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DIFFERENCES BETWEEN VALUES OF A QUADRATIC FORM

A. SCHINZEL

J. W. S. Cassels, A. Pfister and the writer proved independently in 1989 the

following theorem: let f(x, y) be a primitive quadratic form, n an odd integer.

Then n is a difference of two values of f over Z (see [2], Proposition 4.3). Using

this result J. Bochnak proved (unpublished) that the same condition holds if either

the discriminant of f is not divisible by 16 or n 6≡ 2 (mod 4). The aim of this paper

is to prove the following more general theorem.

Theorem. Let f be a primitive quadratic form in k variables, n ∈ Z. If either

f 6≡ ±g2 (mod 4) for every linear form g or n 6≡ 2 (mod 4), then n is a difference

of two values of f and for k > 1 in infinitely many ways.

Proof. Let us consider the representation of n by

f(x1, . . . , xk)− f(xk+1, . . . , x2k) = f⊥(−f)

in the ring of p-adic integers Zp. If p is odd, we have (see [3], Theorem 33)

f ∼ f0⊥pf1⊥ · · ·⊥p
lfl = h,

where fj is either 0 or a form of a unit determinant in Zp. Since f is primitive we

have f0 6= 0 and by the quoted theorem

f0 =
m∑
i=1

aix
2
i , m ≥ 1.

We take

x1 =
n+ a1

2a1
, xk+1 =

n− a1

2a1

and since x1 − xk+1 = 1

h(x1, 0, . . . , 0)− h(xk+1, 0, . . . , 0) = n
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is a representation of n by h⊥(−h), hence there exists a representation of n by

f⊥(−f) in Zp. For p = 2 consider first the case of f non-classic and apply Theorem

33a of [3] to 2f . We obtain

(1) 2f ∼ f0⊥2f1⊥ · · ·⊥2lfl = 2h,

where fj is either 0 or a form of a unit determinant in Z2. Since f is primitive and

non-classic we have f0 6= 0 and by Theorem 33a either f0 = 2x1x2+g0(x3, . . . , xm)

or f0 = 2x2
1 + 2x1x2 + 2x2

2 + g0(x3, . . . , xm).

In the first case we have

h(n, 1, 0, . . . , 0)− h(0, . . . , 0) = n,

in the second case

h(n− 1, 1, 0, . . . , 0)− h(n− 1, 0, . . . , 0) = n,

thus n is represented by f⊥(−f).

Assume now that f is classic. Then by Theorem 33 of [3]

f ∼ f0⊥2f1⊥ · · ·⊥2lfl = g,

where fi satisfy the same conditions as in formula (1). Since f is primitive we

have f0 6= 0 and by Theorem 33 of [3]

f0 =
m0∑
i=1

aix
2
i , ai odd m0 ≥ 1.

If n ≡ 1 (mod 2) we have the representation

h

(
n+ a1

2a1
, 0, . . . , 0

)
− h

(
n− a1

2a1
, 0, . . . , 0

)
= n.

If n ≡ 2 (mod 4) we use f 6≡ ±g2 (mod 4), hence either m0 ≥ 2 or m0 = 1,

f1 =

1+m1∑
i=2

aix
2
i , ai odd m1 ≥ 1.

In the first case we have the representation

h

(
n+ a1 − a2

2a1
, 1, 0, . . . , 0

)
− h

(
n− a1 − a2

2a1
, 0, . . . , 0

)
= n.
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In the second case, we have the representation

h

(
0,
n+ 2a2

4a2
, 0, . . . , 0

)
− h

(
0,
n− 2a2

4a2
, 0, . . . , 0

)
= n.

If n ≡ 0 (mod 4) we have the representation

h

(
n

4a1
+ 1, 0, . . . , 0

)
− h

(
n

4a1
− 1, 0, . . . , 0

)
= n.

Thus in every case we have a representation of n by f⊥(−f) in every Zp , hence

by Lemma 4.1, Chapter 7 and Theorem 1.5, Chapter 9 of [1] if rank of f ≥ 2, n has

a representation by f⊥(−f). If rank of f = 1, f = εg2, where ε = ±1, g is a linear

form, hence n 6≡ 2 (mod 4) and we solve g(x1, . . . , xk) = εn+1
2 , g(xk+1, . . . , x2k) =

εn−1
2 (n odd) or g(x1, . . . , xk) = εn

4 +1, g(xk+1, . . . , x2k) = εn
4 −1 (n ≡ 0 mod 4).

It remains to prove that if k > 1 the number of representations is infinite. Let

f =
k∑
i=1

aix
2
i +

k∑
i<j

aijxixj .

The equation

(2) f(x1, . . . , xk)− f(x1 − r1, . . . , xk − rk) = n

is equivalent to

k∑
j=1

xj

2ajrj +
∑
j<k

ajkrk +
∑
i<j

aijri

 = n+ f(r1, . . . , rk).

Hence if for k > 1 and some r1, . . . , rk (2) has one solution in integers it has

infinitely many.
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