NOTE ON AN INEQUALITY INVOLVING $(n!)^{1/n}$

H. ALZER

ABSTRACT. We prove: If $G(n) = (n!)^{1/n}$ denotes the geometric mean of the first n positive integers, then

$$\frac{1}{e^2} < (G(n))^2 - G(n-1)G(n+1)$$

holds for all $n \ge 2$. The lower bound $\frac{1}{e^2}$ is best possible.

In 1964 H. Minc and L. Sathre [2] published several remarkable inequalities involving the geometric mean of the first n positive integers. Their main result states:

If $G(n) = (n!)^{1/n}$, then

(1)
$$1 < n \frac{G(n+1)}{G(n)} - (n-1) \frac{G(n)}{G(n-1)}$$

holds for all integers $n \ge 2$. The lower bound 1 is best possible.

Recently, the author [1] proved the following refinement of (1): If $n \ge 2$, then

(2)
$$1 < 1 + \frac{G(n)}{G(n-1)} - \frac{G(n+1)}{G(n)} < n \frac{G(n+1)}{G(n)} - (n-1) \frac{G(n)}{G(n-1)}.$$

The left-hand inequality of (2), written as

(3)
$$0 < (G(n))^2 - G(n-1)G(n+1) \qquad (n \ge 2),$$

leads to the question: What is the greatest real number c (which is independent of n) such that

$$c < (G(n))^2 - G(n-1)G(n+1)$$

holds for all $n \ge 2$? It is the aim of this paper to answer this question.

We note that inequalities of the type

$$W_n(x) = (y_n(x))^2 - y_{n-1}(x)y_{n+1}(x) \ge 0$$
 and $W_n(x) \le 0$,

Received August 20, 1993.

¹⁹⁸⁰ Mathematics Subject Classification (1991 Revision). Primary 33B15, 26D99.

where $y_n(x)$ (n = 1, 2, ...) are particular sequences of functions defined on a real interval, have found much attention; see the paper of D. K. Ross [3] which contains not only new results but also interesting historical remarks and many references on this subject.

We prove the following refinement of inequality (3).

Theorem. If $n \ge 2$, then

(4)
$$\frac{1}{e^2} < (G(n))^2 - G(n-1)G(n+1)$$

The lower bound $\frac{1}{e^2}$ is best possible.

Proof. In the first part of the proof we establish the double-inequality

(5)
$$[G(n+1) - G(n)]^2 < (G(n))^2 - G(n-1)G(n+1) < \left(\frac{G(n)}{n}\right)^2 \quad (n \ge 2).$$

Thereafter we show that the sequence $n \mapsto G(n+1) - G(n)$ is strictly decreasing and converges to $\frac{1}{e}$ as n tends to ∞ . This implies (4). Since $\lim_{n\to\infty} \frac{G(n)}{n} = \frac{1}{e}$ we conclude $\lim_{n\to\infty} \left[(G(n))^2 - G(n-1)G(n+1) \right] = \frac{1}{e^2}$. Hence, the constant $\frac{1}{e^2}$ cannot be replaced by a greater number (which is independent of n.)

The function $x \mapsto (\Gamma(x+1))^{1/x}$ $(0 < x \in \mathbb{R})$ is strictly concave on $[7, \infty)$ (see [4]). From Jensen's inequality we obtain for all integers $n \ge 8$:

(6)
$$\frac{1}{2}(G(n-1) + G(n+1)) < G(n),$$

which is equivalent to the first inequality of (5). For $2 \le n \le 7$ we get (6) by direct computation. The approximate values of $\frac{(G(n-1)+G(n+1))}{2}$ and G(n) are given in the following table.

n	$\frac{G(n-1)+G(n+1)}{2}$	G(n)
2	1.4085	1.4142
3	1.8137	1.8171
4	2.2111	2.2133
5	2.6035	2.6051
6	2.9925	2.9937
7	3.3790	3.3800

Thus, the left-hand inequality of (5) holds for all $n \ge 2$.

To prove the second inequality of (5) we establish that the function $f(x) = \log \frac{(\Gamma(x+1))^{1/x}}{x}$ (0 < x $\in \mathbb{R}$) is strictly convex on [1, ∞). Differentiation yields

$$f'(x) = \frac{\Psi(x+1) - 1}{x} - \frac{\log \Gamma(x+1)}{x^2},$$

where $\Psi = \frac{\Gamma'}{\Gamma}$ denotes the logarithmic derivative of the gamma function, and $x^3 f''(x) = x^2 \Psi'(x+1) - 2x \Psi(x+1) + x + 2 \log \Gamma(x+1)$.

Applying the inequalities

$$\Psi'(x) > \frac{1}{x} \qquad (x > 1),$$

$$\Psi(x) < \log x - \frac{1}{2x} \qquad (x > 1),$$

$$\log \Gamma(x) > \left(x - \frac{1}{2}\right) \log x - x + \frac{1}{2} \log(2\pi) \qquad (x > 1),$$

(see [2]), we obtain for $x \ge 1$:

$$x^{3}f''(x)\log(x+1) + \log(2\pi) - 2 \ge \log(4\pi) - 2 > 0.$$

Therefore, f is strictly convex on $[1, \infty)$. This implies

$$f(n) < \frac{1}{2} \left(f(n-1) + f(n+1) \right) \qquad (n \ge 2),$$

which is equivalent to the second inequality of (5). Inequality (6) can be written as

$$G(n+1) - G(n) < G(n) - G(n-1)$$
 $(n \ge 2).$

Hence, $n \mapsto G(n+1) - G(n)$ is strictly decreasing. A simple calculation reveals the validity of

$$G(n+1) - G(n) = \frac{v_n - 1}{\log v_n} \frac{G(n)}{n} \frac{\log n + 1}{G(n+1)}$$

with $v_n = \frac{G(n+1)}{G(n)}$. Since $\lim_{n\to\infty} \frac{G(n)}{n} = \frac{1}{e}$ and $\lim_{n\to\infty} \frac{(v_n-1)}{\log v_n} = 1$ we conclude

$$\lim_{n \to \infty} (G(n+1) - G(n)) = \frac{1}{e}$$

The proof of the Theorem is complete.

References

- 1. Alzer H., On some inequalities involving $(n!)^{1/n}$, Rocky Mountains J. Math., (to appear).
- Minc H. and Sathre L., Some inequalities involving (r!)^{1/r}, Edinburgh Math. Soc. 14 (1964/65), 41–46.
- **3.** Ross D. K., Inequalities and identities for $y_n^2 y_{n-1}y_{n+1}$, Aequat. Math. **20** (1980), 23–32.
- Sándor J., Sur la fonction gamma, Centre Rech. Math. Pures (Neuchâtel), Serie I, Fasc. 21 (1989), 4–7.
- H. Alzer, Morsbacher Str. 10, 51545 Waldbröl, Germany