
Acta Math. Univ. Comenianae
Vol. LXI, 1(1992), pp. 69–84

69

FRONT–DIVISORS OF TREES

P. HÍC, R. NEDELA and S. PAVLÍKOVÁ

Abstract. Generalizing the concept of graph covering we introduce the notion of
semicovering of graphs. We prove that the relationship between front-divisors of
graph G and semicoverings defined on G has the same character as the well-known
relationship between divisors and coverings. Main attention is paid on trees. We
show that each front-divisor of a tree T may be obtained by factoring T under any
appropriate subgroup of the automorphism group AutT .

1. Introduction and Preliminaries

Let G be a directed graph; we allow G to have multiple arcs (= directed edges)

as well as loops. A partition of its vertex set V (G) = ∪ni=1Vi is called an equitable

partition if and only if there exists a square matrix M = (dij) of order n such that

for every i, j ∈ {1, 2, . . . , n} and for every vertex x ∈ Vi there are exactly dij arcs

emanating from x and terminating at some vertices of Vj . The (directed) graph D

determined by the adjacency matrix M is called a front-divisor of G. The fact

that D is a front divisor of G will be symbolically denoted by D|G. Obviously,

vertices of D represent the classes Vi of the equitable partition of G.

The most important property of a front-divisor D of a graph G is that the char-

acteristic polynomial of D divides the characteristic polynomial of G [1; Theorem

4.5]. For more information the reader is referred to [1; Chapter 4], where basic

properties (including references) of front divisors can be found.

The concept of an equitable partition was introduced in [4], where the equiva-

lence classes are induced by an action of a subgroup of the automorphism group

of G (such divisors are known as regular, and we deal with them in Section 3).

The motivation for our research comes from the study of spectra of some classes

of trees. This led us to the investigation of front-divisors of trees, and consequently,

to the study of front-divisors in general. It turns out that sometimes it is more

convenient to consider the natural projection from a graph G onto its front-divisor

D rather than the front-divisor itself. In Section 2, the relationship of the natural
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projection mapping a of graph G onto its front-divisor to the covering projections

defined on G is discussed. In this context one needs to relax the conditions that are

usually imposed on covering projections (as they are commonly known in algebraic

topology). Surprisingly enough, this gives rise to a theory of semicoverings of

(directed) graphs that is parallel to the existing theory of permutation voltage

assignments (see [2; pp. 81–86]).

Special attention is paid to front-divisors of trees. Our main theorem in Section

3 shows that every front-divisor of a tree T may be obtained by factoring T by an

appropriate subgroup of the automorphism group AutT. The main advantage of

this fact is that it allows us to reduce the problem of determining the spectrum

of T to the problem of determining the spectra of divisors and codivisors (see [1;

Chapter 4]) of T . The effectiveness of this method is directly proportional to the

number of symmetries of T .

Throughout, by a graph we always mean a directed graph; multiple directed

edges and loops are allowed. Although sometimes also undirected graphs will

appear, they will always be referred to as “undirected”. By the characteristic

polynomial of a graph G, denoted by PG(λ), we mean the characteristic poly-

nomial of the adjacency matrix of G. If S is a set, then by |S| we indicate the

number of its elements. Let G = (V,E) and H = (V1, E1) be two graphs. A map

ϕ : G→ H, mapping the vertex set V into the vertex set V1 and the arc set E into

the arc set E1 is called a morphism if an arc e originating at u and terminating

at v is mapped onto the arc ϕ(e) originating at ϕ(u) and terminating at ϕ(v).

The notions such as front-divisor, equitable partition, and semicovering projec-

tion introduced for (directed) graphs will be used also for undirected graphs in

the following sense: Let G be an undirected graph. Denote by ~G the directed

graph which arises from G by replacing each edge of G by a couple of oppositely

directed arcs. Note that both G and ~G have identical adjacency matrices. Thus,

as regards properties which depend only on the adjacency matrix, we are free in

interchanging G by ~G and vice versa.

2. Front-divisors and Semicovering Projections

It is well-known [1; p. 117], that divisors and covers of undirected graphs are

closely related. The main goal of this section is to introduce the notion of a semi-

covering projection of a directed graph by generalizing the concept of combinatorial

coverings. We show that the relationship between front-divisors and semicoverings

has the same character as the above mentioned relationship between divisors and

covers for undirected graphs.

Let G and H be two graphs. An epimorphism ϕ : G → H will be called a

semicovering projection if for every vertex u ∈ V (G), the restriction of ϕ onto

the set of arcs originating at u is a bijection.
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Gross and Tucker in [2; Chapter 2] introduced the concept of a covering pro-

jection for undirected graphs. Clearly, every covering projection Π : G → H (in

the sense of [2]) is a semicovering projection. On the other hand, a semicovering

projection Π′ : G→ H, where G, H are undirected graphs, is a covering projection

if and only if for every vertex u ∈ V (G) the restriction of Π′ onto the set of arcs

terminating at u is a bijection. Thus the notion of a semicovering projection of

graphs is a natural generalization of the notion of a covering projection of undi-

rected graphs. The following two propositions explain the relationship between

front-divisors of a graph G and semicovering projections defined on G.

Proposition 2.1. Let G be a graph and D be its front-divisor determined by

an equitable partition T . Then the natural projection Π: V (G)→ V (D), mapping

a vertex x onto the class [x] of T , can be extended to a semicovering projection

G→ D.

Proof. Since D|G, the vertex set V (G) of G is partitioned into classes V1 ∪V2 ∪
· · · ∪ Vn of T . Denote by M = (dij) the adjacency matrix of D. Let x ∈ Vi be

an arbitrary vertex of G. Then there are exactly dij arcs e1, e2, . . . , edij joining

x to vertices of Vj (for j = 1, 2, . . . , n). Since D|G we have exactly dij arcs

f1, f2, . . . , fdij joining Vi to Vj in D. Put Π∗(ei) = fi for each i ∈ {1, 2, . . . , dij}.
Since each arc e of G joins a vertex u ∈ Vi to a vertex v ∈ Vj , Π∗ is defined on

the arc set of G. Set Π∗(u) = Π(u) for every vertex u ∈ V (G). Then Π∗ is a

semicovering projection G→ D. �

Proposition 2.2. Let Π: G → H be a semicovering projection. Then H is a

front-divisor of G.

Proof. We show that the partition V (G) = ∪u∈V (H)Π
−1(u) is an equitable

partition determining H. Let u, v be two arbitrary vertices in H, and let d(u, v)

be the number of arcs of H joining u to v. Since Π is a semicovering projection,

there exist exactly d(u, v) arcs joining a vertex x ∈ Π−1(u) to vertices from Π−1(v).

Thus ∪u∈V (H)Π
−1(u) is an equitable partition of V (G) corresponding to H. �

Gross and Tucker [2] introduced the concept of permutation voltage graphs;

they represent a nice combinatorial tool for description of covers of undirected

graphs. The following definition of functional voltage graphs may be considered

to be a generalization of this concept.

Let H be a graph. Let η : V (H) → N be a function assigning to each vertex

u ∈ V (H) a natural number η(u). For every arc e joining a vertex u to a vertex

v let α(e) : {1, 2, . . . , η(u)} → {1, 2, . . . , η(v)} be a function called a functional

voltage assignment of e. The triple (H, η, α) will be called a functional voltage

graph. The graph H will be called the base graph. Each functional voltage

graph (H, η, α) defines the derived graph Gαη , whose vertex set is V (Gαη ) =

∪u∈V (H){u} × {1, 2, . . . , η(u)} and whose arc set is E(Gαη ) = ∪e=uv∈E(H){e} ×
{1, 2, . . . , η(u)}. The arc ei i ∈ {1, 2, . . . , η(u)} joins the vertex ui to the vertex
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vj , j ∈ {1, 2, . . . , η(v)} in Gαη if there is an arc e joining u to v in H assigned by

Π = α(e) such that Π(i) = j. The next two theorems indicate that the set of

graphs that can be obtained from a functional voltage assignment of a given graph

H is precisely the set of graphs that semicover the graph H.

Theorem 2.3. Let (H, η, α) be a functional voltage graph and Gαη = G be

the derived graph. Then the natural projection Π: G → H mapping each vertex

ui onto the vertex u, and each arc ei (with the initial vertex ui) onto e for i ∈
{1, 2, . . . , η(u)} is a semicovering projection.

Proof. From the definition of the derived graph G = Gαη it follows that Π is an

epimorphism. Further, if ei and fi are two arcs with an initial vertex ui ∈ Π−1(u)

and Π(ei) = Π(fi) then from the definition of G we have e = f . Hence, the

restriction of Π onto a set of arcs with the same initial vertex is injective, and the

statement follows. �
Theorem 2.4. Let Π: G→ H be a semicovering projection. Then there exists

a function η : V (H) → N and a functional voltage assignment α on E(H) such

that G is isomorphic to the derived graph Gαη associated with (H, η, α).

Proof. Put η(u) = |Π−1(u)| for any vertex u in H. For every vertex u of H label

the vertices of Π−1(u) by u1, u2, . . . , uη(u). Let e be an arc of H joining a vertex u

to a vertex v. Since Π is a semicovering projection, the preimage Π−1(e) consists

of η(u) arcs, originating one by one successively at the vertices u1, u2, . . . , uη(u).

Denote the arc of Π−1(e) that originates at ui by ei, for i = 1, 2, . . . , η(u). If

we match Π−1(u) to Π−1(v), the arcs of Π−1(e) define a function αe : Π−1(u) →
Π−1(v). That is, ui is matched by ei to vj if and only if αe(i) = j. Now, α = αe
is a functional voltage assignment on the arcs of H and the triple (H, η, α) is a

functional voltage graph. It follows from the definitions of η and α that G = Gαη .�
Corollary 2.5. Let (H, η, α) be a functional voltage graph and let G = Gαη be

the derived graph. Then the characteristic polynomial of the graph H divides the

characteristic polynomial of the graph G.

Proof. It is a consequence of Theorem 2.3 and Proposition 2.2 that H is a

front-divisor of G. Now the result follows from [1; Theorem 4.7]. �

Let H be a fixed graph. It follows from Proposition 2.1 and Theorem 2.4 that

every graph G such that H|G can be obtained as a derived graph from H using

an appropriate functional voltage assignment defined on H. This fact has an

interesting consequence for characteristic polynomials of H and G. Namely, by

the Sachs-Petersdorf Fundamental lemma [1; Theorem 4.7] PH(λ) divides PG(λ).

Thus using the construction of derived graphs we are able to produce a large family

of graphs G with the property that PH(λ) divides PG(λ).

Semicovering projections have a lot of nice properties which correspond to prop-

erties of covering projections. For instance, it can be easily observed that if W is
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a (directed) walk in a functional voltage graph (H, η, α) originating at a vertex u,

then for each vertex ui (i = 1, 2, . . . , η(u)) in the derived graph G = Gαη there is a

unique lift Wi of W that starts at ui. Moreover, the functional voltage assignment

α can be extended from arcs onto arbitrary walks as follows: If W = e1e2 . . . ek is

an u− v walk in H, then set

αW (i) = αe1 · αe2 . . . αek(i) = αek(αek−1
(. . . (αe1(i)) . . . )),

for i = 1, 2, . . . , η(u). Clearly, αW is a function mapping {1, 2, . . . , η(u)} onto

{1, 2, . . . , η(v)}. Moreover, if W is an u− v walk in H, i ∈ {1, 2, . . . , η(u)}, then

the lifted walk Wi starting at the vertex ui terminates at the vertex vj if and only

if j = αW (i).

Sometimes it is convenient to know under what conditions on a voltage assign-

ment on the arcs of a base graph the derived graph is connected. The following

theorem gives us such a condition.

Theorem 2.6. Let (H, η, α) be a functional voltage graph. Let H be strongly

connected. Then the derived graph G = Gαη is strongly connected if and only if for

every vertex u ∈ V (H) and i, j ∈ {1, 2, . . . , η(u)} there exists an u− u walk W in

H such that αW (i) = j.

Proof.

(⇒) Since G is strongly connected there is an ui−uj walk W in G. Let L = Π(W ),

where Π is the natural projection. Obviously, j = αL(i).

(⇐) Let ui, vj , i ∈ {1, 2, . . . , η(u)}, j ∈ {1, 2, . . . , η(v)} be two arbitrary vertices

of G. Since H is strongly connected there is an u− v walk W in H. Then the lift

Wi of W originates at ui and terminates at vk, for some k ∈ {1, 2, . . . , η(v)}. By

the assumption there exists a v − v walk W ′ in H such that αW ′(k) = j. Then

the lift W ′k joins the vertex vk to the vertex vj . Clearly, the walk W = WiW
′
k

originates at ui and terminates at vj . Since the vertices ui and vj were chosen

arbitrarily, the graph G is strongly connected. �

3. Regular Divisors and Divisors of Trees

The relationship between the automorphism group of a graph G and divisors of

G was observed by Petersdorf [3]. Let G be a graph and Γ ⊆ AutG be a subgroup

of the automorphism group of G. Let {V1, V2, . . . , Vs} be the system of orbits into

which the vertex set V of G is partitioned by the action of Γ on V . Clearly, the

number of arcs emanating from any vertex of Vi and terminating in vertices of Vj
depends only on i and j (i, j ∈ {1, 2, . . . , s}). Denote this number by dij . Then

the square matrix (dij) of order s is the adjacency matrix of a front-divisor D of G

(see [1; Chapter 4]). Such a front-divisor will be called a regular front-divisor

of G. The natural semicovering projection Π: G → D = G/Γ will be called a
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regular semicovering projection. Equivalently, any semicovering projection

Π: G → H is regular if the fiber-preserving subgroup of Aut G acts transitively

on each fiber Π−1(x) (x ∈ V (H)).

Let G be an undirected graph. Then a regular semicovering projection Π: G→
G/Γ, (Γ ⊆ AutG) is a regular covering projection (in sense of [2]) if and only if Γ

acts freely on G.

It is well-known that any covering projection defined on a tree T is trivial; in

particular, it is regular. In the following theorem we show that this observation

can be generalized to semicovering projections.

Theorem 3.1. Every front-divisor of a tree is regular.

Proof. We shall proceed by induction on the number of vertices of T . The result

is trivial for the trees K1 and K2. There are exactly three semicovering projections

defined on K1 or K2. (See Fig. 1.) Clearly, each of them is a regular semicovering

projection.

K1

π1

D

K2

π2

D

K2

π3

D

Figure 1.

Now, let the statement hold for every tree with fewer than n vertices (n ≥ 3).

Suppose that T has n vertices and let Π: T → D be a semicovering projection.

Then, T ′ = T − {v ∈ V (T ); deg v = 1} is a non-empty tree with fewer than n

vertices. Since Π is a semicovering projection, then v ∈ V1(D) if and only if

Π−1(v) ⊆ V1(T ), where V1(D) and V1(T ) are the sets of vertices with outdegree

one in D and T , respectively. Therefore, Π′ = Π/T ′ is a semicovering projection

which maps T ′ = T − V1(T ) onto D′ = D − V1(D). Because Π and Π′ are

semicovering projections, the following statement holds: If x, y are two vertices of

the tree T which belong to the same fiber Π−1(u), then dego(x, T )−dego(x, T
′) =

dego(y, T )− dego(y, T
′). That is, x and y have the same number of neighbours of

degree one in the tree T . By the induction hypothesis, Π′ is a regular semicovering

projection. Thus, there exists an automorphism ϕ′ ∈ AutT ′ such that ϕ′(x) = y.

It follows that there exists ϕ ∈ AutT with the property that ϕ/T ′ = ϕ′. To

complete the proof it is sufficient to show that for every two vertices x, y of degree
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one in T with Π(x) = Π(y) there exists an automorphism ϕ ∈ AutT such that

ϕ(x) = y. Let z be the vertex in T adjacent to the vertex x and let w be a vertex

of T adjacent to the vertex y. If z = w, then the existence of such ϕ ∈ AutT is

obvious. Now, let e = xz, f = yw, and z 6= w. Since Π is a semicovering projection

and Π(x) = Π(y), we have Π(e) = Π(f). Hence Π(z) = Π(w). It follows from the

regularity of Π′ that there exists ϕ′ ∈ AutT ′ with ϕ′(z) = w. Then there is an

automorphism ϕ ∈ AutT which is an extension of ϕ′ such that ϕ(x) = y. The

proof is complete. �

Corollary 3.2. Let T be a tree. Then there exists a front-divisor D∗ =

T/AutT such that D∗|D for every front-divisor D of T .

The front-divisor D∗ from Corollary 3.2 will be called the canonical divisor

of T .

Let G be a strongly connected graph, v be a vertex of G and let Z(G) be the

center of G. Denote by rad(v) the length of a shortest directed path joining the

center Z(G) of G with v. Let P be an u − v path in G. A path P in G will be

called a radial path if u is a central vertex and the length of P is equal to rad(v).

A partition V = ∪iVi, i ∈ {0, 1, . . . , rad(G)}, of the vertex-set of G will be called

a radial partition if, for each vertex v ∈ G, v ∈ Vi if and only if i = rad(v).

Clearly, V0 is the center of G.

Corollary 3.3. Every equitable partition of a tree T is a refinement of the

radial partition of T .

Proof. Let V = ∪iVi be a radial partition of the vertex set of a tree T , i ∈
{1, 2, . . . , rad(T )}. Let V = ∪jUj be an equitable partition of the vertex set of

T . It is sufficient to show that for every j there exists i such that Uj ⊆ Vi. Let

x ∈ Uj be an arbitrary vertex. Since every ϕ ∈ AutT maps the center Z(T ) onto

Z(T ) and a radial path P of the length s onto a radial path P ′ of the length

s, rad(x) = rad(ϕ(x)). Now, if we put i = rad(x), the statement follows from

Theorem 3.1. �

The following proposition shows that each front-divisor of a tree has a tree-like

structure.

Proposition 3.4. Let D be a front-divisor of a tree T and Π: T → D be the

natural semicovering projection. Then the following statements hold:

(i) The image of the center Z(T ) of D is either ~K2, or K1, or a directed Π(u)-

based loop (u ∈ Z(T )).

(ii) If e is a loop in the front-divisor, then the Π(Z(T )) consists of one vertex u

and e is u-based. In particular, either D has exactly one loop, or it has none.

(iii) Let u, v be two vertices in D such that there exist vertices y ∈ Π−1(v) and

x ∈ Π−1(u) such that y is a successor of x in any radial path of T . Then

|Π−1(u)| ≤ |Π−1(v)| and there exists exactly one v − u path in D.
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(iv) D has no cycle of length greater than two.

(v) Let U = {u ∈ D; |Π−1(u)| = 1}. Then Z(T ) ⊆ U and the preimage of U ,

Π−1(U), is a connected subgraph of T .

Proof.

(i): By Theorem 3.1 the front-divisor D of T is regular and D = T/Γ, where

Γ is a subgroup of the group AutT . Since ϕ is an automorphism of T , we have

ϕ(Z(T )) = Z(T ) for every ϕ ∈ Γ. We distinguish three cases:

1. Z(T ) = {u}, ϕ(u) = u. Then Π(Z(T )) = K1.

2. Z(T ) = {u, v}, ϕ(u) = u, ϕ(v) = v for every ϕ ∈ Γ. Then the vertices u, v

belong to two distinct classes of the equitable partition and Π(Z(T )) = ~K2.

3. Z(T ) = {u, v}, and there exists an automorphism ϕ ∈ Γ such that ϕ(u) = v,

ϕ(v) = u. Then u, v belong to the same orbit and Π(Z(T )) is a directed Π(u)-based

loop.

(ii): Because of (i) it is sufficient to prove that every loop in the front-divisor

D belongs to Π(Z(T )). Suppose this is not the case and e is a loop in D such

that e /∈ Π(Z(T )). Then T contains an undirected edge {xy} joining two vertices

in same class Ui of the equitable partition of T . By the Corollary 3.3 there exists

a class Vj , j ≥ 1, of a radial partition of T such that {xy} ∈ Π−1(e) ∈ Vj . Let

Px, Py be radial paths terminating in x, y, respectively. Then the subgraph of T

formed by Px, Py, xy and Z(T ) contains a cycle, which is a contradiction.

(iii): By Corollary 3.3 there exist classes Vk, Vn of the radial partition Vk ⊇
Π−1(u) = A, Vr ⊇ Π−1(v) = B, r > k. It is sufficient to prove that the

statement holds for r = k + 1. In order to derive a contradiction assume that

A = {v1, v2, . . . , vt}, B = {w1, w2, . . . , ws} and s < t. Since A, B are two classes

of an equitable partition of T , for every vk ∈ A, k = 1, 2, . . . , t, there are exactly

d arcs joining vk to vertices of B and for every wk′ ∈ B, k′ = 1, 2, . . . , s, there are

exactly d′ arcs joining wk′ to vertices of A. Since T is undirected, d·t = d′ ·s. It fol-

lows that d′ > d ≥ 1. Now, for w1 ∈ B there are at least two undirected edges e1,

e2 joining w1 to vertices of A. Let e1 = {w1vi}, e2 = {w1vj}, i, j ∈ {1, 2, . . . , t},
i 6= j. Let Pvi , Pvj be the corresponding radial paths. Then the subgraph of

T that is formed by e1, e2, Pvi , Pvj and Z(T ) contains a cycle, a contradiction.

Now, the existence of exactly one v − u path in D is easily seen. Otherwise, we

can always find a cycle in T .

(iv): Let C be a cycle of D of length n, n > 2. Any component of a lift of the

cycle C is a cycle C′ in T which has length ≥ n. This is a contradiction.

(v): If the statement did not hold, we would obtain a contradiction with the

statement (iii). �
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4. The Canonical Divisor of a Tree

The main aim of this section is to give a characterization of canonical divisors

of trees. In order to do it we shall encode each front-divisor D|T of a tree T using

its underlying (undirected) spanning tree. By a weighted rooted tree we mean

a couple (W,µ), where W is either a rooted tree or a rooted tree with a loop based

at the root of W , and µ : E(W )→ N is the weight function from the set of edges

of W into the set of natural numbers. If e is a loop in W then we put µ(e) = 1.

Theorem 4.1. Let D|T be a front-divisor of a tree T and Π: T → D be the

natural semicovering projection. Then there exists a weighted rooted tree W (D)

satisfying the following conditions:

(1) W (D) has the same vertex-set as D.

(2) There is an edge {x, y} in W (D) if and only if there is an arc joining the vertex

x to vertex y in D.

(3) Let y be a successor of a vertex x in W (D). Then µ({x, y}) is the number of

arcs joining x to y in D.

(4) The preimage of the root v of W (D) is a subset of the center of T ; i.e.

Π−1(v) ⊆ Z(T ).

(5) W (D) has a loop at the root v if and only if D has such a loop.

Proof. Consider the undirected graph W ′ defined by the conditions (1) and (2).

Since T is strongly connected and Π: T → D is a semicovering projection, D is

strongly connected, and consequently, W ′ is connected. By Proposition 3.4(iv) D

contains no cycles of length greater than 2. Consequently, W ′ contains no cycles

of length > 2, too. By the definition, W ′ cannot contain multiple edges. It follows

from the above facts that W ′ is a tree, or a tree with loops at vertices. However,

it follows from Proposition 3.4(ii) that W ′ may contain at most one loop based

at a vertex v, and if this is the case, then Π−1(v) ⊆ Z(T ). Thus we may choose

the root v in W ′ in such way that the conditions (4) and (5) are satisfied. Now,

set W (D) = (W ′, µ), where µ is defined by (3). We thus proved that W (D) is a

weighted rooted tree for which the conditions (1)–(5) hold. �

The weighted rooted tree W (D) defined by the conditions (1)–(5) will be called

the tree associated to the front-divisor D. It follows from 3.4(iii) and the defi-

nition of W (D) of a front-divisor D|T of a tree T that both graphs D and T can

be reconstructed from W (D) (see Fig. 2). Thus the weighted rooted tree W (D)

may be considered as an encoding of the tree T and its front-divisor D. The en-

coding of T by W (D) is most effective if we use the canonical divisor D∗ of T . We

say that a weighted rooted tree W represents a front-divisor D|T of a tree T if

W = W (D).

Theorem 4.2. A weighted rooted tree W represents a front-divisor of a tree

T if and only if either W has a loop at the root, or the root of W belongs to the
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T

D

312

2

1

3

1

W (D)

Figure 2.

center of W , or the first edge on the path joining the root of W with the center of

W has weight greater than 1.

Proof.

(⇒) Let W represent a tree T . In order to derive a contradiction, assume that

the statement does not hold. That means that W is looples, the root v of W does

not belong to its center and the first edge e on the path P joining the root v of

W with the center of W has weight µ(e) = 1. Recall that by the condition (4)

in the definition of W , the preimage Π−1(v) ⊆ Z(T ). First observe that if T has

a central edge, then W has either a loop or a central edge incident with v. Thus

T has no central edge, and consequently, Π−1(v) = Z(T ) contains exactly one

central vertex, say c. Since µ(e) = 1, Π−1(e) contains exactly one edge ec incident

with the vertex c. Since c ∈ Z(T ), c is the central vertex of a path Q of length

2 rad(T ) in T . Since Π is an epimorphism of graphs, we have

(1) rad(W ) = rad(D) ≤ rad(T ).

Let Q1, Q2 be the two directed subpaths of Q of length rad(T ) originating at c.

Since Q1, Q2 are radial paths, they are mapped by Π onto directed paths Q′1 , Q′2
of length rad(T ) and originating at v = Π(c). Clearly, either Q1 or Q2 does not

contain the edge ec. Let it be Q1. Then Q′1 does not contain e, and we have

|Q′1|+ |P | = rad(T ) + |P | ≤ rad(W ).
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Since |P | > 1, we have rad(W ) > rad(T ), a contradiction with (1).

(⇐) We shall construct a tree T such that W = W (D) for some front-divisor D

of T . Let v be a root of W . First suppose W is loopless. Let u be a vertex of

W and let the v − u path in W use the edges e1, e2, . . . , ek (k ≤ rad(W )) in that

order. Then set Π−1(u) = {ux1,...,xk ; 1 ≤ xi ≤ µ(ei) for 1 ≤ i ≤ k}. If u = v,

put Π−1(v) = {v1}. The vertex-set V (T ) will be defined by V (T ) = ∪u∈WΠ−1(u).

Two vertices ux1,...,xk and wy1,...,ys will be adjacent in T if the vertex w succeeds

u in W , s = k + 1 and yi = xi for 1 ≤ i ≤ k. By the definition, ∪u∈WΠ−1(u) is

an equitable partition of T defining a front-divisor D of T such that W = W (D).

Let c be the center of W and P be the path of W joining v to c. Clearly, there

is a radial path Q of W of length rad(W ) originating at c and not containing an

edge of P . Since the weight of the first edge in P is > 1, the path P ∪ Q of W

is lifted onto at least two disjoint paths of length |P |+ rad(W ) originating at v1.

Therefore Π−1(v) = v1 is the central vertex of T .

If W contains a loop e at the root v, then set W ′ = W − e. As before, from W ′

we form the tree T ′ such that W ′ = W (D′) for some front-divisor D′ of T ′. The

required tree T is then constructed by joining the central vertices of two copies of

T ′ with an edge. �

Now we are ready to give a characterization of canonical front-divisors of trees.

Theorem 4.3. A weighted rooted tree W represents the canonical divisor of a

tree if and only if the following three conditions are satisfied:

(a) W represents a divisor of a tree,

(b) for every vertex u of W , W − u does not contain two isomorphic components,

(c) if e is the central edge of W and the root of W is incident with e, then the two

components of W − e are non-isomorphic.

Proof.

(⇒) Let W represents the canonical divisor of a tree T . Then, clearly, the condition

(a) holds. We show that (b), (c) are satisfied, too.

Suppose to the contrary that there is a vertex u such that W − u contains two

weighted subtrees W1, W2, W1
∼= W2. Let uw1, uw2 be the two edges joining u to

W1 and u toW2, respectively. Form a new weighted rooted treeW ′ = (W−W2, µ
′),

where µ′ is a weight function defined as follows:

µ′(uw1) = µ(uw1) + µ(uw2) and µ′(e) = µ(e) for e 6= uw1.

One can easily check that W ′ “lifts” onto the tree T and D′|D, where D 6= D′ are

the divisors of T such that W = W (D) and W ′ = W (D′), a contradiction with

the canonical character of D.

Finally, assume that W − e consists of two isomorphic weighted rooted trees

W1
∼= W2 and the root of W is incident with e. Then form a new weighted rooted
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tree W ′ from W by deleting the vertices of W2 and attaching a loop to the root

of W1 (the root of W1 is the vertex incident with e in W ). As before, we are

able to prove that W ′ represents a divisor of T which divides the divisor which is

represented by W .

(⇐) In order to derive a contradiction assume that for W = W (D) the conditions

(a), (b) and (c) hold and that there exists a weighted rooted tree W ′ = W (D′),

W ′ 6= W such that D′|D. Then there is a semicovering projection p : D → D′.

Since D′ 6= D there exists a vertex u in D′ such that p−1(u) contains at least two

vertices w1, w2. Let t1, t2 be two end-vertices of out-degree 1 of two radial paths

of D originating at the root v of D passing through w1, w2 and terminating at t1,

t2, respectively. Then t1, t2 are mapped by p onto the same vertex t of out-degree

1 in D′. Choose a vertex t between the vertices of out-degree 1 in D′ such that

p−1(t) contains two vertices t1, t2, whose predecessor u is at minimum distance

from t1 and t2. First suppose that u 6= v, where v is the root of G. Let D1, D2 be

the components of D−u containing t1 and t2, respectively. The image p(D1) and

p(D2) is isomorphic with D1 and D2, respectively, otherwise we would obtain a

contradiction with the minimality of u. Hence D1
∼= D2, and W − u contains two

isomorphic components corresponding to D1 and D2, a contradiction with (b). If

u = v then we distinguish two cases. If the distance ρ(t1, v) = ρ(t2, v) then using

the same arguments as before we see that D1
∼= D2. Otherwise ρ(t1, v) 6= ρ(t2, v).

By Proposition 3.3 there is a central edge e incident with v in D. Then W − e
consists of two isomorphic components, a contradiction with (c). �

The following algorithm for constructing a canonical divisor of any tree T is

based on the above theorem.

ALGORITHM:

Input data: Undirected tree T .

Variables:

V (T ) = V1 ∪ V2 ∪ V3;

V1 – labeled vertices;

V2 – vertices with exactly one unlabeled neighbor,

V3 – other vertices;

Sets V1, V2 work as heaps (first in, first out).

1. [Initialization]:

V1 := vertices of degree one.

V2 := pendant vertices in T − V1

2. If V2 = ∅ then go to 3.

Otherwise: Select a vertex v ∈ V2. V2 := V2 − {v}. Let u1, u2, . . . , uk be

labeled vertices adjacent to v. Let T1, T2, . . . , Tk be the subtrees of
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the tree T with roots u1, u2, . . . , uk. Let T1, T2, . . . , Tr, 1 ≤ r ≤ k

be isomorphism classes of ∪ki=1Ti and |Ti| = ki. Without loss of

a generality we can assume that T1, T2, . . . , Tr are representatives

of T1, T2, . . . , Tr, respectively. Then put T := T − ∪kj=r+1V (Tj),

w(v, ui) := ki, V1 := V1∪{v}. Let u be the only unlabeled neighbour

of v. If u does not exist, then go to 2.

Otherwise: If every neighbour of u except one is labeled then put

V2 := V2 ∪ u, go to 2.

Otherwise: Go to 2.

3. If there exists an edge e = vu without a weight then:

If subtrees Tv, Tu of T with roots v, u, respectively are isomorphic

then put T := Tv ∪ e, where e is a v-based loop and v is the root of

T . Go to 4.

Otherwise: Put T := T , w(e) := 1, a root of T is v or u. Go to 4.

Otherwise: The root of T is v. Go to 4.

4. Stop.

The steps of the algorithm are illustrated in Fig. 3., where elements of V1 are

primed and those of V2 are double primed.

We conclude the paper by a list of canonical divisors for trees of diameter ≤ 6.

In Fig. 4, T1, T2, . . . , Tk are canonical divisors of trees of diameter 4 which are

pairwise non-isomorphic.

Figure 3.

v′′6

v′′5

v′′7

v′10v11

v′9

v′8

v14

v13

v12

v′′4

v′′3

v′′2

v′′1

v15

(a)
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v′′53v′′10v′11v14

v15 v′13 v′′9 2 v′′3

v′12 v′′8 2 v′′1

(b)

v′′531 v′′10v′′11v′14

v′15 v′′13 v′′9 21 v′′3

v′′12 v′′8 21 v′′1

(c)

v′′531 v′′10v′′11v′14

v′′15

v′′12 v′′8 21 v′′1

(d)

v′′5311

2

v′′10v′′11v′′14

v′′15

v′′12 v′′8 21 v′′1

(e)



FRONT–DIVISORS OF TREES 83

v′′5311

2

1 v′′10v′′11v′′14

v′′15

v′′12 v′′8 21 v′′1

(f)

Figure 4.
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T1 T1 T2

D∗5

T1, T2 are the canonical divisors of trees of diameter 4, T1 6∼= T2
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