DIVISOR PROBLEMS IN SPECIAL

 SETS OF POSITIVE INTEGERS

 SETS OF POSITIVE INTEGERS}

W. G. NOWAK*

1. Introduction

For infinite sets of natural numbers S_{1}, S_{2}, we define the arithmetic function

$$
\tau_{S_{1}, S_{2}}(n)=\#\left\{\left(m_{1}, m_{2}\right) \in S_{1} \times S_{2}: m_{1} m_{2}=n\right\} \quad(n \in \mathbb{N})
$$

To study its average order, it is usual to consider the corresponding Dirichlet's summatory function

$$
\sum_{n \leq x} \tau_{S_{1}, S_{2}}(n)
$$

where x is a large real variable. For $S_{1}=S_{2}=\mathbb{N}$, this is just the classical Dirichlet divisor problem: See Krätzel $[\mathbf{7}]$ for a survey of its history and Huxley [4, 5] for the hitherto sharpest results. In recent times, Smith and Subbarao [19], the author [13], and Varbanec and Zarzycki [20] investigated the case $S_{1}=\mathbb{N}, S_{2}=\mathcal{A}$, where \mathcal{A} denotes throughout the sequel an arithmetic progression

$$
\mathcal{A}=\mathcal{A}(a, q)=\{m \in \mathbb{N}: m \equiv a(\bmod q)\} \quad(1 \leq a \leq q)
$$

Articles by Mercier and the author $[\mathbf{1 0}, \mathbf{1 1}]$ discuss the situation that S_{1}, S_{2} are the images of \mathbb{N} under certain (monotonic) polynomial functions p_{1}, p_{2} with integer coefficients.

In the present paper, we will consider (in fact in a more general context) the case that one or both of S_{1}, S_{2} is equal to the set $\mathbf{B}=\mathbf{B}_{\mathbf{Q}(i)}$ consisting of those natural numbers which can be written as a sum of two integer squares.
For a given natural number n, there arise two questions in a natural way:
(i) How many divisors of n belong to the set \mathbf{B} ?
(ii) In how many ways can n be written as a product of two elements of \mathbf{B} ? Question (i) leads to the arithmetic function $\tau_{\mathbf{B}, \mathbb{N}}(n)$. A result on this is contained in a quite recent paper of Varbanec [21] who actually considered the more general

[^0]function $\tau_{\mathbf{B}, \mathcal{A}}(n)$, obtaining an estimate uniform in a and q. Our first aim is to improve his result up to an error term which can be called "final" on the basis of our present knowledge about zero-free regions of the Riemann and Dedekind zeta-functions (Theorem 1).

Since \mathbf{B} forms a semigroup with respect to multiplication, question (ii) can also be viewed as a "Dirichlet divisor problem in the set \mathbf{B} ". We will establish an asymptotic formula for $\sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n)$ with an order term corresponding to the hitherto sharpest one in the Prime Number Theorem (Theorem 2).

2. Statement of Results

Theorem 1. For an algebraic number field K which is a Galois extension of the rationals of degree $[K: \mathbb{Q}]=r \geq 2$, let \mathcal{O}_{K} denote the set of integer ideals in the ring of algebraic integers in K, and define $\mathbf{B}=\mathbf{B}_{K}$ as the set of all positive integers n for which there exists at least one ideal $\mathcal{I} \in \mathcal{O}_{K}$ with norm equal to n. Let $\mathcal{A}=\mathcal{A}(a, q)$ be an arithmetic progression $(1 \leq a \leq q)$, then the asymptotic formula

$$
\begin{gathered}
\sum_{n \leq x} \tau_{\mathbf{B}, \mathcal{A}}(n)=\frac{x}{a} \sum_{k=0}^{M\left(\frac{x}{a}\right)} A_{k}^{(1)}\left(\log \frac{x}{a}\right)^{-k-1+1 / r}+\frac{x}{q} \sum_{k=0}^{M\left(\frac{x}{a}\right)} A_{k}^{(2)}\left(\log \frac{x}{q}\right)^{-k+1 / r} \\
+O\left(\frac{x}{a} \exp \left(-c\left(\log \left(\frac{3 x}{a}\right)\right)^{3 / 5}\left(\log \log \left(\frac{3 x}{a}\right)\right)^{-1 / 5}\right)\right)
\end{gathered}
$$

holds uniformly in $1 \leq a \leq q \leq x$, where

$$
\begin{equation*}
M(w) \stackrel{\text { def }}{=}\left[c^{\prime}(\log 3 w)^{3 / 5}(\log \log 3 w)^{-6 / 5}\right] \tag{2.1}
\end{equation*}
$$

$c>0, c^{\prime}>0$ and the O-constant depend at most on the field K but not on a and q. The coefficients $A_{k}^{(1)}$ and $A_{k}^{(2)}$ are computable and satisfy

$$
\begin{equation*}
A_{k}^{(i)} \leq\left(b_{*} k\right)^{k} \tag{2.2}
\end{equation*}
$$

(for $k \geq 1)$ with some constant $b_{*}>0$ independent of $\mathcal{A}(a, q)$.
Theorem 2. Let $K=\mathbb{Q}(\sqrt{D})$ be a quadratic number field with discriminant D, and define $\mathbf{B}=\mathbf{B}_{K}$ as before, then we have the asymptotic formula

$$
\begin{aligned}
\sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n)=A^{*} x & +x^{\frac{1}{2}} \sum_{k=0}^{M(x)} A_{k}(\log x)^{-\frac{1}{2}-k} \\
& +O\left(x^{\frac{1}{2}} \exp \left(-c(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right)
\end{aligned}
$$

where $M(x)$ is defined in (2.1), the A_{k} 's are computable and satisfy (2.2). The leading coefficient A^{*} can be given explicitly as

$$
A^{*}=\rho \prod_{p \mid D}\left(1-\frac{1}{p}\right)^{-1} \prod_{p \in \mathbb{P}_{2}}\left(1-\frac{1}{p^{2}}\right)^{-1}
$$

where ρ is the residue of the Dedekind zeta-function $\zeta_{K}(s)$ at $s=1$ and \mathbb{P}_{2} denotes the set of all rational primes p such that (p) is a prime ideal in \mathcal{O}_{K}.

Remarks.

1. The bound (2.2) for the coefficients $A_{k}^{(i)}$ ensures that later terms in our expansions cannot exceed the size of the first terms. Furthermore, it shows that, for every $N \leq M(x)$, we could break up the expansion in Theorem 2 after the term with $(\log x)^{-\frac{1}{2}-N}$, obtaining an order term $O\left(x^{1 / 2}(\log x)^{-3 / 2-N}\right)$. Of course, the corresponding assertion holds for the two expansions in Theorem 1; in particular, the upper limit $M\left(\frac{x}{q}\right)$ in the second sum can be replaced by $M\left(\frac{x}{a}\right)$, without getting a new error term.
2. It should be pointed out that the restriction on the quadratic case in Theorem 2 is natural and necessary: As we can see from the proof below, the generating function of $\tau_{\mathbf{B}, \mathbf{B}}(n)$ contains a factor $\left(\zeta_{K}(s)\right)^{2 / r}$. For $r=[K: \mathbb{Q}]=2$, this has a simple pole at $s=1$ which can be "isolated" in a way that we obtain the leading term $A^{*} x$ and an expansion in terms which are $o\left(x^{1 / 2}\right)$. If $r>2$, the point $s=1$ would be a branch point of the generating function: We do not see a way to get a better error term than $O\left(x \exp \left(-c(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right)$ in this case.
3. Our proofs are based on a well-established method of analytic number theory. This can be traced back to a classic paper of Selberg [17], and articles by Rieger [16], Kolesnik and Straus [6] and others. An enlightening account on the theory can be found in the book of De Koninck and Ivić [2].

3. Preliminaries

Throughout the paper, b and c (also with a subscript or a dash) denote positive constants which may depend on the field K but not on the progression $\mathcal{A}(a, q)$. (This applies to all O - and \ll-constants as well, throughout the paper.)

Let $H(s)$ be any analytic function without zeros on a certain simply connected domain S of \mathbb{C} which contains the real line to the right of $s=\sigma_{0}$ where $\sigma_{0}=1$ or $\frac{1}{2}$. Suppose that $H(s) \in \mathbb{R}^{+}$for real $s>\sigma_{0}$, and let $\alpha \in \mathbb{R}$ arbitrary. Then we define $(H(s))^{\alpha}$ on S by

$$
(H(s))^{\alpha}=\exp \left(\alpha\left(\log (H(2))+\int_{2}^{s} \frac{H^{\prime}(z)}{H(z)} d z\right)\right)
$$

the path of integration being completely contained in S but otherwise arbitrary.

In our analysis, S will usually be a domain symmetric with respect to the real line, with a "cut" along $L=\left\{s \in \mathbb{R}: s \leq \sigma_{0}\right\}$ (such that $S \cap L=\varnothing$). We will join in the common abuse of terminology to think of an "upper" and "lower edge" of $L \cap \partial S$, on which $(H(s))^{\alpha}$ are attributed two different values, depending on whether L is approached from above or from below.

In our first Lemma, we summarize the present state of art about zero-free regions of Dedekind zeta-functions.

Lemma 1 (See T. Mitsui [12]). Let $\zeta_{K}(s)$ denote the Dedekind zeta-function of an arbitrary algebraic number field K. Define for short

$$
\psi(t)=(\log t)^{2 / 3}(\log \log t)^{1 / 3} \quad(t \geq 3)
$$

and, for positive constants $b_{1} \geq 3$ and b_{2},

$$
\lambda(t)= \begin{cases}1-b_{0} \stackrel{\text { def }}{=} 1-\frac{b_{2}}{\psi\left(b_{1}\right)}, & \text { for }|t| \leq b_{1} \\ 1-\frac{b_{2}}{\psi(|t|)}, & \text { for }|t| \geq b_{1}\end{cases}
$$

Then there exist values of b_{1}, b_{2}, b_{3} such that for all $s=\sigma+i t$ with

$$
\sigma \geq \lambda(t), \quad|s-1| \geq \varepsilon, \quad(0<\varepsilon<1)
$$

it is true that

$$
\zeta_{K}(s) \neq 0, \quad \frac{\zeta_{K}^{\prime}(s)}{\zeta_{K}(s)} \ll \psi(|t|+3)+\frac{1}{\varepsilon}
$$

and

$$
\left(\zeta_{K}(s)\right)^{ \pm 1} \ll(\log (2+|t|))^{b_{3}}+\frac{1}{\varepsilon}
$$

Proof. This is essentially Lemma 11 of Mitsui [12]. The very last assertion is readily derived on classical lines; see e.g. Prachar [15, p. 71.]

Our next auxiliary result provides an asymptotic expansion for a certain contour integral which is essential in the type of problem under consideration.

Lemma 2. Let $H(s)$ be a holomorphic function on the disk

$$
\left\{s \in \mathbb{C}:|s-1|<2 b_{0}\right\} \quad\left(b_{0}>0 \text { fixed }\right)
$$

and let $\alpha \in \mathbb{R} \backslash \mathbb{Z}$. Let \mathcal{C}_{0} denote the circle $|s-1|=b_{0}$, with positive orientation, starting and ending at $1-b_{0}$. For a large real variable w, it follows that

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\mathcal{C}_{0}}(s-1)^{-\alpha} H(s) w^{s} d s=w \sum_{k=0}^{M(w)} \frac{\beta_{k}}{\Gamma(\alpha-k)}(\log w)^{\alpha-k-1} \\
& \quad+O\left(w \exp \left(-c^{\prime \prime}(\log w)^{3 / 5}(\log \log w)^{-1 / 5}\right)\right) \quad\left(c^{\prime \prime}>0\right)
\end{aligned}
$$

where $M(w)$ is defined as in (2.1), β_{k} are the coefficients in the Taylor expansion of $H(s)$ at $s=1$. By Cauchy's estimates and standard results on the Gammafunction, they satisfy

$$
\begin{equation*}
\frac{\beta_{k}}{\Gamma(\alpha-k)} \ll b_{0}^{-k} \Gamma(1-\alpha+k) \max _{|s-1|=b_{0}}|H(s)| \ll\left(b_{0}^{-1} k\right)^{k} \max _{|s-1|=b_{0}}|H(s)| \tag{3.1}
\end{equation*}
$$

The constant $c^{\prime \prime}$ and the O - and \ll-constants depend only on α.
Proof. Results of this type are essentially well-known to experts. The details of the argument for the present statement may be found (in a special context, w.l.o.g.) in $[\mathbf{1 4}]$, formula (3.5) and sequel.

Our next lemma summarizes what is known about the density of the sets \mathbf{B}_{K} in \mathbb{N}.
Lemma 3. For an algebraic number field K which is a Galois extension of the rationals of degree $[K: \mathbb{Q}]=r \geq 2$, and large real x,

$$
\begin{aligned}
B(x) \stackrel{\text { def }}{=} \# & \{n \in \mathbf{B}: n \leq x\}=\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}}(s-1)^{-1 / r} H(s) x^{s} d s \\
& +O\left(x \exp \left(-c^{*}(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)\right) \quad\left(c^{*}>0\right)
\end{aligned}
$$

where \mathcal{C}_{0} is defined as in Lemma 2 (with $b_{0}>0$ suitable), and $H(s)$ is holomorphic in a neighbourhood of $s=1$.

Proof. Although this assertion does not contain too much of novelty either, at least for $K=\mathbb{Q}(i)$ (see Landau [8] and Shanks [18]), we sketch the argument for convenience of the reader.

Let us denote by $\mathbf{i}_{S}(\cdot)$ the indicator function of any set $S \subset \mathbb{N}$. It follows from the decomposition laws in \mathcal{O}_{K} (cf. Hecke [3]) that, for all rational primes p which do not divide the discriminant D of $K, \mathbf{i}_{\mathbf{B}}(p)=1$ if and only if p splits into r distinct prime ideals in \mathcal{O}_{K}. Consequently, for $\operatorname{Re} s>1$,

$$
\begin{equation*}
F_{0}(s) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} \mathbf{i}_{\mathbf{B}}(n) n^{-s}=\left(\zeta_{K}(s)\right)^{1 / r} H_{1}(s) \tag{3.2}
\end{equation*}
$$

where $H_{1}(s)$ has a Dirichlet series absolutely convergent for $\operatorname{Re} s>\frac{1}{2}$. In view of Lemma $1, F_{0}(s)$ possesses thus an analytic continuation into a certain simply connected domain part of which is to the left of the line $\operatorname{Re} s=1$. By the truncated Perron's formula (see e.g. Prachar [15], p. 376 f , in particular formula (3.5)), we obtain for large $x, 1 \leq T \leq x$ and $\omega=1+\frac{1}{\log x}$,

$$
B(x)=\frac{1}{2 \pi i} \int_{\omega-i T}^{\omega+i T} F_{0}(s) x^{s} \frac{d s}{s}+O\left(\frac{x}{T} \log x\right)
$$

Now let \mathcal{C}_{1} denote the path from $\lambda(T)-i T$ to $1-b_{0}$ along $\sigma=\lambda(t)\left(b_{0}\right.$ and $\lambda()$. as defined in Lemma 1), and let \mathcal{C}_{2} lead from $1-b_{0}$ to $\lambda(T)+i T$, again along $\sigma=\lambda(t)$. By Lemma 1 , it is clear that

$$
\int_{\lambda(T) \pm i T}^{\omega \pm i T} F_{0}(s) x^{s} \frac{d s}{s} \ll \frac{x}{T}(\log T)^{b_{4}},
$$

and, for $j=1,2$, and T sufficiently large,

$$
\int_{\mathcal{C}_{j}} F_{0}(s) x^{s} \frac{d s}{s} \ll x^{\lambda(T)}(\log T)^{1+b_{4}} .
$$

For positive constants c_{1}, c_{2}, \ldots, we define for short

$$
\delta_{j}(x) \stackrel{\text { def }}{=} \exp \left(-c_{j}(\log x)^{3 / 5}(\log \log x)^{-1 / 5}\right)
$$

(to be used throughout the sequel), and choose $T=\left(\delta_{1}(x)\right)^{-1}$ (with suitable c_{1}). We thus obtain

$$
B(x)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} F_{0}(s) x^{s} \frac{d s}{s}+O\left(x \delta_{2}(x)\right),
$$

which together with (3.2) gives the assertion of Lemma 3.
Lemma 4. Let $d^{*}(a, q ; n)$ denote the number of (positive) divisors of $n \in \mathbb{N}$ which lie in the arithmetic progression $\mathcal{A}(a, q)$ and are greater than q. For a large real variable x,

$$
\sum_{n \leq x} d^{*}(a, q ; n)=\frac{x}{q} \log \frac{x}{q}+\gamma^{*}\left(\frac{a}{q}\right) \frac{x}{q}+O\left(\left(\frac{x}{q}\right)^{1 / 3}\right)
$$

uniformly in $1 \leq a \leq q \leq x$, where $\gamma^{*}(\cdot)$ is continuous on the compact unit interval.
Proof. This follows by a short and simple computation (using the Euler summation formula) from the author's result in [13].

4. Proof of Theorem 1

In order to obtain an estimate uniform in a and q, it is important to isolate the contribution of the possibly "small" divisor a to $\sum_{n \leq x} \tau_{\mathbf{B}, \mathcal{A}}(n)$. We put $\mathcal{A}^{*}=$ $\mathcal{A} \backslash\{a\}$ and $\tau^{*}(n)=\tau_{\mathbf{B}, \mathcal{A}^{*}}(n)$, then it is clear that

$$
\begin{equation*}
\sum_{n \leq x} \tau_{\mathbf{B}, \mathcal{A}}(n)=B\left(\frac{x}{a}\right)+T^{*}(x), \quad T^{*}(x) \stackrel{\text { def }}{=} \sum_{n \leq x} \tau^{*}(n) . \tag{4.1}
\end{equation*}
$$

For $\operatorname{Re} s>1$, it is clear that

$$
\sum_{n=1}^{\infty} \tau^{*}(n) n^{-s}=F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) q^{-s},
$$

where $F_{0}(s)$ has been defined in (3.2) and $\zeta^{*}(s, \xi)=\zeta(s, \xi)-\xi^{-s}, \zeta(s, \xi)$ the Hurwitz zeta function for $0<\xi \leq 1$. For later reference we note that $\zeta^{*}(s, \xi)$ can be represented by

$$
\begin{equation*}
\zeta^{*}(s, \xi)=(1+\xi)^{-s}+\frac{(1+\xi)^{1-s}}{s-1}-s \int_{1}^{\infty}\{u\}(u+\xi)^{-s-1} d u \tag{4.2}
\end{equation*}
$$

in the halfplane Re $s>0$ with the exception of $s=1$. (Here $\{\cdot\}$ denotes the fractional part. Cf. Apostol [1, p. 269].) By a version of Perron's formula,

$$
\begin{equation*}
T_{1}^{*}(x) \stackrel{\text { def }}{=} \int_{0}^{x} T^{*}(q u) d u=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) x^{s+1} \frac{d s}{s(s+1)} \tag{4.3}
\end{equation*}
$$

Now let \mathcal{C}_{1}^{*} denote the path from $1-i \infty$ to $1-b_{0}, \mathcal{C}_{2}^{*}$ the path from $1-b_{0}$ to $1+i \infty$, both along $\sigma=\lambda(t)$, and put $\mathcal{C}=\mathcal{C}_{1}^{*} \cup \mathcal{C}_{0} \cup \mathcal{C}_{2}^{*} .\left(b_{0}, \lambda(t)\right.$ and \mathcal{C}_{0} are defined as in section 3.) We observe that, for $1-b_{0} \leq \operatorname{Re} s \leq 2$,

$$
\begin{equation*}
F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) \ll(1+|\operatorname{Im} s|)^{2 b_{0}} \tag{4.4}
\end{equation*}
$$

uniformly in a and q. (This is an immediate consequence of Lemma 1 and (3.2), as far as the factor $F_{0}(s)$ is concerned. For $\zeta^{*}\left(s, \frac{a}{q}\right)$, the necessary bound can be found in Apostol [1, p. 270].) Consequently,

$$
T_{1}^{*}(x)=\frac{1}{2 \pi i} \int_{\mathcal{C}} F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) x^{s+1} \frac{d s}{s(s+1)}
$$

Furthermore, defining $T=\left(\delta_{3}(x)\right)^{-1}$ and appealing to (4.4) again, we see that (for $j=1,2$)

$$
\begin{aligned}
& \int_{\mathcal{C}_{j}^{*}} F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) x^{s+1} \frac{d s}{s(s+1)}=\int_{|\operatorname{Im} s| \geq T}+\int_{|\operatorname{Im} s| \leq T} \\
& \quad \ll x^{2} T^{2 b_{0}-1}+x^{1+\lambda(T)} \ll x^{2} \delta_{4}(x),
\end{aligned}
$$

hence

$$
\begin{equation*}
T_{1}^{*}(x)=I_{*}(x)+O\left(x^{2} \delta_{4}(x)\right) \tag{4.5}
\end{equation*}
$$

where

$$
\begin{equation*}
I_{*}(x) \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) x^{s+1} \frac{d s}{s(s+1)} \tag{4.6}
\end{equation*}
$$

Employing a technique due to Rieger [16], we now put, for $u \geq 1$,

$$
f(u)=T^{*}(q u)-I_{*}^{\prime}(u),
$$

then (4.5) implies that

$$
\begin{equation*}
\int_{1}^{x} f(u) d u \ll x^{2} \delta_{4}(x) \tag{4.7}
\end{equation*}
$$

(Note that $T^{*}(q u)=0$ for $u<1$.) In order to estimate the difference $f(x)-f(y)$, for $1 \leq y \leq x$, we first observe that

$$
\begin{align*}
I_{*}^{\prime}(x)-I_{*}^{\prime}(y) & =\int_{y}^{x} I_{*}^{\prime \prime}(u) d u=\int_{y}^{x}\left(\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) u^{s-1} d s\right) d u \tag{4.8}\\
& \ll(x-y)(\log x)^{1+1 / r}
\end{align*}
$$

This follows by replacing \mathcal{C}_{0} by $\mathcal{C}_{0}^{*}(u)$ which we define as the boundary of

$$
\left\{s \in \mathbb{C}:|s-1| \leq b_{0}, \operatorname{Re} s \leq 1+\frac{1}{\log (2 u)}\right\}
$$

(with positive orientation, starting and ending at $1-b_{0}$), in view of the bound

$$
F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) \ll|s-1|^{-1-1 / r}
$$

as $s \rightarrow 1$, uniformly in a and q. This in turn is an immediate consequence of (3.2) and (4.2). Furthermore, we readily derive from Lemma 4 that

$$
\begin{equation*}
0 \leq T^{*}(q x)-T^{*}(q y) \leq \sum_{q y<n \leq q x} d^{*}(a, q ; n) \ll(x-y) \log x+x^{1 / 3} \tag{4.9}
\end{equation*}
$$

uniformly in a and q. Now (4.7)-(4.9) are just the requirements of Hilfssatz 2 in Rieger [16]. Applying the latter, we obtain

$$
f(u) \ll u \delta_{5}(u)
$$

or

$$
T^{*}(x)=I_{*}^{\prime}\left(\frac{x}{q}\right)+O\left(\frac{x}{q} \delta_{5}\left(\frac{x}{q}\right)\right),
$$

with

$$
I_{*}^{\prime}(u)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} F_{0}(s) \zeta^{*}\left(s, \frac{a}{q}\right) u^{s} \frac{d s}{s}
$$

We insert this into (4.1), evaluate $B\left(\frac{x}{a}\right)$ by Lemmas 2 and 3 , and $I_{*}^{\prime}\left(\frac{x}{q}\right)$ on the basis of (3.2) and Lemma 2. This completes the proof of Theorem 1. (The uniformity in a and q of the bound (2.2) for the coefficients $A_{k}^{(2)}$ follows from (3.1) and (4.2) which in turn shows that $(s-1) \zeta^{*}(s, \xi)$ is uniformly bounded in a neighbourhood of $s=1$.)

5. Proof of Theorem 2

For K a quadratic field, we denote by \mathbb{P}_{1} the set of all rational primes which do not divide the discriminant D and split into two prime ideals, and by \mathbb{P}_{2} the set of all other rational primes not dividing D. Then it is well-known that (for $\operatorname{Re} s>1$)

$$
\zeta_{K}(s)=\prod_{p \mid D}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathbb{P}_{1}}\left(1-\frac{1}{p^{s}}\right)^{-2} \prod_{p \in \mathbb{P}_{2}}\left(1-\frac{1}{p^{2 s}}\right)^{-1}
$$

and

$$
F_{0}(s) \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} \mathbf{i}_{\mathbf{B}}(n) n^{-s}=\prod_{p \mid D}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathbb{P}_{1}}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathbb{P}_{2}}\left(1-\frac{1}{p^{2 s}}\right)^{-1}
$$

Consequently,

$$
\begin{equation*}
\left(F_{0}(s)\right)^{2}=\sum_{n=1}^{\infty} \tau_{\mathbf{B}, \mathbf{B}}(n) n^{-s}=\zeta_{K}(s) \varphi(s) \tag{5.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi(s)=\prod_{p \mid D}\left(1-\frac{1}{p^{s}}\right)^{-1} \prod_{p \in \mathbb{P}_{2}}\left(1-\frac{1}{p^{2 s}}\right)^{-1} \stackrel{\text { def }}{=} \sum_{n=1}^{\infty} g(n) n^{-s}, \tag{5.2}
\end{equation*}
$$

for $\operatorname{Re} s>\frac{1}{2}$, the last series converging absolutely in this halfplane. Furthermore,

$$
\begin{equation*}
\varphi(s)=\zeta(2 s)\left(\zeta_{K}(2 s)\right)^{-1 / 2} H_{2}(s) \tag{5.3}
\end{equation*}
$$

where $H_{2}(s)$ has a Dirichlet series which converges absolutely for Re $s>\frac{1}{4}$.
We note a few important properties of the coefficients $g(n)$ for later use:
(i) $g(n)$ is either 0 or 1 for every $n \in \mathbb{N}$.
(ii) If $\mathcal{P}(D)$ denotes the product of all primes that divide the discriminant D, $g(n)=1$ implies that n can be written $n=m_{1} m_{2}$ where m_{1} divides $\mathcal{P}(D)$ and m_{2} is square-full*.
(iii) If u is a large real variable and $Q(u)$ denotes the number of square-full positive integers $\leq u$, we have

$$
G(u) \stackrel{\text { def }}{=} \sum_{n \leq u} g(n) \leq \sum_{m \mid \mathcal{P}(D)} Q\left(\frac{u}{m}\right) \ll u^{1 / 2}
$$

(iv) For $1 \leq y<x$,

$$
\left|G\left(x^{2}\right)-G\left(y^{2}\right)\right| \leq \sum_{m \mid \mathcal{P}(D)}\left(Q\left(\frac{x^{2}}{m}\right)-Q\left(\frac{y^{2}}{m}\right)\right) \ll x-y+x^{1 / 3}
$$

[^1]The assertions (i) and (ii) are clear by (5.2), while (iii) and (iv) follow readily from (i), (ii), and the known asymptotic formula for $Q(u)$ (see Krätzel [7, p. 280]).

Let $a(n)$ denote the number of integer ideals in \mathcal{O}_{K} with norm equal to n. It is well-known** that

$$
\begin{equation*}
A(u) \stackrel{\text { def }}{=} \sum_{n \leq u} a(n)=\rho u+P(u), \quad P(u)=O\left(u^{1 / 3}\right) \tag{5.4}
\end{equation*}
$$

where ρ is the residue of the Dedekind zeta-function $\zeta_{K}(s)$ at $s=1$. (See Landau [9, p. 135].) By (5.1) and (5.2), it is clear that

$$
\begin{equation*}
\tau_{\mathbf{B}, \mathbf{B}}(n)=\sum_{l m=n} a(l) g(m) . \tag{5.5}
\end{equation*}
$$

The main difficulty in the proof of Theorem 2 is provided by the fact that (if one wants to get a sufficiently "good" error term) contour integration apparently cannot be applied to $\sum \tau_{\mathbf{B}, \mathbf{B}}(n)$ itself, but only to $\sum g(m)$: We will combine this technique with an elementary convolution argument based on (5.5).

Lemma 5. For $u \rightarrow \infty$,

$$
G(u) \stackrel{\text { def }}{=} \sum_{m \leq u} g(m)=I(u)+R(u)
$$

where

$$
I(u)=\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} \varphi\left(\frac{s}{2}\right) u^{s / 2} \frac{d s}{s}
$$

and

$$
R(u) \ll u^{\frac{1}{2}} \delta_{6}(u)
$$

for some $c_{6}>0$.
Proof. We use the same technique as in the proof of Theorem 1. Again by Perron's formula, it follows that

$$
G_{1}(u) \stackrel{\text { def }}{=} \int_{1}^{u} G\left(w^{2}\right) d w=\frac{1}{2 \pi i} \int_{2-i \infty}^{2+i \infty} \varphi\left(\frac{s}{2}\right) \frac{u^{s+1}}{s(s+1)} d s
$$

Repeating our argument between (4.3) and (4.6) almost word by word, we obtain

$$
\begin{equation*}
G_{1}(u)=I_{1}(u)+O\left(u^{2} \delta_{7}(u)\right), \tag{5.6}
\end{equation*}
$$

${ }^{* *}$ In fact, the exponent $\frac{1}{3}$ in the order term can be replaced at least by $\frac{23}{73}+\varepsilon$: See Huxley [5]. But this is unimportant in our context.
where

$$
\begin{equation*}
I_{1}(u) \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} \varphi\left(\frac{s}{2}\right) \frac{u^{s+1}}{s(s+1)} d s \tag{5.7}
\end{equation*}
$$

We put, for $w \geq 1$,

$$
f(w)=G\left(w^{2}\right)-I\left(w^{2}\right)
$$

then (5.6) implies that

$$
\begin{equation*}
\int_{1}^{u} f(w) d w \ll u^{2} \delta_{7}(u) \tag{5.8}
\end{equation*}
$$

In order to estimate the difference $f\left(w_{1}\right)-f\left(w_{2}\right)$ for $w_{1}>w_{2} \geq 1$, we observe that

$$
\begin{equation*}
I\left(w_{1}^{2}\right)-I\left(w_{2}^{2}\right)=\int_{w_{2}}^{w_{1}}\left(\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} \varphi\left(\frac{s}{2}\right) u^{s-1} d s\right) d u \ll\left(w_{1}-w_{2}\right)\left(\log \left(2 w_{1}\right)\right)^{1 / 2} \tag{5.9}
\end{equation*}
$$

This follows on replacing \mathcal{C}_{0} by $\mathcal{C}_{0}^{*}(u)$ (which was defined under (4.8)), since

$$
\begin{equation*}
\varphi\left(\frac{s}{2}\right) \ll|s-1|^{-1 / 2} \quad(s \rightarrow 1) \tag{5.10}
\end{equation*}
$$

which in turn is clear by (5.3). Combining (5.8), (5.9) and (iv) above, we again are ready to apply Rieger's Hilfssatz 2 from [16]. The latter implies that

$$
G\left(w^{2}\right)=I\left(w^{2}\right)+O\left(w \delta_{8}(w)\right)
$$

Putting $u=w^{2}$, we complete the proof of Lemma 5.
We now define

$$
\begin{equation*}
y=y(x)=x \delta_{9}(x), \quad z=z(x)=\frac{x}{y}=\left(\delta_{9}(x)\right)^{-1} \tag{5.11}
\end{equation*}
$$

with a positive constant c_{9} remaining at our disposition. From (5.5) we derive by a usual device ("hyperbola method") that

$$
\sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n)=\sum_{m \leq y} g(m) A\left(\frac{x}{m}\right)+\sum_{l \leq z} a(l) G\left(\frac{x}{l}\right)-G(y) A(z)
$$

By (5.4), Lemma 5, and (ii), this may be simplified to

$$
\begin{gathered}
\sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n)=\sum_{m \leq y} g(m)\left(\rho \frac{x}{m}+O\left(\left(\frac{x}{m}\right)^{1 / 3}\right)\right)+\sum_{l \leq z} a(l)\left(I\left(\frac{x}{l}\right)+R\left(\frac{x}{l}\right)\right) \\
-\rho z I(y)+O\left(y^{1 / 2} z^{1 / 3}\right)+O\left(y^{1 / 2} \delta_{6}(y) z\right)
\end{gathered}
$$

Observing that, by (ii) and summation by parts,

$$
\sum_{m \leq y} g(m)\left(\frac{x}{m}\right)^{1 / 3} \ll x^{1 / 3} y^{1 / 6} \ll x^{1 / 2} \delta_{10}(x)
$$

and

$$
\sum_{l \leq z} a(l) R\left(\frac{x}{l}\right) \ll x^{1 / 2} \delta_{6}(y) \sum_{l \leq z} a(l) l^{-1 / 2} \ll x^{1 / 2} \delta_{6}(y) z^{1 / 2} \ll x^{1 / 2} \delta_{10}(x)
$$

(cf. Landau [9, p. 128], for the next-to-last \ll-step), we arrive at
(5.12) $\quad \sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n)=\rho x \sum_{m \leq y} \frac{g(m)}{m}+\sum_{l \leq z} a(l) I\left(\frac{x}{l}\right)-\rho z I(y)+O\left(x^{1 / 2} \delta_{10}(x)\right)$,
after an appropriate choice of c_{9} and c_{10}. Appealing again to Lemma 5, we see that

$$
\begin{align*}
\sum_{m>y} \frac{g(m)}{m} & =\int_{y+}^{\infty} \frac{1}{u} d G(u) \\
& =\int_{y}^{\infty} \frac{1}{u} I^{\prime}(u) d u+\int_{y+}^{\infty} \frac{1}{u} d R(u) \tag{5.13}\\
& =\int_{y}^{\infty} \frac{1}{u} I^{\prime}(u) d u-\frac{1}{y} R(y)+\int_{y}^{\infty} \frac{1}{u^{2}} R(u) d u \\
& =\int_{y}^{\infty} \frac{1}{u} I^{\prime}(u) d u+O\left(y^{-\frac{1}{2}} \delta_{6}(y)\right)
\end{align*}
$$

Furthermore,

$$
\begin{aligned}
\sum_{l \leq z} a(l) I\left(\frac{x}{l}\right) & =\int_{\frac{1}{2}}^{z} I\left(\frac{x}{u}\right) d A(u) \\
& =A(z) I\left(\frac{x}{z}\right)+\int_{1}^{z} A(u) I^{\prime}\left(\frac{x}{u}\right) \frac{x}{u^{2}} d u \\
& =\rho z I(y)+O\left(y^{1 / 2} z^{1 / 3}\right)+\rho x \int_{y}^{x} I^{\prime}(w) \frac{d w}{w}+x \int_{1}^{z} P(u) I^{\prime}\left(\frac{x}{u}\right) \frac{x}{u^{2}} d u
\end{aligned}
$$

by the substitution $w=\frac{x}{u}$ in the last but one integral. Inserting this together with (5.13) into (5.12), we obtain

$$
\begin{align*}
\sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n) & =A^{*} x-\rho x \int_{x}^{\infty} I^{\prime}(w) \frac{d w}{w} \tag{5.14}\\
& +x \int_{1}^{z} P(u) I^{\prime}\left(\frac{x}{u}\right) \frac{d u}{u^{2}}+O\left(x^{1 / 2} \delta_{10}(x)\right)
\end{align*}
$$

Here

$$
A^{*}=\rho \sum_{m=1}^{\infty} \frac{g(m)}{m}=\rho \varphi(1)
$$

and can thus be represented as stated in Theorem 2 (cf. (5.2)), while

$$
\begin{equation*}
I^{\prime}(w)=\frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \varphi(s) w^{s-1} d s \tag{5.15}
\end{equation*}
$$

To evaluate the two remaining integrals, we define

$$
S(w, s) \stackrel{\text { def }}{=} \int_{w}^{\infty} P(u) u^{-s-1} d u
$$

and

$$
U(x, w) \stackrel{\text { def }}{=} \frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \varphi(s) S(w, s) x^{s} d s
$$

for positive reals w and x and complex s with $\operatorname{Re} s>\frac{1}{3}$. Interchanging the order of integration, we see from (5.15) that

$$
U(x, w)=x \int_{w}^{\infty} P(u) I^{\prime}\left(\frac{x}{u}\right) \frac{d u}{u^{2}}
$$

Consequently, we obtain for the last integral in (5.14)

$$
\begin{aligned}
x \int_{1}^{z} P(u) I^{\prime}\left(\frac{x}{u}\right) \frac{d u}{u^{2}} & =U(x, 1)-U(x, z) \\
& =\frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \varphi(s) S(1, s) x^{s} d s-U(x, z) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
x \int_{x}^{\infty} I^{\prime}(u) \frac{d u}{u} & =x \int_{x}^{\infty}\left(\frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \varphi(s) u^{s-1} d s\right) \frac{d u}{u} \\
& =x \frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \varphi(s)\left(\int_{x}^{\infty} u^{s-2} d u\right) d s=-\frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \frac{1}{s-1} \varphi(s) x^{s} d s
\end{aligned}
$$

In view of the identity

$$
\frac{\rho}{s-1}+S(1, s)=\frac{1}{s} \zeta_{K}(s)
$$

(which is immediate for $\operatorname{Re} s>1$ via integration by parts, and thus true (at least) for $\operatorname{Re} s>\frac{1}{3}, s \neq 1$, by analytic continuation), we may thus simplify (5.14) to

$$
\begin{equation*}
\sum_{n \leq x} \tau_{\mathbf{B}, \mathbf{B}}(n)=A^{*} x+\frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}} \varphi(s) \zeta_{K}(s) x^{s} \frac{d s}{s}-U(x, z)+O\left(x^{1 / 2} \delta_{10}(x)\right) \tag{5.16}
\end{equation*}
$$

The penultimate step is to estimate $U(x, z)$. It is clear from the definition that

$$
S(w, \sigma+i t) \ll w^{\frac{1}{3}-\sigma} \quad\left(\sigma>\frac{1}{3}\right)
$$

hence

$$
U(x, z)=\frac{1}{2 \pi i} \int_{\frac{1}{2} \mathcal{C}_{0}^{*}(x)} \varphi(s) S(z, s) x^{s} d s \ll x^{1 / 2}(\log x)^{1 / 2} z^{\frac{1}{3}-\frac{1}{2}\left(1-b_{0}\right)} \ll x^{\frac{1}{2}} \delta_{10}(x)
$$

again by (5.10), with $\mathcal{C}_{0}^{*}(x)$ defined under (4.8). Recalling (5.1), (5.3), and making the substitution $2 s \rightarrow s$, we see that the integral remaining in (5.16) is equal to

$$
\frac{1}{2 \pi i} \int_{\mathcal{C}_{0}} \zeta(s)\left(\zeta_{K}(s)\right)^{-1 / 2} \zeta_{K}\left(\frac{s}{2}\right) H_{2}\left(\frac{s}{2}\right)\left(x^{1 / 2}\right)^{s} \frac{d s}{s}
$$

and can thus be evaluated by Lemma 2. This completes the proof of Theorem 2 .
Concluding remark. It might be worthwhile to provide numerical values for the leading coefficients A^{*}, A_{0}, at least in the (perhaps most important) case $K=\mathbb{Q}(i)$. It is an immediate consequence of the representation given in Theorem 2 and of the decomposition laws in $\mathcal{O}_{\mathbf{Q}(i)}$ that

$$
A^{*}=\frac{\pi}{2} \prod_{p \equiv 3}\left(1-\frac{1}{p^{2}}\right)^{-1} \sim 1,835
$$

since the residue of $\zeta_{\mathbf{Q}(i)}(s)$ at $s=1$ is $\frac{\pi}{4}$. Moreover, it follows from Lemma 2, (5.2) and (5.3), that in general

$$
A_{0}=\left(\frac{2 \rho}{\pi}\right)^{1 / 2} \zeta_{K}\left(\frac{1}{2}\right) \prod_{p \mid D}\left(\left(1-\frac{1}{p^{1 / 2}}\right)^{-1}\left(1-\frac{1}{p}\right)^{1 / 2}\right) \prod_{p \in \mathbb{P}_{2}}\left(1-\frac{1}{p^{2}}\right)^{-1 / 2}
$$

For $K=\mathbb{Q}(i)$, this gives

$$
A_{0}=\frac{1}{2}\left(1-\frac{1}{\sqrt{2}}\right)^{-1} \zeta\left(\frac{1}{2}\right)\left(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)^{1 / 2}}\right) \prod_{p \equiv 3(\bmod 4)}\left(1-\frac{1}{p^{2}}\right)^{-1 / 2} \sim-1,799
$$

References

1. Apostol T. M., Introduction to analytic number theory, Springer, New York-Heidelberg-Berlin, 1976.
2. De Koninck J. M. and Ivić A., Topics in arithmetical functions, North Holland Publ. Co., Amsterdam-New York-Oxford, 1980.
3. Hecke E., Lectures on the theory of algebraic numbers, Springer, New York-Heidelberg-Berlin, 1981.
4. Huxley M. N., Exponential sums and lattice points, Proc. London Math. Soc. (3) 60 (1990), 471-502.
5. Huxley M. N., Exponential sums and lattice points, II, Proc. London Math. Soc. (to appear).
6. Kolesnik G. A. and Straus E. G., On the distribution of integers with a given number of prime factors, Acta arithm. 37 (1980), 181-199.
7. Krätzel E., Lattice points, Kluwer Acad. Publ., Dordrecht-Boston-London, 1988.
8. Landau E., Über die Einteilung der positiven ganzen Zahlen in vier Klassen, Arch. Math. Phys. 13 (1908), 305-312.
9._, Einführung in die elementare und analytische Theorie der algebraischen Zahlen und der Ideale, Chelsea Publ. Co., New York, 1964.
9. Mercier A. and Nowak W. G., A divisor problem for values of polynomials, Can. Math. Bull. (to appear).
10. Mercier A. and Nowak W. G., Problème des diviseurs pour des valeurs polynômiales, II, Ann. sci. math. Québec (to appear).
11. Mitsui T., On the prime ideal theorem, J. Math. Soc. Japan 20 (1968), 233-247.
12. Nowak W. G., On a result of Smith and Subbarao concerning a divisor problem, Can. Math. Bull. 27 (1984), 501-504.
13. \qquad , Sums of reciprocals of general divisor functions and the Selberg divisor problem, Abh. Math. Sem. Hamburg 61 (1991), 163-173.
14. Prachar K.,, Primzahlverteilung, Springer, Berlin-Göttingen-Heidelberg, 1957.
15. Rieger G. J., Zum Teilerproblem von Atle Selberg, Math. Nachr. 30 (1965), 181-192.
16. Selberg A., Note on a paper by L. G. Sathe, J. Indian Math. Soc. 18 (1954), 83-87.
17. Shanks D., The second-order term in the asymptotic expansion of $B(x)$, Math. of Comp. 18 (1964), 75-76.
18. Smith R. A. and Subbarao M. V., The average number of divisors in an arithmetic progression, Can. Math. Bull. 24 (1981), 37-41.
19. Varbanec P. D. and Zarzycki P., Divisors of integers in arithmetic progressions, Can. Math. Bull. 33 (1990), 129-134.
20. Varbanec P. D., On the distribution of natural numbers with divisors from an arithmetic progression, Acta arithm. 57 (1991), 245-256.
W. G. Nowak, Institut für Mathematik, Universität für Bodenkultur, Gregor Mendelstr. 33, A-1180 Wien, Austria; e-mail: H506T1@AWIBOK01.bitnet

[^0]: Received November 14, 1991.
 1980 Mathematics Subject Classification (1991 Revision). Primary 11N37, 11N69, 11R47.
 ${ }^{*}$ This article is part of a research project supported by the Austrian Science Foundation (Nr. P8488-PHY).

[^1]: *A positive integer m is called square-full if p^{2} divides m for every prime divisor p of m.

