DIFFERENCES BETWEEN VALUES OF A QUADRATIC FORM

A. SCHINZEL

J. W. S. Cassels, A. Pfister and the writer proved independently in 1989 the following theorem: let $f(x, y)$ be a primitive quadratic form, n an odd integer. Then n is a difference of two values of f over \mathbb{Z} (see [2], Proposition 4.3). Using this result J. Bochnak proved (unpublished) that the same condition holds if either the discriminant of f is not divisible by 16 or $n \not \equiv 2(\bmod 4)$. The aim of this paper is to prove the following more general theorem.

Theorem. Let f be a primitive quadratic form in k variables, $n \in \mathbb{Z}$. If either $f \not \equiv \pm g^{2}(\bmod 4)$ for every linear form g or $n \not \equiv 2(\bmod 4)$, then n is a difference of two values of f and for $k>1$ in infinitely many ways.

Proof. Let us consider the representation of n by

$$
f\left(x_{1}, \ldots, x_{k}\right)-f\left(x_{k+1}, \ldots, x_{2 k}\right)=f \perp(-f)
$$

in the ring of p-adic integers \mathbb{Z}_{p}. If p is odd, we have (see [3], Theorem 33)

$$
f \sim f_{0} \perp p f_{1} \perp \cdots \perp p^{l} f_{l}=h
$$

where f_{j} is either 0 or a form of a unit determinant in \mathbb{Z}_{p}. Since f is primitive we have $f_{0} \neq 0$ and by the quoted theorem

$$
f_{0}=\sum_{i=1}^{m} a_{i} x_{i}^{2}, \quad m \geq 1
$$

We take

$$
x_{1}=\frac{n+a_{1}}{2 a_{1}}, \quad x_{k+1}=\frac{n-a_{1}}{2 a_{1}}
$$

and since $x_{1}-x_{k+1}=1$

$$
h\left(x_{1}, 0, \ldots, 0\right)-h\left(x_{k+1}, 0, \ldots, 0\right)=n
$$

is a representation of n by $h \perp(-h)$, hence there exists a representation of n by $f \perp(-f)$ in \mathbb{Z}_{p}. For $p=2$ consider first the case of f non-classic and apply Theorem 33 a of $[\mathbf{3}]$ to $2 f$. We obtain

$$
\begin{equation*}
2 f \sim f_{0} \perp 2 f_{1} \perp \cdots \perp 2^{l} f_{l}=2 h \tag{1}
\end{equation*}
$$

where f_{j} is either 0 or a form of a unit determinant in \mathbb{Z}_{2}. Since f is primitive and non-classic we have $f_{0} \neq 0$ and by Theorem 33a either $f_{0}=2 x_{1} x_{2}+g_{0}\left(x_{3}, \ldots, x_{m}\right)$ or $f_{0}=2 x_{1}^{2}+2 x_{1} x_{2}+2 x_{2}^{2}+g_{0}\left(x_{3}, \ldots, x_{m}\right)$.

In the first case we have

$$
h(n, 1,0, \ldots, 0)-h(0, \ldots, 0)=n
$$

in the second case

$$
h(n-1,1,0, \ldots, 0)-h(n-1,0, \ldots, 0)=n
$$

thus n is represented by $f \perp(-f)$.
Assume now that f is classic. Then by Theorem 33 of [3]

$$
f \sim f_{0} \perp 2 f_{1} \perp \cdots \perp 2^{l} f_{l}=g
$$

where f_{i} satisfy the same conditions as in formula (1). Since f is primitive we have $f_{0} \neq 0$ and by Theorem 33 of [3]

$$
f_{0}=\sum_{i=1}^{m_{0}} a_{i} x_{i}^{2}, \quad a_{i} \text { odd } \quad m_{0} \geq 1
$$

If $n \equiv 1(\bmod 2)$ we have the representation

$$
h\left(\frac{n+a_{1}}{2 a_{1}}, 0, \ldots, 0\right)-h\left(\frac{n-a_{1}}{2 a_{1}}, 0, \ldots, 0\right)=n
$$

If $n \equiv 2(\bmod 4)$ we use $f \not \equiv \pm g^{2}(\bmod 4)$, hence either $m_{0} \geq 2$ or $m_{0}=1$,

$$
f_{1}=\sum_{i=2}^{1+m_{1}} a_{i} x_{i}^{2}, \quad a_{i} \text { odd } \quad m_{1} \geq 1
$$

In the first case we have the representation

$$
h\left(\frac{n+a_{1}-a_{2}}{2 a_{1}}, 1,0, \ldots, 0\right)-h\left(\frac{n-a_{1}-a_{2}}{2 a_{1}}, 0, \ldots, 0\right)=n
$$

In the second case, we have the representation

$$
h\left(0, \frac{n+2 a_{2}}{4 a_{2}}, 0, \ldots, 0\right)-h\left(0, \frac{n-2 a_{2}}{4 a_{2}}, 0, \ldots, 0\right)=n
$$

If $n \equiv 0(\bmod 4)$ we have the representation

$$
h\left(\frac{n}{4 a_{1}}+1,0, \ldots, 0\right)-h\left(\frac{n}{4 a_{1}}-1,0, \ldots, 0\right)=n
$$

Thus in every case we have a representation of n by $f \perp(-f)$ in every \mathbb{Z}_{p}, hence by Lemma 4.1, Chapter 7 and Theorem 1.5, Chapter 9 of [$\mathbf{1}]$ if rank of $f \geq 2, n$ has a representation by $f \perp(-f)$. If rank of $f=1, f=\varepsilon g^{2}$, where $\varepsilon= \pm 1, g$ is a linear form, hence $n \not \equiv 2(\bmod 4)$ and we solve $g\left(x_{1}, \ldots, x_{k}\right)=\frac{\varepsilon n+1}{2}, g\left(x_{k+1}, \ldots, x_{2 k}\right)=$ $\frac{\varepsilon n-1}{2}(n$ odd $)$ or $g\left(x_{1}, \ldots, x_{k}\right)=\frac{\varepsilon n}{4}+1, g\left(x_{k+1}, \ldots, x_{2 k}\right)=\frac{\varepsilon n}{4}-1(n \equiv 0 \bmod 4)$.

It remains to prove that if $k>1$ the number of representations is infinite. Let

$$
f=\sum_{i=1}^{k} a_{i} x_{i}^{2}+\sum_{i<j}^{k} a_{i j} x_{i} x_{j}
$$

The equation

$$
\begin{equation*}
f\left(x_{1}, \ldots, x_{k}\right)-f\left(x_{1}-r_{1}, \ldots, x_{k}-r_{k}\right)=n \tag{2}
\end{equation*}
$$

is equivalent to

$$
\sum_{j=1}^{k} x_{j}\left(2 a_{j} r_{j}+\sum_{j<k} a_{j k} r_{k}+\sum_{i<j} a_{i j} r_{i}\right)=n+f\left(r_{1}, \ldots, r_{k}\right)
$$

Hence if for $k>1$ and some $r_{1}, \ldots, r_{k}(2)$ has one solution in integers it has infinitely many.

References

1. Cassels J. W. S., Rational quadratic forms, Academic Press, 1978.
2. Huisman J., The underlying real algebraic structure of complex elliptic curves (to appear).
3. Jones B. W., The arithmetic theory of quadratic forms, J. Wiley, 1950.
A. Schinzel, Mathematical Institute PAN, P.O.Box 137, 00-950 Warszawa, Poland
