcKL = π − γ and γ ∈ (π/2, π)). Hence, the angle MOK is smaller than the

angle MOOc. But the angle MOOc is equal to π/4, hence, the angle MOK is

smaller than π/4 and the angle OMK is greater than π/4, i.e. the tangent angle

αK at the point K is smaller than 3π/4.

The proposition is proved. �

In two following propositions (Proposition 3.9 and 3.10) we consider arbitraryB.

Proposition 3.9. The maximal possible length of the chord |OK| is smaller

than 3rB/2.
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Figure 4. A half-clothoid and its point K where the chord has

a maximal length.

Proof. From Lemma 3.3 we know that the length of the radius-vector ~ρ(t) of a

half-clothoid is a monotonously decreasing function of t. Hence (see Figure 4),

|OcK| < |OcW |, i.e.|OK| < |OOc|+ |OcW | = rB + |OcW |.

But for |OcW | we have the following formulas (see (18)):

|OcW | =

(∫ √π/B
0

cos
(
Bτ2/2

)
dτ −

√
π
/(

2
√
B
))2

+

(∫ √π/B
0

sin
(
Bτ2/2

)
dτ −

√
π
/(

2
√
B
))2

1/2

=

(√2/B

∫ √π/2
0

cos τ2 dτ −
√
π
/(

2
√
B
))2

+

(√
2/B

∫ √π/2
0

sin τ2 dτ −
√
π
/(

2
√
B
))2

1/2

= 2rB/
√
π

(∫ √π/2
0

cos τ2 dτ −
√
π
/(

2
√

2
))2
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+

(∫ √π/2
0

sin τ2 dτ −
√
π
/(

2
√

2
))2

1/2

≈ 2rB/
√
π
√

(0.98− 0.62)2 + (0.55− 0.62)2 ≈ 2rB
√

0.14/
√
π

≈ 0.42rB < rB/2.

Hence, we obtain the desired inequality:

|OK| < rB + rB/2 = 3rB/2.

The proposition is proved. �

Proposition 3.10. The maximal possible distance between two points of a half-

clothoid is smaller than 3rB/2.

Proof. Consider two points P and Q of a half-clothoid (8) (see Figure 5). We

prove that for any points P and Q

|PQ| < |OK| ,

where K is defined before Proposition 3.8.

Figure 5. A half-clothoid and an arbitrary chord PQ.
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Evidently, we must consider the case when if only one point (P or Q) belongs

to the arc ÔL (the tangent line at the point L passes through the point O). If the

chord PQ has the maximal possible length then the tangent lines at the points P ,

Q (denote them by mP , mQ respectively) are perpendicular to the chord PQ.

Consider a point E ∈ Q̂P . Denote by αQ the tangent angle at the point Q, by

αE — the tangent angle at the point E. The line EẼ is parallel to the lines mP

and mQ.

The length of the straight line segment EẼ can be defined by the following

formula:

|EẼ| =

∫ √2αE/B

√
2αQ/B

cos
(
Bτ2/2− αQ

)
dτ

(because αE = Bt2E/2).

Assume that the point E coincides with the point P , i.e. αE = αQ + π. Hence,

we have the following equality:

(19) 0 =

∫ √(2αQ+2π)/B

√
2αQ/B

cos
(
Bτ2/2− αQ

)
dτ.

We can rewrite equality (19) as follows:

0 =

∫ π

0

cos τ dτ√
2B(αQ + τ)

.

But ∫ π

0

cos τ dτ√
2B(αQ + τ)

> 0 ,

because cos τ = cos(π − τ) for any τ ∈ [0, π/2) and

1√
2B(αQ + τ)

>
1√

2B(αQ + π − τ)
.

Hence, equality (19) isn’t correct and, hence, the chord PQ can’t have the

maximal possible length, i.e.

|PQ| < |OK|.

From Proposition 3.9 we have

|OK| < 3rB/2.

Hence, the maximal possible distance between two points of a half-clothoid is

smaller than 3rB/2.

The proposition is proved. �
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3.2 Properties of two arcs of clothoids at their concatenation point

Consider two clothoids cl1 and cl2 (see Figure 6) which for t = 0 have the same

initial conditions (x0, y0, α0, u0), u0 < 0, the absolute value of the curvature of cl1

is decreasing with t, the one of cl2 increasing with t; cl1 and cl2 are defined by

equations:

cl1 :


x(t) =

∫ t

0

cos (τ2 + u0τ + α0) dτ + x0

y(t) =

∫ t

0

sin (τ2 + u0τ + α0) dτ + y0

(20)

cl2 :


x(t) =

∫ t

0

cos (−τ2 + u0τ + α0) dτ + x0

y(t) =

∫ t

0

sin (−τ2 + u0τ + α0) dτ + y0

(21)

Figure 6. Two arcs of clothoids (with decreasing and with increasing

curvatures) with equal curvatures and tangent angles at their common endpoint.

Consider clothoids cl1 and cl2 on a small interval t ∈ [0, s] (see Figure 7).

On this figure the point O is the centre of cl1, the point A is the initial point,

the points B and C belong to the clothoids cl1 and cl2 respectively and |ÂB| =
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Figure 7. The pieces of half-clothoids cl1 and cl2 with denoted angles θ0,

θ1, θ2, ϕ1, ϕ2, ψ1, ψ2 and radius-vectors ~ρA, ~ρB, ~ρC .

|ÂC| = s. The angle between the tangent vector to cl1 and cl2 at point A and the

vector equal to (−~ρA) ( ~ρA is the radius-vector at point A) is denoted by θ0. The

angles between the tangent vectors to cl1 and cl2 at the points B and C and the

vector equal to (−~ρA) are denoted θ1 and θ2 respectively. The angles between the

tangent vector at the point A and the vectors
−→
AB and

−→
AC are denoted ψ1 and ψ2

respectively. And the angles between the radius-vector ~ρA and the radius-vectors

~ρB and ~ρC at the points B and C are denoted ϕ1 and ϕ2 respectively. Denote by

δi (i = 1, 2) the angles between the tangent lines at the points B and C and their

radius-vectors (δi = θi + ϕi, i = 1, 2).

Lemma 3.11. For the clothoids cl1 and cl2 on a small interval t ∈ [0, s] the

following equalities hold:

ρ2
B − ρ

2
C =

4

3
ρA sin θ0s

3 +O(s4),(22)

δ1 − δ2 = 2s2 +
2 cos θ0

3ρA
s3 +O(s4).(23)

See the proof of the lemma in Appendix B.

Corollary 3.12. Denote by Cc the point of the clothoid cl1 with the same

curvature as the point C belonging to clothoid cl2. Denote by Cρ the point of the

clothoid cl1 with the same length of the radius-vector ~ρC as the point C of the



PLANAR MOTION WITH BOUNDED DERIVATIVE OF CURVATURE 203

clothoid cl2; and denote by Cγ the point of the clothoid cl1 with the same angle γ

between the radius-vector and the tangent vector as the point C of cl2. Denote by

γA, γB, γC the angles γ at the points A, B, C. Then the points Cc, A, Cγ , Cρ,

B on a small interval [0, s] are encountered in their order along cl1.

This corollary is proved in Appendix B.

3.3 A property of a concatenation of several arcs of clothoids

Consider two paths with the same initial conditions (x0, y0, α0, u0) and whose

graphs of the curvature as a function of the path length are shown on Figure 8.

Figure 8. The graphs of the curvature of a piece of a half-clothoid (cl) and of

a concatenation of several arcs of clothoids (pcl) with equal initial curvatures.

The path cl is a piece of a half-clothoid whose curvature is defined by the

equation u = −2s + u0 (u0 > 0). The path pcl consists of several pieces of

clothoids whose curvatures are defined by equations of the kind u = −2s+ ũ0 or

u = 2s+ ˜̃u
0

(ũ0 > 0 and ˜̃u
0
> 0), the sum of their lengths is equal to u0/2. Denote

by Ocl the centre of cl, by ~ρcl(t) the radius-vector of a point of cl in the coordinate

system with centre at Ocl. Denote by ~ρpcl(t) the radius-vector of a point of the

path pcl in this coordinate system. For t = 0 we have ~ρcl(0) = ~ρpcl(0).

Lemma 3.13. For any path pcl (defined as above) and for the path cl (both

paths are defined on the interval s ∈ [0, u0/2]) we have the following inequality:

(24) ρcl(s) > ρpcl(s), for every s ∈ (0, u0/2].

See the proof of the lemma in Appendix C.
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Denote by D the class of the paths with initial conditions (x0, y0, α0, u0), of

length u0/2 and whose graphs of the curvature u as a function of the path length

s belong to the class Lip (2). Denote by ~ρL(t) the radius-vector of the point of

some path L from the class D in the coordinate system with centre at Ocl. Then

we have

Corollary 3.14. For any path L from the class D and for the path cl from

Lemma 3.13 (both paths are defined on the interval s ∈ [0, u0/2]) we have the

following inequality:

ρcl(s) > ρL(s), for every s ∈ (0, u0/2]

Really, the class of paths L belongs to the closure of the class of all paths pcl

defined at the beginning of the subsection.

4. Construction of a Suboptimal Path

We construct a suboptimal path when dist ((x0, y0), (xT , yT )) � 1/
√
B (i.e.

there exist constants a > 1, c ≥ 0 such that the following inequality holds:

dist ((x0, y0), (xT , yT )) ≥ a/
√
B + c).

In the section we consider arbitrary B in Propositions 4.1 and 4.2 and we set

B = 2 throughout the rest of the section.

We show that one can construct a path from the initial point X0 with coordi-

nates (x0, y0) to the final point XT with coordinates (xT , yT ) with four switching

points which is a concatenation of four arcs of clothoids and a line segment (along

the path the tangent angle and the curvature are continuous, their initial and final

values are respectively α0, αT and u0, uT ).

Construct the path from X0 to XT by means of the graph of the curvature as

a function of the path length. Construct at first a part of the path which is a

concatenation of two arcs of clothoids only, from the point X0 to some point X ′D.

For this purpose consider the graph of the curvature as a function of the path

length, which is a piecewise linear and continuous function (the absolute values of

the angular coefficients of these pieces are the same, i.e. every piece is of the kind

u = ±2t+ u∗∗).

This graph is shown on Figure 9. It is linear on [0, ξ′] and on [ξ′, η′ + 2ξ′], zero

at the point (η′ + 2ξ′). Here ξ′ and η′ are the path lengths, the number η′ is

defined by u0 (η′ = u0/2), ξ′ can be considered as a parameter.

Construct the path corresponding to this graph from X0 to some point X ′D (the

point X ′D of the path corresponds to the point D of the graph of the curvature).

Increasing ξ′ monotonously leads to increasing of the absolute value of the

tangent angle α at the point X ′D (denote it by α′), because the curvature doesn’t
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Figure 9. The graph of the curvature of the suboptimal path from 0 to η′ + 2ξ′.

change sign on [0, η′ + 2ξ′] and the angle α′ − α0 is the integral of the curvature

on this interval:

α′ − α0 =

∫ η′+2ξ′

0

u(t) dt.

Hence, there exist d′ > 0 such that if ξ′ varies in [0, d′], then the tangent angle

α′ at the point X ′D assumes continuously all the values from some interval of the

kind [κ0, κ0 + 2π] or [κ0, κ0 − 2π], κ0 ∈ R, depending on the sign of u0.

In conformity with Proposition 3.2 we can take for d′ the maximal length of an

arc of half-clothoid on which the tangent angle makes a full turn (i.e. 2π).

Estimate the area where the point X ′D can be if ξ′ ∈ [0, d′].

Proposition 4.1. If ξ′ ∈ [0, d′] the point X ′D will be within some disc E′. For

x0, α0 fixed the coordinates of its centre (which we assume to be the point X ′D for

ξ′ = 0) depend only on u0; its radius doesn’t depend on any of the constants x0,

α0, u0 and when B is not fixed then the radius and the coordinates of the centre

depend only on the parameter B.

Proof. Consider the circle with centre at the centre of the half-clothoid whose

curvature is defined by the part AF of the graph of u as a function of t (see

Figure 9). Denote this clothoid by clin. We take the radius of this circle to equal

rB (see (10)). Denote the point of clin corresponding to the point F of the graph

shown on Figure 9 by X ′F . If we change ξ′ ∈ [0, d′], then the point X ′F will remain

within this circle. The point X ′D will be within the circle with centre at the point

X ′F and with radius rB . Thus, the point X ′D will be within the circle E′ with

centre at the centre of clin and with radius 2rB.

The proposition is proved. �
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We can use the same method for constructing the path from XT to some point

X ′′D (from the right to the left). For this path we have a parameter ξ′′, the interval

[0, d′] and the disc E′′ respectively.

Remind that we consider the case when dist ((x0, y0), (xT , yT ))� 1/
√
B. That

is why E′ ∩E′′ = �.

In order to construct the path from X0 to XT vary ξ′ and ξ′′ so that the

tangent lines at the points X ′D and X ′′D should be parallel (i.e. ξ′′ is a function

of ξ′). For α′ = π/2, α′′ = −π/2 and for α′ = −π/2, α′′ = π/2 the angles between

the tangent vector to the path at X ′D and the vector
−−−−→
X ′DX

′′
D have different signs.

Hence, thus varying ξ′ and ξ′′ in the interval [0, d′], we obtain that for some values

ξ′, ξ′′ this angle equals 0. So, we obtain the desired path from X0 to XT . The

thus constructed path satisfies all the initial requirements.

Proposition 4.2. There are the following inequalities between the radius rB
and the parameters ξ′, ξ′′:

ξ′ ≤ 2
√

2rB,

ξ′′ ≤ 2
√

2rB.

Proof. Remember that (from (10))

rB =
√
π/(2B) ,

and ξ′ ∈ [0, d′] where d′ is the maximal length of an arc of a half-clothoid on which

the tangent angle to the half-clothoid makes a full turn. To compute d′ let the

point P1 coincide with the point O and let α∗ be equal to zero (see Figure 2).

Then

d′ = P̂1P3 =

∫ √4π/B

0

√
cos2

(
Bt2

2

)
+ sin2

(
Bt2

2

)
dt =

√
4π

B
= 2

√
π

B
.

Hence

ξ′ ≤ 2

√
π

B
= 2
√

2rB .

Similarly, ξ′′ ≤ 2
√

2rB.

The proposition is proved. �

Remark 4.3. The initial and final values of the curvature may be positive or

negative. That is why the path constructed from X0 to XT may be of one of the

forms shown on Figures 10a)–d). Figure 10 a) corresponds to u0 > 0, uT < 0;

Figure 10b) — to u0 > 0, uT > 0; Figure 10c) — to u0 < 0, uT > 0 and Figure 10d)

— to u0 < 0, uT < 0. The points X ′D, X ′′D are the points of zero curvature.
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Figure 10. The four possible types of suboptimal paths.

It is practically impossible to feel the presence of a switching point between

two clothoids on the path (Figures 10 a)–d)), because the first and the second

derivatives are continuous there. On Figure 11 we show such a switching point —

the path MKL contains an arc (MK) of the clothoid C1 and an arc (KL) of the

clothoid C2.

Remark 4.4. Consider a path beginning at X0 whose graph of the curvature

as a function of the path length has the form shown on Figure 12 (ζ > 0 is a

parameter). Such a path will be longer than the path with ζ = 0 (if the tangent

angles at X ′D are equal for both paths, the initial angles and curvatures — too).

Really, the surfaces under both graphs of the curvature must be equal (because

the tangent angle is the integral of the curvature). Hence, ξ is minimal when u∗ is

maximal, i.e. ζ = 0. This observation makes us choose ζ = 0 for the construction

of the suboptimal path.

The condition dist ((x0, y0), (xT , yT )) � 1/
√
B implies that the line segment

between the points X ′D and X ′′D is almost horizontal. Hence, if we change ζ the

change of the length ∆l of this segment is approximately equal to the change of
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Figure 11. A switching point between two arcs of clothoids (represented

together with their analytic continuations).

Figure 12. The graph of the curvature of the path from Remark 4.4.

the length of its projection ∆lx on Ox. Denote by ∆s the change of the total

length of the four arcs of clothoid. Denote by ∆sx the change of the total length

of their projections on Ox. Then we have

∆s ≥ ∆sx = −∆lx ≈ ∆l.
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Therefore one expects to have, in general, shorter paths for smaller values of ζ,

because, in general, the left inequality should be strict.

Two students — A. Casta and Ph. Cohen — constructed suboptimal paths

explicitly by means of MAPLE.

To construct a suboptimal path one has to express the coordinates and the

tangent angles at the points X ′D and X ′′D as functions, respectively, of ξ′ and ξ′′.

One imposes the condition the tangent angles at X ′D and X ′′D to be equal; this

allows to express ξ′′ by ξ′. After this one expresses the distance between the

tangent lines at the points X ′D and X ′′D as a function of ξ′. The necessary value

of ξ′ is a zero of this function. This zero can be found by means of MAPLE. A

better result is obtained when the method of dichotomy is used, not Newton’s one

(it is not clear whether the latter is applicable or not).

5. Proof of the Suboptimality of the Path Constructed in §4

In the section we consider arbitrary B.

Theorem 5.1. The optimal path for problem (1)–(3) is shorter than the subop-

timal path constructed in §4 by no more than (10
√

2 + 10)rB (here rB denotes the

distance between the centre of the half-clothoid (8) and its point of zero curvature).

Proof.

10. Consider the suboptimal path as consisting of five pieces: the first piece is

from the initial point X0 to the point X ′C corresponding to the point C on the

graph of the curvature u as a function of s (see Figure 9); the second piece is

from the point X ′C to the point X ′D (remember that the point X ′D of the path

corresponds to the point D on the graph of the curvature u); the third piece is a

line segment between the points X ′D and X ′′D; the forth and the fifth pieces are

defined in the same way as the second and the first pieces respectively (the point

X ′′C corresponds to the point X ′C).

Consider the initial point X0 with the initial values of the tangent angle and

the curvature α0 and u0 as belonging to the unwinding half-clothoid. Then we

can correctly define the centre of this half-clothoid, denoted by OX0 . For the final

point XT with αT , uT we can define the unwinding half-clothoid with centre at

the point OXT respectively.

Then we can consider the optimal path as consisting of three pieces: the first

piece is the piece within the circle DX0 with centre at the point OX0 and with

radius rB (more precisely, the piece ends with the first point P which is out of

the circle DX0 ; if the optimal path leaves DX0 and then enters it again, its part

after the point P belongs to the second piece). The third piece is the piece within

the circle DXT with centre at the point OXT and with radius rB (more precisely,

from the last point belonging to DXT to the point XT ). The second piece is what

is left between the first and the third one.
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20. Remember that we use the folowing notations: we denoted by X ′F the point

of the suboptimal path corresponding to the point F on the graph u as a function

of t (see Figure 9), by X ′C — the point corresponding to the point C, by X ′D — the

point corresponding to the point D and by X ′′F , X ′′C , X ′′D we denoted the points

belonging to the corresponding part of the path from the final point.

The point X ′C with α̃, u0 belongs to the unwinding half-clothoid whose centre

is correctly defined. Denote it by OX′C . Denote by DX′C
the circle with centre at

the point OX′C and with radius rB .

For the point X ′C we define similarly the point OX′′C and the circle DX′′C
.

30. Plan of the proof of the suboptimality of the path constructed in

§4 (the suboptimal path).

We compare the length of the optimal path and the one constructed in §4. We

can estimate the maximal possible difference of their lengths (denote it by σ). For

this purpose we prove that the second (the forth) piece of the suboptimal path is

no longer than the first (the third) piece of the optimal one (see 40).

Then we estimate the maximal possible length of the pieces X̂0X ′C and X̂TX ′′C
of the suboptimal path (see 50). Their lengths are, respectively, 2ξ′ and 2ξ′′.

In 60 we estimate the maximal possible difference between the distance between

the circles defining the second and the forth pieces of the suboptimal one and the

distance between the circles defining the first and the third pieces of the optimal

one.

And then in 70 we estimate the difference between the shortest and the longest

possible length of the line segment of the suboptimal path.

We summarise these results and obtain σ in 80.

40. The first and the third pieces of the optimal path belong to the class D (see

the definition in Subsection 3.3). Hence, we obtain from Corollary 3.14 that the

second (the forth) piece of the suboptimal path is no longer than the first (the

third) piece of the optimal one.

50. We obtain from Proposition 4.2 that ξ′ ≤ 2
√

2rB and ξ′′ ≤ 2
√

2rB . Hence,

adding the pieces X̂0X ′C and X̂TX ′′C we add no more than 2ξ′ + 2ξ′′ ≤ 8
√

2rB to

the length of the suboptimal path.

60. The maximal possible distance between the points X0 and X ′C is equal to

3rB , because X̂0X ′F and X̂ ′FX
′
C are two arcs of two half-clothoids, hence, the

distance between the points X0 and X ′F (the points X ′F and X ′C respectively) is

smaller than 3/2rB (see Proposition 3.10). Similarly for the point XT and X ′′C .

Hence, the maximal possible distance between the points OX0 and OX′C is equal

to 3rB + rB + rB = 5rB (see Figure 13). In the same way the maximal possible

distance between the points OXT and OX′′C is equal to 5rB.



PLANAR MOTION WITH BOUNDED DERIVATIVE OF CURVATURE 211

Figure 13. The circles of radius rB with centres at the points OX0 and OX′C .

Thus the distance between the circles defining the second and the forth pieces

of the suboptimal path is no greater than the distance between the circles defining

the first and the third pieces of the optimal one by no more than 5rB+5rB = 10rB.

70. Estimate the difference between the shortest and the longest possible length

of the line segment of the suboptimal path. Denote by RQ the line segment of

the shortest possible length and by EW the one of the longest possible length (see

Figure 14). Denote by G the point belonging to the border of the circle DX′C
and

the segment OX′CG is perpendicular to the line OX′COX′′C . For the circle DX′′C
we

have the point V respectively.

Figure 14. The circles of radius rB with centres at the points OX′C and OX′′C .

Compute the angle OX′CEK. It is equal to the angle between the vectors
−−→
OOc

and ~τ (see Figure 1). The vector
−−→
OOc is the radius-vector of the centre Oc of the

half-clothoid (11), the vector ~τ is the tangent vector to this half-clothoid at the

point O. The line l is perpendicular to the vector
−−→
OOc and the angle β is the angle

between the line l and the tangent vector ~τ . From (9) we obtain that xOc = yOc ,
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hence, the angle between the axis Ox and the vector
−−→
OOc is equal to π/4 and the

angle β is equal to π/4, too. Thus the angle OX′
C
EK is equal to 3

4π.

Hence

|KE| < |KG|.

But |GR| =
√

2rB (because |OX′CG| = |OX′CR| = rB and OX′CG ⊥ OX′CR).

Hence,

|KE| < |KG| < |GR|+ |RK| =
√

2rB + |RK|.

Analogously for the segment |KW | we have the following inequality:

|KW | <
√

2rB + |KQ|.

Thus

|EW | < |RQ|+ 2
√

2rB ,

i.e. we obtain that the least possible length of the line segment of the suboptimal

path is shorter than the greatest possible length by no more than 2
√

2rB .

80. Summarising the results obtained in 40−−70, we can estimate the maximal

possible difference of the lengths of the suboptimal and the optimal paths:

σ = 8
√

2rB + 10rB + 2
√

2rB = (10
√

2 + 10)rB.

The theorem is proved. �

A Appendix: Proof of Lemma 3.4

An arbitrary point A of the clothoid (11) has a tangent vector ~τ(t) with coor-

dinates (cos t2, sin t2) (see Figure 15).

Consider a point D of the clothoid (11) with tangent vector ~τn = (0, 1). The

point A is mapped onto the point D by means of the rotation on angle θ defined

by the rotation matrix (
sin t2 − cos t2

cos t2 sin t2

)
.

Hence, the radius-vector ~ρ = (−
∫∞
t

cos τ2 dτ,−
∫∞
t

sin τ2 dτ) (see (12)) is

mapped into the radius-vector

~ρn =

(
− sin t2

∫ ∞
t

cos τ2 dτ + cos t2
∫ ∞
t

sin τ2 dτ,

− cos t2
∫ ∞
t

cos τ2 dτ − sin t2
∫ ∞
t

sin τ2 dτ

)
=

(∫ ∞
t

sin(τ2 − t2) dτ,−

∫ ∞
t

cos(τ2 − t2) dτ

)
=

(∫ ∞
0

sin ν dν

2
√
ν + t2

,−

∫ ∞
0

cos ν dν

2
√
ν + t2

)
.
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Figure 15. A piece of a clothoid with denoted raduis-vector ~ρ and

angles γ(t), β(t).

We want to investigate the function dρ/dt. Instead of it we can investigate the

function dγ/dt (see (15)). Denote by β the angle between the vector ~ρn and the

axis Ocxc. At the point D we have the following relations between the angles γ,

β and the coordinates xn, yn of the vector ~ρn:

cotγ = − tanβ = −
yn

xn
=

∫ ∞
0

cos ν dν

2
√
ν + t2

/∫ ∞
0

sin ν dν

2
√
ν + t2

.

Compute the derivative d(tanβ)/dt:

d(tan β)

dt
= −

t

4xn2

[∫ ∞
0

cos τdτ

(
√
τ + t2)

3

∫ ∞
0

sin τdτ
√
τ + t2

−

∫ ∞
0

sin τdτ

(
√
τ + t2)

3

∫ ∞
0

cos τdτ
√
τ + t2

]

= −
t

4xn2

[{
3

2

∫ ∞
0

sin τ dτ

(
√
τ + t2)

5 −
sin τ

(
√
τ + t2)

3

∣∣∣∣∣
∞

0

}∫ ∞
0

sin τdτ
√
τ + t2

−

{
1

2

∫ ∞
0

sin τ dτ

(
√
τ + t2)

3 −
sin τ
√
τ + t2

∣∣∣∣∣
∞

0

} ∫ ∞
0

sin τ dτ

(
√
τ + t2)

3

]

= −
t

8xn2

3

∫ ∞
0

sin τ dτ

(
√
τ + t2)

5

∫ ∞
0

sin τ dτ
√
τ + t2

−

(∫ ∞
0

sin τ dτ

(
√
τ + t2)

3

)2
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(we use integration by parts).

Denote the expression in the brackets as J(t2). Consider J(t2) with∞ changed

to 2πp (p ∈ N, p > 1). Consider the corresponding Riemann sums with step

∆ = π/n instead of the integrals:

(25)

∫ 2πp

0

sin τ dτ

(
√
τ + t2)

i
∼=

2np∑
k=1

sin τk

(
√
τk + t2)

i
∆ +O(∆), τk = πk/n, i = {1, 3, 5}

The function sin τ is periodic with period 2π and sin(π + τ) = − sin τ .

Denote the three Riemann sums (corresponding to the three integrals) by

d1 + · · ·+ dnp, g1 + · · ·+ gnp, h1 + · · ·+ hnp,

where if j = s+ νn, s = 1, . . . , n, ν = 0, . . . , p− 1, then

dj =
sin τs√

τs + 2νπ + t2
−

sin τs√
τs + 2νπ + π + t2

,

gj =
sin τs

(
√
τs + 2νπ + t2)

3 −
sin τs

(
√
τs + 2νπ + π + t2)

3 ,

hj =
sin τs

(
√
τs + 2νπ + t2)

5 −
sin τs

(
√
τs + 2νπ + π + t2)

5 .

Show that

(26) I ≡ 3djhj − gj
2 ≥ 0 .

Set τs + 2νπ = a. Then rewrite I as follows:

3

(
sin a

(
√
a+ t2)

5 −
sin a

(
√
a+ π + t2)

5

)(
sin a
√
a+ t2

−
sina

√
a+ π + t2

)

−

(
sin a

(
√
a+ t2)

3 −
sin a

(
√
a+ π + t2)

3

)2

.

Denote
√
a+ t2 by α,

√
a+ π + t2 by β. Then

I = 3

(
1

α5
−

1

β5

)(
1

α
−

1

β

)
−

(
1

α3
−

1

β3

)2

= 3
(β5 − α5)(β − α)

α6β6
−

(β3 − α3)
2

α6β6

=
3(β − α)2(β4 + β3α+ β2α2 + βα3 + α4)− (β − α)2(β2 + βα+ α2)

2

α6β6

=
(β2 − α2)

2
[3(β4 + β3α+ β2α2 + βα3 + α4)− (β2 + βα+ α2)

2
]

α6β6(β + α)
2

=
π2(2β4 + 2α4 + β3α+ βα3)

α6β6(β + α)2 > 0 .
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Thus we prove (26). Show that

(27) K ≡ 3(dihj + djhi)− 2gigj ≥ 0 .

Set

τs + 2νπ = ai, τw + 2νπ = aj ,√
ai + t2 = α,

√
ai + π + t2 = β,√

aj + t2 = γ,
√
aj + π + t2 = δ.

Rewrite K as follows:

K = 3

[(
sin ai
α5

−
sinai
β5

)(
sin aj
γ
−

sin aj
δ

)
+

(
sin aj
γ5

−
sin aj
δ5

)(
sin ai
α
−

sin ai
β

)]
− 2

(
sin ai
α3

−
sin ai
β3

)(
sin aj
γ3

−
sin aj
δ3

)
=

π2 sin ai sin aj
(β + α)(γ + δ)αβγδ

×

[
3(β4 + β3α+ β2α2 + βα3 + α4)

α4β4
+

3(δ4 + δ3γ + δ2γ2 + δγ3 + γ4)

γ4δ4

−
2(β2δ2 + β2δγ + β2γ2 + δ2βα + βαδγ + γ2βα+ α2δ2 + α2δγ + α2γ2)

α2β2γ2δ2

]
.

(28)

Estimate the expression in the brackets (denote it by L).

(29) L = L1 + L2 + L3 + L4,

where

L1 =

{
α4 + 2α2β2 + β4

α4β4
+
γ4 + 2γ2δ2 + δ4

γ4δ4
−

2(β2δ2 + α2δ2 + β2γ2 + β2δ2)

α2β2γ2δ2

}
=

(
1

α2
+

1

β2

)2

+

(
1

γ2
+

1

δ2

)2

− 2

(
1

α2
+

1

β2

)(
1

γ2
+

1

δ2

)
> 0

(due to the inequality between the mean arithmetic and the mean geometric),

L2 =

{
1

2

(
1

α3β
+

1

αβ3
+

1

γ3δ
+

1

γδ3

)
−

2

αβγδ

}
> 0

(for the same reason),

L4 =

{
1

α2β2
+

1

2

(
1

α3β
+

1

αβ3
+

1

γ3δ
+

1

γδ3

)
+

1

γ2δ2

}
> 0
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(because α > 0, β > 0, γ > 0, δ > 0) and

L3 =

{
2

(
1

α4
+

1

β4
+

1

γ4
+

1

δ4

)
−M

}
,

M =
2(β2δγ + δ2βα+ γ2βα+ α2δγ)

α2β2γ2δ2
.

One has

M =
2

γδ

(
1

α2
+

1

β2

)
+

2

αβ

(
1

γ2
+

1

δ2

)
< 2

(
1

α2
+

1

β2

)(
1

γ2
+

1

δ2

)
<

(
1

α2
+

1

β2

)2

+

(
1

γ2
+

1

δ2

)2

< 2

(
1

α4
+

1

β4
+

1

γ4
+

1

δ4

)
(due to the inequality between the mean arithmetic and the mean geometric).

Hence, L3 > 0.

So L (see (29)) is positive and then the expression K (see (28)) is positive

because the points ai, aj belong to the interval (0, π] and, hence, the functions

sin ai, sin aj are non-negative. So we prove (27).

From (26) and (27) when n→∞ it follows that

3

∫ 2πp

0

sin τ dτ

(
√
τ + t2)

5

∫ 2πp

0

sin τ dτ
√
τ + t2

−

(∫ 2πp

0

sin τ dτ

(
√
τ + t2)

3

)2

> 0 .

If 2πp→∞ and n→∞ we obtain that J(t2) > 0 and, hence, d(tan β)/dt < 0.

Remember that tanβ = − cotγ and ρ̈ = −γ̇ sin γ (see (16)). Hence,

d(cot γ)

dt
= −

γ̇

sin2 γ
> 0, γ̇ < 0

and

ρ̈ > 0 .

The lemma is proved. �

B Appendix: Proofs of Lemma 3.11 and of Corollary 3.12

B.1 Proof of Lemma 3.11

Consider a coordinate system Aξη (see Figure 16), the axis η coincides with the

tangent vector to cl1 and cl2 at the point A, the axis ξ is a perpendicular to the

axis η.
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Figure 16. The coordinate system Aξη.

In this coordinate system cl1 and cl2 are defined by the following equations:

cl1 :


ξ(t) =

∫ t

0

cos (τ2 + u0τ + π/2)dτ

η(t) =

∫ t

0

sin (τ2 + u0τ + π/2)dτ

cl2 :


ξ(t) =

∫ t

0

cos (−τ2 + u0τ + π/2) dτ

η(t) =

∫ t

0

sin (−τ2 + u0τ + π/2) dτ

So for the coordinates of the points B and C we have the following formulas:

ξB(s) = −

∫ s

0

sin (τ2 + u0τ) dτ, ηB(s) =

∫ s

0

cos (τ2 + u0τ) dτ,

ξC(s) = −

∫ s

0

sin (−τ2 + u0τ) dτ, ηC(s) =

∫ s

0

cos (−τ2 + u0τ) dτ .

Then, using the Taylor series at 0 for the functions sinx, cosx we obtain:

ξB(s) = −
u0

2
s2 −

1

3
s3 +O(s4), ηB(s) = s−

u2
0

6
s3 +O(s4),

ξC(s) = −
u0

2
s2 +

1

3
s3 +O(s4), ηC(s) = s−

u2
0

6
s3 +O(s4).
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But tanψ1 = ξB(s)/ηB(s) and tanψ2 = ξC(s)/ηC(s). Now we use Taylor series

again and obtain the following formulas for tanψ1 and tanψ2:

tanψ1 = −
u0

2
s−

1

3
s2 +O(s3), tanψ2 = −

u0

2
s+

1

3
s2 +O(s3).

Since we consider the clothoids cl1 and cl2 on a small interval [0, s], we can use

for the angles ψ1 and ψ2 the following formulas:

(30) ψ1 = −
u0

2
s−

1

3
s2 +O(s3), ψ2 = −

u0

2
s+

1

3
s2 + O(s3).

Compute the values of ρ2
B and ρ2

C . For this purpose we use the cosine theorem,

the Taylor series and formulas (30):

ρ2
B = ρ2

A + s2 − 2ρAs cos (θ0 − ψ1)

= ρ2
A + s2 − 2ρAs

[
cos θ0 cos

(
−
u0

2
s−

1

3
s2 +O(s3)

)
+ sin θ0 sin

(
−
u0

2
s−

1

3
s2 + 0(s3)

)]
= ρ2

A + s2 − 2ρAs

[
cos θ0

(
1−

1

2

(
u0

2
s+

1

3
s2

)2
)
− sin θ0

(
u0

2
s+

1

3
s2

)]
= ρ2

A − 2ρA cos θ0s+ (1 + ρAu0 sin θ0)s2

+

(
ρA
u2

0

4
cos θ0 +

2

3
ρA sin θ0

)
s3 +O(s4),

ρ2
C = ρ2

A + s2 − 2ρAs cos (θ0 − ψ2)

= ρ2
A + s2 − 2ρAs

[
cos θ0 cos

(
−
u0

2
s+

1

3
s2 +O(s3)

)
+ sin θ0 sin

(
−
u0

2
s+

1

3
s2 + 0(s3)

)]
= ρ2

A + s2 − 2ρAs

[
cos θ0

(
1−

1

2

(
−
u0

2
s+

1

3
s2

)2
)

+ sin θ0

(
−
u0

2
s+

1

3
s2

)]
= ρ2

A − 2ρA cos θ0s+ (1 + ρAu0 sin θ0)s2

+

(
ρA
u2

0

4
cos θ0 −

2

3
ρA sin θ0

)
s3 +O(s4).

Thus we obtain (22):

ρ2
B − ρ

2
C =

4

3
ρA sin θ0s

3 +O(s4).
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Figure 17. The clothoids cl1 and cl2 with the additional constructions (line

segments BK1 and CK2) and with the angles θ0 − ψ1, θ0 − ψ2, ϕ1, ϕ2.

Compute the values of the angles δ1 and δ2. From (20) and (21) we obtain:

(31)

{
θ1 = θ0 + u0s+ s2

θ2 = θ0 + u0s− s
2

To compute the angles ϕ1 and ϕ2 make the additional construction (see Fig-

ure 17): the segments BK1 and CK2 are perpendicular to the line OA.

We have

|K1B| = |AB| sin(θ0 − ψ1) = |OK1| tanϕ1 ,

|K2C| = |AC| sin(θ0 − ψ2) = |OK2| tanϕ2 .

Hence

tanϕ1 =
|AB|

|OK1|
sin(θ0 − ψ1), tanϕ2 =

|AC|

|OK2|
sin(θ0 − ψ2)

But

|AB| = s+O(s2), |AC| = s+O(s2),

|OK1| = |OA| − |AK1| = ρA − |AB| cos(θ0 − ψ1) = ρA − s cos(θ0 − ψ1),

|OK2| = |OA| − |AK2| = ρA − |AC| cos(θ0 − ψ2) = ρA − s cos(θ0 − ψ2).
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Thus we have that

tanϕ1 =
s sin(θ0 − ψ1)

ρA − s cos(θ0 − ψ1)
, tanϕ2 =

s sin(θ0 − ψ2)

ρA − s cos(θ0 − ψ2)
.

Now using (31) and Taylor series for the functions cosx, sinx and f(x) =

1/(1 + x) at 0 we obtain the following expressions:

sin(θ0 − ψ1) = sin θ0 cosψ1 − cos θ0 sinψ1

= sin θ0

(
1−

1

2

(
u0

2
s+

1

3
s2

)2
)

+ + cos θ0

(
u0

2
s+

1

3
s2

)
= sin θ0 +

u0

2
cos θ0s+

(
cos θ0

3
−
u2

0

8
sin θ0

)
s2 +O(s3),

cos(θ0 − ψ1) = cos θ0 cosψ1 + sin θ0 sinψ1

= cos θ0

(
1−

1

2

(
u0

2
s+

1

3
s2

)2
)
− sin θ0

(
u0

2
s+

1

3
s2

)
= cos θ0 −

u0

2
sin θ0s−

(
sin θ0

3
+
u2

0

8
cos θ0

)
s2 +O(s3),

tanϕ1 =
s sin(θ0 − ψ1)

ρA

1

1− s
ρA

cos(θ0 − ψ1)

=
s

ρA
sin(θ0 − ψ1)

(
1 +

s

ρA
cos(θ0 − ψ1) +

s2

ρA2
cos2(θ0 − ψ1)

)
.

Hence after this series of transformations we obtain the formula for tanϕ1:

tanϕ1 =
sin θ0

ρA
s+

(
sin 2θ0

2ρ2
A

+
u0 cos θ0

2ρA

)
s2

+

(
cos θ0

3ρA
−
u2

0 sin θ0

8ρA
+
u0 cos 2θ0

2ρ2
A

+
sin 2θ0 cos θ0

2ρ3
A

)
s3 +O(s4).(32)

After analogous transformations we obtain the formula for tanϕ2:

tanϕ2 =
sin θ0

ρA
s+

(
sin 2θ0

2ρ2
A

+
u0 cos θ0

2ρA

)
s2

+

(
−

cos θ0

3ρA
−
u2

0 sin θ0

8ρA
+
u0 cos 2θ0

2ρ2
A

+
sin 2θ0 cos θ0

2ρ3
A

)
s3 +O(s4).(33)

In a small neighbourhood of the initial point A tanϕi = ϕi + O(ϕ3
i ) (i = 1, 2).

Hence, from the definitions of the angles δ1 and δ2 and from (32)–(33) we obtain

equality (23):

δ1 − δ2 = 2s2 +
2 cos θ0

3ρA
s3 +O(s4).
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The lemma is proved. �

B.2 Proof of Corollary 3.12

It follows from (21) that the absolute value of the curvature at the point C is

greater than the one at the point A. That is why the point Cc is located before

the point A.

Note that the angles γi and δi are connected by the following equations: γi =

π − δi (i = 1, 2). Hence from (31) and (32) we obtain that

γA − γB = δ1 − θ0 =

(
u0 +

sin θ0

ρA

)
s+

(
1 +

sin 2θ0

2ρ2
A

+
u0 cos θ0

2ρA

)
s2 +O(s3).

From Remark 3.5 we obtain that the angle γ is a monotonously decreasing

function, hence

γB < γA .

From (23) we have

γC − γB = δ1 − δ2 = 2s2 +
2 cos θ0

3ρA
s3 +O(s4) .

So, γB < γC and γB < γA. But the difference between γB and γA is of order s,

and the difference between γB and γC is of order s2. Hence, we obtain the following

inequalities

γA > γC > γB,

and the point Cγ is located between the points A and B.

The difference between ρ2
B and ρ2

C is of order s3 (see (22)). The difference

between γC and γB is of order s2. Hence, the point Cρ is located between the

points Cγ and B.

The corollary is proved. �

C Appendix: Proof of Lemma 3.13

a) Consider the path cl. We parametrise it by the natural parameter s, setting

s = 0 for the point (x0, y0, α0, u0). Hence, the graph of the curvature u as a

function of the path length s looks like the one shown on Figure 8 (for s < 0

it is given by the dotted line). In the proof we consider the path cl only on

[−u0/2, u0/2].

Denote by O the point of the path cl with zero curvature (i.e. s = u0/2), by A

— the point with curvature 2u0 (i.e. s = −u0/2), by S — the point with curvature
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Figure 18. The piece of the path cl from the point with zero

curvature to the point with curvature 2u0.

u0 (i.e. s = 0) and by P — an arbitrary point corresponding to some value of the

parameter s ∈ (−u0/2, u0/2) (uP (s) ∈ (0, 2u0)), see Figure 18.

Consider a small δ-half-neighbourhood (s, s + δ) of the point P and consider

a path beginning at the point P which is piecewise clothoid (u = −2s + ũ0 or

u = 2s+ ˜̃u
0
, ũ0 > 0, ˜̃u

0
> 0), of length δ and with the same values of x, y, α,u at

the point P as the ones of the point P of cl. Denote the final point of this path by

N , the final point of the corresponding piece of the clothoid cl by M (the lengths

of the arcs P̂M and P̂N are equal to δ, the curvature of cl is decreasing from P to

M). Denote by Nc the point of the clothoid cl with the same curvature as the point

N , by Nρ — the point of the clothoid cl with the same length of the radius-vector

~ρ(t) as the point N , by Nγ — the point of the clothoid cl with the same angle γ(t)

between the radius-vector ~ρ(t) and the tangent vector ~τ(t) as the point N . Then

for every point P there exists a small δ-half-neighbourhood where the points Nc,

P , Nγ , Nρ, M are encountered in this order along cl (see Corollary 3.12). Denote

this disposition of the points Nc, P , Nγ , Nρ, M by disposition(∗). The number δ

can be chosen the same for all values of s ∈ [−u0/2, u0/2]; assume that δ is fixed.

b) Consider some path P of the class A of all paths beginning at the point P ,

piecewise clothoid (u = −2s + ũ0 or u = 2s + ˜̃u
0
, ũ0 > 0, ˜̃u

0
> 0), of length

≤ ν(s) = u0/2−|s| and consisting of n pieces (n > 1/δ, each piece being of length

1/n except the first one which is of length ≤ 1/n).

We prove the lemma for paths P ∈ A first, by induction on n. For paths pcl

defined at the beginning of the subsection the lemma will be proved in c).

For the first piece of the path P we have disposition(∗) (because the length

of this piece is ≤ δ and for the δ-half-neighbourhood of the point P we have this

disposition). Suppose that disposition(∗) doesn’t hold at some moment s′. If s′

is the very first moment when it happens, then 3 cases can occur:
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1) If at the moment s′ the point Nγ coincides with the point Nρ. Then

at the next moment we shall have disposition(∗). Really, using the Taylor series,

as in Lemma 3.11, we shall obtain the result of Corollary 3.12, because at the

moment s′ both paths cl and P have the same value of the radius-vector ~ρ(t) and

the same angle γ(t) between the radius-vector ~ρ(t) and the tangent vector ~τ(t),

and the curvature at the point Nγ of the path P is greater than the curvature at

the point Nγ of the path cl.

2) If at some moment s′ the points Nγ , Nρ and Nc coincide. Then

this means that we move along a half-clothoid cl but with a delay; hence, we

either continue like that and come with a delay, or at some moment we have again

disposition(∗).

3) If at some moment s′ the point Nγ coincides with the point Nc and

the point Nρ is situated after them (see Figure 19). Then it doesn’t happen

in the first piece of the path P (see the definition of δ). Hence, if it happens in the

k-th piece of the path P then for the (k−1)-st piece of the path P disposition(∗)
holds. Prove that in this case

ρcl(s)− ρcl(s
′) ≥ ρP(s)− ρP(s′) fors ≥ s′.

Figure 19. The piece of the path cl from the point P to the point L,

the piece of the path P from the point P to the point K and

additionally constructed arc N̂γR.

We denote by M the point belonging to the path cl and corresponding to the

moment s′, by N — the point belonging to the path P and corresponding to

the moment s′ (see Figure 19). Note that the notation is the same as the one

of Figure 18. Denote by M̂L an arc of the path cl corresponding to the interval

[s′, s′ + s∗] for some s∗ > 0 and by N̂K — an arc of the path P corresponding to

the same interval [s′, s′ + s∗]. Denote by spc (spc < s′) the moment to which the

point Nγ = Nc corresponds and denote by N̂γQ an arc of the path cl corresponding

to the interval [spc, spc + s∗]. Translate the arc N̂K so that the point N should

coincide with the point Nγ , then rotate the image so that the tangent vector to
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the image at the point Nγ should coincide with the tangent vector to the arc N̂γQ

at the point Nγ . Denote the obtained arc by N̂γR.

For the lengths of the radius-vectors ~ρ(s) at the points Nγ , Nρ and M we have

the following inequalities:

ρNγ < ρNρ < ρM .

This follows from Corollary 3.6 (ρ̇(s) > 0).

Rotate the arcs N̂γQ, N̂γR and N̂K around Ocl on different angles so that the

points M , Nγ and N should be on the line OclM , see Figure 20a).

a) b)

Figure 20. The arcs M̂L, N̂K, N̂γQ and N̂γR after a rotation around Ocl
such that the points M , Nγ and N should be on the line OclM .

Denote

∆ρP = |
−−−→
OclK| − |

−−−→
OclN |, ∆ρPtr = |

−−→
OclR| − |

−−−→
OclNγ |,

∆ρclpr = |
−−→
OclQ| − |

−−−→
OclNγ |, ∆ρcl = |

−−→
OclL| − |

−−−→
OclM |.

We know that for the (k − 1)-st piece of the path P disposition(∗) holds.

Hence,

(34) ∆ρPtr < ∆ρclpr
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(by the inductive assumption, as k < n).

Using Corollary 3.6 (ρ̈ > 0) we obtain

(35) ∆ρclpr < ∆ρcl .

Prove that

(36) ∆ρP < ∆ρPtr .

The tangent angles at the points N and Nγ are the same, the curvatures —

too. Hence (see Figure 20b)),

|KK ′| = |RR′| = y, |NK ′| = |NγR
′| = x.

Denote |OclN | = a, |OclNγ | = b. We have the following equalities:

∆ρP =
√

(a± x)2 + y2 − a, ∆ρPtr =
√

(b± x)2 + y2 − b.

Inequality (36) is equivalent to√
(a± x)2 + y2 − a <

√
(b± x)2 + y2 − b, or to

(a± x)2 − (b± x)2 < (a− b)
(√

(a± x)2 + y2 +
√

(b± x)2 + y2
)
,

(a+ b± 2x) <
(√

(a± x)2 + y2 +
√

(b± x)2 + y2
)
.

Thus we have

a+b±2x = (a±x)+(b±x) ≤ |a±x|+|b±x| <
(√

(a± x)2 + y2 +
√

(b± x)2 + y2
)
.

This chain of inequalities is correct, hence, inequality (36) is also correct. Thus,

from inequalities (34)—(36) we obtain the desired inequality:

∆ρP < ∆ρcl ,

i.e. ρcl(s)− ρcl(s′) > ρP(s)− ρP(s′) for s > s′.

Thus we proved that if at some moment s′ disposition(∗) doesn’t hold then for

the moments s > s′ the length of the radius-vector ~ρcl(s) for the point belonging

to cl is greater than the length of the radius-vector ~ρP(s) for the point belonging

to P . This holds for any path of the class A for any point P corresponding to

some value of the parameter s ∈ (−u0/2, u0/2).

c) Assume that the point P coincides with the point S (see Figure 18). The

curvature of the path pcl and the curvature of any path of the class A are contin-

uous functions. Hence, if n → ∞, then we can uniformly approximate the path

pcl by a sequence of paths of the class A. Hence, for s ∈ [0, u0/2] the length of

the radius-vector ~ρcl(s) is greater than the length of the radius-vector ~ρpcl(s), i.e.

inequality (24) is proved.

The lemma is proved. �
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1. Boissonnat J. D., Cérézo A. and Leblond J., Shortest paths of bounded curvature in the plane,
INRIA, Nice-Sophia-Antipolis, Research Report 1503, 1991.

2. , A note on shortest paths in the plane subject to a constraint on the derivative of
the curvature, INRIA, Nice-Sophia-Antipolis, Research Report 2160, 1994.

3. Bui X.-N., Souères Ph., Boissonnat J. D. and Laumond J. P., The shortest path synthesis
for non-holonomic robots moving forwards, INRIA, Nice-Sophia-Antipolis, Research Report
2153, 1994.

4. Bui X.-N. and Boissonnat J. D., Accessibility region for a car that only moves forwards along
optimal paths, INRIA, Nice-Sophia-Antipolis, Research Report 2181, 1994.

5. Cesari L., Optimization theory and applications, Springer-Verlag, 1983.
6. Cockayne E. J. and Hall G. W. C., Plane motion of a particle subject to curvature constraints,

SIAM Journal of Control 13, no. 1 (1975), 197–220.
7. Dubins L. E., On curves of minimal length with a constraint on average curvature and with

prescribed initial and terminal positions and tangents, American Journal of Mathematics 79
(1957), 497–516.

8. Kostov V. P. and Degtiariova-Kostova E. V., Suboptimal paths in the problem of a planar
motion with bounded derivative of the curvature, INRIA, Nice-Sophia-Antipolis, Research
Report 2051, 1993.

9. , The planar motion with bounded derivative of the curvature and its suboptimal
paths, INRIA, Nice-Sophia-Antipolis, Research Report 2189, 1994.

10. , Irregularity of optimal trajectories in a control problem for a car-like robot, INRIA,
Nice-Sophia-Antipolis, Research Report, (to appear).

11. Laumond J. P. and Souères Ph., Shortest paths’ synthesis for a car-like robot, LAAS/CNRS,
Toulouse, Technical Report 92309, 1992.

12. Lewis R. M., Definitions of order and junction conditions in singular optimal control prob-
lems, SIAM Journal of Control and Optimization 18, no. 1, 21–32.

13. Pontryagin L. S., Boltyanskii V. R., Gamkrelidze R. V. and Mishchenko E. F., The mathe-
matical theory of optimal processes, Interscience, 1962.

14. Reeds J. A. and Shepp L. A., Optimal paths for a car that goes both forwards and backwards,
Pacific Journal of Mathematics 145, no. 2 (1990), 367–393.

15. Sussman H. J. and Tang G., Shortest paths for the Reeds-Shepp car a worked out example
of the use of geometric techniques in nonlinear optimal control, SYCON, Technical Report
91–10, 1991.

16. Zelikin M. I. and Borisov V. F., Theory of chattering control, Birkhäuser, 1994.
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