NOTE ON AN INEQUALITY INVOLVING $(n!)^{1 / n}$

H. ALZER

Abstract. We prove: If $G(n)=(n!)^{1 / n}$ denotes the geometric mean of the first n positive integers, then

$$
\frac{1}{e^{2}}<(G(n))^{2}-G(n-1) G(n+1)
$$

holds for all $n \geq 2$. The lower bound $\frac{1}{e^{2}}$ is best possible.

In 1964 H. Minc and L. Sathre [2] published several remarkable inequalities involving the geometric mean of the first n positive integers. Their main result states:
If $G(n)=(n!)^{1 / n}$, then

$$
\begin{equation*}
1<n \frac{G(n+1)}{G(n)}-(n-1) \frac{G(n)}{G(n-1)} \tag{1}
\end{equation*}
$$

holds for all integers $n \geq 2$. The lower bound 1 is best possible.
Recently, the author [1] proved the following refinement of (1):
If $n \geq 2$, then

$$
\begin{equation*}
1<1+\frac{G(n)}{G(n-1)}-\frac{G(n+1)}{G(n)}<n \frac{G(n+1)}{G(n)}-(n-1) \frac{G(n)}{G(n-1)} \tag{2}
\end{equation*}
$$

The left-hand inequality of (2), written as

$$
\begin{equation*}
0<(G(n))^{2}-G(n-1) G(n+1) \quad(n \geq 2) \tag{3}
\end{equation*}
$$

leads to the question: What is the greatest real number c (which is independent of n) such that

$$
c<(G(n))^{2}-G(n-1) G(n+1)
$$

holds for all $n \geq 2$? It is the aim of this paper to answer this question.
We note that inequalities of the type

$$
W_{n}(x)=\left(y_{n}(x)\right)^{2}-y_{n-1}(x) y_{n+1}(x) \geq 0 \quad \text { and } \quad W_{n}(x) \leq 0
$$

where $y_{n}(x)(n=1,2, \ldots)$ are particular sequences of functions defined on a real interval, have found much attention; see the paper of D. K. Ross [3] which contains not only new results but also interesting historical remarks and many references on this subject.

We prove the following refinement of inequality (3).
Theorem. If $n \geq 2$, then

$$
\begin{equation*}
\frac{1}{e^{2}}<(G(n))^{2}-G(n-1) G(n+1) \tag{4}
\end{equation*}
$$

The lower bound $\frac{1}{e^{2}}$ is best possible.
Proof. In the first part of the proof we establish the double-inequality

$$
\begin{equation*}
[G(n+1)-G(n)]^{2}<(G(n))^{2}-G(n-1) G(n+1)<\left(\frac{G(n)}{n}\right)^{2} \quad(n \geq 2) \tag{5}
\end{equation*}
$$

Thereafter we show that the sequence $n \mapsto G(n+1)-G(n)$ is strictly decreasing and converges to $\frac{1}{e}$ as n tends to ∞. This implies (4). Since $\lim _{n \rightarrow \infty} \frac{G(n)}{n}=\frac{1}{e}$ we conclude $\lim _{n \rightarrow \infty}\left[(G(n))^{2}-G(n-1) G(n+1)\right]=\frac{1}{e^{2}}$. Hence, the constant $\frac{1}{e^{2}}$ cannot be replaced by a greater number (which is independent of n.)

The function $x \mapsto(\Gamma(x+1))^{1 / x}(0<x \in \mathbb{R})$ is strictly concave on $[7, \infty)$ (see [4]). From Jensen's inequality we obtain for all integers $n \geq 8$:

$$
\begin{equation*}
\frac{1}{2}(G(n-1)+G(n+1))<G(n) \tag{6}
\end{equation*}
$$

which is equivalent to the first inequality of (5). For $2 \leq n \leq 7$ we get (6) by direct computation. The approximate values of $\frac{(G(n-1)+G(n+1))}{2}$ and $G(n)$ are given in the following table.

n	$\frac{G(n-1)+G(n+1)}{2}$	$G(n)$
2	1.4085	1.4142
3	1.8137	1.8171
4	2.2111	2.2133
5	2.6035	2.6051
6	2.9925	2.9937
7	3.3790	3.3800

Thus, the left-hand inequality of (5) holds for all $n \geq 2$.

To prove the second inequality of (5) we establish that the function $f(x)=$ $\log \frac{(\Gamma(x+1))^{1 / x}}{x}(0<x \in \mathbb{R})$ is strictly convex on $[1, \infty)$. Differentiation yields

$$
f^{\prime}(x)=\frac{\Psi(x+1)-1}{x}-\frac{\log \Gamma(x+1)}{x^{2}}
$$

where $\Psi=\frac{\Gamma^{\prime}}{\Gamma}$ denotes the logarithmic derivative of the gamma function, and

$$
x^{3} f^{\prime \prime}(x)=x^{2} \Psi^{\prime}(x+1)-2 x \Psi(x+1)+x+2 \log \Gamma(x+1)
$$

Applying the inequalities

$$
\begin{aligned}
\Psi^{\prime}(x) & >\frac{1}{x} \quad(x>1) \\
\Psi(x) & <\log x-\frac{1}{2 x} \quad(x>1) \\
\log \Gamma(x) & >\left(x-\frac{1}{2}\right) \log x-x+\frac{1}{2} \log (2 \pi) \quad(x>1)
\end{aligned}
$$

(see [2]), we obtain for $x \geq 1$:

$$
x^{3} f^{\prime \prime}(x) \log (x+1)+\log (2 \pi)-2 \geq \log (4 \pi)-2>0
$$

Therefore, f is strictly convex on $[1, \infty)$. This implies

$$
f(n)<\frac{1}{2}(f(n-1)+f(n+1)) \quad(n \geq 2)
$$

which is equivalent to the second inequality of (5). Inequality (6) can be written as

$$
G(n+1)-G(n)<G(n)-G(n-1) \quad(n \geq 2)
$$

Hence, $n \mapsto G(n+1)-G(n)$ is strictly decreasing. A simple calculation reveals the validity of

$$
G(n+1)-G(n)=\frac{v_{n}-1}{\log v_{n}} \frac{G(n)}{n} \frac{\log n+1}{G(n+1)}
$$

with $v_{n}=\frac{G(n+1)}{G(n)}$. Since $\lim _{n \rightarrow \infty} \frac{G(n)}{n}=\frac{1}{e}$ and $\lim _{n \rightarrow \infty} \frac{\left(v_{n}-1\right)}{\log v_{n}}=1$ we conclude

$$
\lim _{n \rightarrow \infty}(G(n+1)-G(n))=\frac{1}{e}
$$

The proof of the Theorem is complete.

References

1. Alzer H., On some inequalities involving $(n!)^{1 / n}$, Rocky Mountains J. Math., (to appear).
2. Minc H. and Sathre L., Some inequalities involving $(r!)^{1 / r}$, Edinburgh Math. Soc. 14 (1964/65), 41-46.
3. Ross D. K., Inequalities and identities for $y_{n}^{2}-y_{n-1} y_{n+1}$, Aequat. Math. 20 (1980), 23-32.
4. Sándor J., Sur la fonction gamma, Centre Rech. Math. Pures (Neuchâtel), Serie I, Fasc. 21 (1989), 4-7.
H. Alzer, Morsbacher Str. 10, 51545 Waldbröl, Germany
