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MONOTONICITY OF THE LAGRANGIAN

FUNCTION IN THE PARAMETRIC INTERIOR

POINT METHODS OF CONVEX PROGRAMMING

M. HAMALA and M. HALICKÁ

Abstract. Monotonicity of the Lagrangian function corresponding to the general
root quasibarrier as well as to the general inverse barrier function of convex pro-
gramming is proved. It is shown that monotonicity generally need not take place.
On the other hand for LP-problems with some special structure monotonicity is
proved for a very general class of interior point transformation functions.

1. Introduction

Current interest in interior point methods for linear programming was sparked

by the 1984 algorithm of N. Karmarkar [7] that is claimed to be much faster

than the simplex method for practical problems. The equivalence of Karmarkar’s

projective scaling method to interior point methods was pointed out by Gill and

others in 1986 [4]. Since then the interior point methods for convex programming

have been intensively studied again. Recently some attention has been given to

the monotonicity of the corresponding Lagrangian function (with respect to the

considered parameter). The known results concern only the logarithmic barrier

function for convex programming problems [1] and the inverse barrier function

for LP-problems [2]. In this paper we analyse the above mentioned monotonicity

for convex programming and for general parametric interior point transformation

function (including quasi-barrier and barrier functions). We prove monotonicity

for the general root quasibarrier function as well as for the general inverse barrier

function and we show that monotonicity generally need not take place. On the

other hand we prove monotonicity for LP-problems with some special structure

for a very general class of transformation functions.

Consider the convex programming problem

(1) Min {f(x) | gi(x) ≥ 0 (i = 1, 2, . . . ,m)}
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where f , −gi are convex on Rn with continuous first partial derivatives,

K0 = {x ∈ Rn | gi(x) > 0 (i = 1, 2, . . . ,m)} 6= ∅,

and the set of optimal solutions is nonempty and bounded.

In parametric interior point methods (i.e. barrier and quasibarrier ones) the

problem (1) is transformed into a sequence of unconstrained-type problems

(2) Min
{
T (x, rk) |x ∈ K0

}
, k = 1, 2, . . .

where

(3) T (x, rk) = f(x) + rk

m∑
i=1

Γ[gi(x)], rk > 0,

{rk} → 0 and Γ: R++ → R (R++ being the set of all positive numbers) has

continuous derivative Γ′ with additional properties:

lim
ξ→∞

Γ′(ξ) = 0,(A)

lim
ξ→0+

Γ′(ξ) = −∞,(B)

Γ′(ξ) is increasing.(C)

Accordingly, it can be proved that for any rk > 0 there exists an optimal solution

xk = x(rk) of (2) (see [3, Theorem 25] for barrier functions and [5] for quasibarrier

functions).

Remark 1. Using (C) we see that Γ(ξ) is strictly convex. Combining (A),

(B), (C) we have Γ′(ξ) < 0, for ξ > 0 i.e. Γ(ξ) is decreasing. These two properties

imply that the function T (x, rk) defined by (3) is convex (under the assumption

that f(x) is convex, and gi(x) are concave).

Let us introduce the following notation:

fk = f(xk), Gk =
m∑
i=1

Γ[gi(x
k)], Tk = T(xk, rk) .

Then the following monotonicity and convergence can be proved (e.g. [3, 5]):

Proposition 1. Suppose 0 < r2 < r1. Then

f2 ≤ f1,(a)

G2 ≥ G1,(b)

G1 > 0⇒ T2 < T1,(c)

G2 < 0⇒ T2 > T1.(d)
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Proposition 2. Let {rk} → 0, where rk > 0 for all k. Then

lim
k→∞

Tk = inf
x∈K0

f(x),(a)

lim
k→∞

fk = inf
x∈K0

f(x),(b)

lim
k→∞

rkGk = 0.(c)

Obviously, for the minimum point xk of (3) we have

(4) ∇T (xk, rk) = ∇f(xk) + rk

m∑
i=1

Γ′[gi(x
k)]∇gi(x

k) = 0.

Denote

(5) Π(ξ) = −
1

Γ′(ξ)
, i.e. Γ′(ξ) = −

1

Π(ξ)
.

(Γ′(ξ) < 0 because of properties (A), (C)). Then (4) can be rewritten as

(6) ∇f(xk)− rk

m∑
i=1

1

Π[gi(xk)]
∇gi(x

k) = 0

or equivalently as

∇f(xk)−
m∑
i=1

uki .∇gi(x
k) = 0(7)

uki ·Π[gi(x
k)] = rk (i = 1, 2, . . . ,m).(8)

The above (A), (B), (C) properties of Γ′ are equivalent with the following proper-

ties of Π:

lim
ξ→∞

Π(ξ) = +∞ ,(A∗)

lim
ξ→0+

Π(ξ) = 0 ,(B∗)

Π(ξ) is increasing.(C∗)

So, the optimal solution xk of the problem (2) is equal to the x-part of the

solution (xk,uk) of the system (7), (8), where Π(ξ) is given by (5). The advantage

of this reformulation consists in the fact that the solution (xk,uk) of (7), (8)

forms a feasible solution of the Wolfe dual problem associated with the primal

problem (1):

(9) Max {L(x,u) |∇xL(x,u) = 0, u ≥ 0}
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where

(10) L(x,u) = f(x)−
m∑
i=1

uigi(x)

is the Lagrangian function of (1). Indeed, if xk is the solution of (6) and we put

(11) uki =
rk

Π[gi(xk)]
(i = 1, 2, . . . ,m),

which are positive entities (since from (B∗), (C∗) it follows that for ξ > 0 we have

Π(ξ) > 0), then (6) is equivalent to ∇xL(xk,uk) = 0.

2. Problem Formulation and Review of Results

Let xk = x(rk) be an optimal solution of the problem (2), (i.e. xk is a feasible

solution of the problem (1)), uk = u(rk) be defined by (11) (i.e. (xk,uk) is a

feasible solution of the Wolfe dual problem (9)) and let x∗ be an optimal solution

of the convex programming problem (1). Then by the weak duality theorem of

convex programming we have

(12) L(xk,uk) ≤ f(x∗) ≤ f(xk).

Let now {rk} → 0+. Then by Proposition 1(a) the upper bound in (12) is mono-

tonically decreasing. The following question arises: Under what assumptions

is the lower bound in (12) monotonically increasing?

It was proved by Fiacco and McCormick [3] that the lower bound in (12) is

converging to the optimal value f(x∗). In the case of linear programming, and for

the logarithmic barrier function

(13) Γ(ξ) = − ln ξ, Π(ξ) = ξ

monotonicity of {L(xk,uk)} was proved by Megiddo [9]. Recently this result was

extended by Den Hertog, Roos and Terlaky [1, 2]. In [1] they proved monotonicity

of {L(xk,uk)} for the logarithmic barrier function (13) in the general case of

convex programming. In [2] they proved monotonicity of {L(xk,uk)} for the

inverse barrier function

(14) Γ(ξ) = 1/(pξp), Π(ξ) = ξp+1, where p > 0,

in the linear programming case.

In Section 3, as the first result of this paper, we prove monotonicity of

{L(xk,uk)} in the general case of convex programming for the class of interior

point transformation functions

(15) Γ(ξ) = 1/(pξp) =
1

p
ξ−p, Π(ξ) = ξp+1, where p > −1.
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Note that (15) includes the inverse barrier function (14), if p > 0, the logarithmic

barrier function (13), if p = 0, and the general root quasi-barrier function, if

−1 < p < 0. (The notion of the quasibarrier function was introduced in [5].) So,

our generalization consists in the following:

a) Compared with [1] (i.e. general convex programming, case p = 0) we extend

the monotonicity to the intervals p > 0, and −1 < p < 0.

b) Compared with [2] (i.e. linear programming, case p > 0) we extend the mono-

tonicity to general convex programming, as well as to the interval −1 < p < 0.

In Section 4 we show, as the second result of this paper, that there exists

Π(ξ), satisfying (A∗), (B∗), (C∗), for which {L(xk,uk)} does not have to be mono-

tonic (even for linear programming problems). We give a counter-example with

the barrier function Γ(ξ) = − ln(1 − e−ξ), i.e. Π(ξ) = eξ − 1 and a very sim-

ple LP-problem which shows that it is not possible to prove the monotonicity of

{L(xk,uk)} without additional assumptions on the function Π(ξ) or on the convex

programming problem (1).

In Section 5, as the third result of this paper, we prove that for linear pro-

gramming with some special structure, any Π(ξ) satisfying (A∗), (B∗), (C∗) implies

monotonicity of {L(xk,uk)}. We will consider LP-problems with the set of feasible

solutions forming either a simplex or a parallelepiped.

3. Monotonicity of L[x(r),u(r)] for Π(ξ) = ξh, h > 0

In the first section the problem of monotonicity was treated for a discrete se-

quence {rk} of values of parameter r > 0, and Proposition 1 was also proved (e.g.

[3, 5]) using discrete values only. On the other hand, in proving monotonicity

of Lagrangean function it is more convenient to use the classical calculus. Note

that the previous results [1, 2] were obtained in the same way. This is the reason

why in this section we switch from the discrete case to the continuous one. How-

ever, this technique requires uniqueness of the minimum-point x(r) of the function

T (x, r) for all the values of parameter r > 0 as well as smoothness of the trajectory

x(r). Both these requirements will be satisfied by the technical assumption of the

regularity of Hessian matrix ∇2T (x, r).

Lemma 1. Let f ∈ C2, and −gi ∈ C2 (i = 1, 2, . . . ,m) be convex on Rn,

Γ: R++ → R have properties (A), (B), (C), and Γ ∈ C2. Further, let for

T (x, r) = f(x) + r

m∑
i=1

Γ[gi(x)], r > 0

its Hessian matrix ∇2T (x, r) be nonsingular on the set K0. Then for any r > 0

the minimum point x(r) ∈ K0 of T (x, r) is unique and the mapping

x(r) : R++ → Rn is C1.
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Proof. The assumptions of the lemma imply that T (x, r) is strictly convex on

K0 and therefore the minimum point x(r) of T (x, r) is unique. The system of

equations (4) has nonsingular Jacobian matrix (it is, the Hessian of T (x, r)) and

therefore, by the implicit function theorem, x(r) ∈ C1. �

Lemma 2. Let the assumptions of Lemma 1 be satisfied and let Γ′′(ξ) > 0 for

any ξ > 0. Then

Π(ξ) = −
1

Γ′(ξ)
∈ C1, Π′(ξ) > 0

and for

ui(r) =
r

Π[gi(x(r))]
(i = 1, 2, . . . ,m),

we have

(16)
m∑
i=1

Π[gi(x(r))]

Π′[gi(x(r))]
·
dui(r)

dr
≥ 0.

Proof. By Remark 1 we have Γ′(ξ) < 0, so Π(ξ) is well defined. The definition

of Π(ξ) and the assumption Γ′′(ξ) > 0 imply that Π′(ξ) > 0. From the assumptions

we obtain the continuous version of the equations (7), (8), namely

∇f(x(r)) −
m∑
i=1

ui(r) · ∇gi(x(r)) = 0(17)

(i = 1, 2, . . . ,m) : ui(r) · Π[gi(x(r))] = r.(18)

Taking the derivatives of (17), (18) with respect to r > 0 we obtain[
∇2f −

m∑
i=1

ui∇
2gi

]
·
dx

dr
−

m∑
i=1

dui

dr
∇gi = 0,(19)

(i = 1, 2, . . . ,m) :
dui

dr
·Πi + ui

(
∇g>i

dx

dr

)
·Π′i = 1,(20)

where the following short notation is used:

x = x(r), ui = ui(r), f = f(x), gi = gi(x), ∇2f = ∇2f(x),

∇2gi = ∇2gi(x), and Πi = Π[gi(x)], Π′i = Π′[gi(x)].

Multiplying (19) from the left by row vector
dx>

dr
we get

(21)
m∑
i=1

dui

dr

(
∇g>i

dx

dr

)
≥ 0,
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as the matrix
[
∇2f −

∑m
i=1 ui∇

2gi
]

is positive definite. From (20) we get

(22)

(
∇g>i

dx

dr

)
=

1

uiΠ′i

[
1−

dui

dr
·Πi

]
which, when substituted into (21) gives

m∑
i=1

dui

dr

1

uiΠ′i
≥

m∑
i=1

(
dui

dr

)2
Πi

uiΠ′i
.

But the right hand side is evidently nonnegative, and thus by (18) we have

m∑
i=1

dui

dr

1

uiΠ′i
=

1

r

m∑
i=1

dui

dr

Πi

Π′i
≥ 0

which imply (16). The lemma is proved. �

Theorem 1. Let the assumptions of Lemma 1 be satisfied. Assume the special

form of function Π(ξ)

(23) Π(ξ) = ξh, h > 0.

Then for the Lagrangian function (10), (11), i.e. L(r) = L[x(r),u(r)] we have:

(24)
dL

dr
= −

m∑
i=1

dui

dr
gi ≤ 0 ,

i.e. L[x(r),u(r)] is monotonically nonincreasing, or

0 < r2 < r1 =⇒ L(x1,u1) ≤ L(x2,u2).

Proof. Note that the assumptions of Lemma 2 are satisfied as for the function

(23) we have Π′(ξ) > 0. Further, by (10)

(25)
dL

dr
=
∂L

∂x
·
dx

dr
+
∂L

∂u
·
du

dr
.

But from (17) we see that
∂L

∂x
= 0>. Evidently

∂L

∂u
= −g>, where

gT = [g1(x(r)), g2(x(r)), . . . , gm(x(r))].

Substituting this into (25) we get

(26)
dL

dr
= −g>

(
du

dr

)
.
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From (23) we have

Π(ξ)

Π′(ξ)
=

1

h
ξ ,

which by Lemma 2 implies

(27)
m∑
i=1

dui

dr
gi = g>

(
du

dr

)
≥ 0 .

Now, (26) and (27) imply (24). The theorem is proved. �

Remark 2. For function Π(ξ) = ξh, h > 0 by (5) we have

Γ(ξ) = − ln ξ , if h = 1,

Γ(ξ) = −
ξ1−h

1− h
, if h 6= 1,

where for h > 1, Γ(ξ) is the inverse barrier function, and for 0 < h < 1, Γ(ξ) is the

general root quasibarrier function. (Note that in (14) and (15) we used p = h−1.)

4. Counterexample for Π(ξ) = eξ − 1

In this section we show that for the convex programming problem (1) mono-

tonicity of L(r) cannot be proved under general assumptions (A∗), (B∗), (C∗).

We give an example of one-dimensional linear programming problem with three

constraints and a special function Π(ξ) = eξ − 1, [Γ(ξ) = − ln(1− e−ξ)] for which

the corresponding L(r) is not monotonic.

Theorem 2. There exists Π(ξ) with properties (A∗), (B∗), (C∗) for which

L[x(r),u(r)] does not have to be monotonic (even for linear programming prob-

lems).

Proof. For Π(ξ) = eξ−1 we will construct a special linear programming problem

of the form

(28) Min
{
c>x |a>i x− bi ≥ 0 (i = 1, 2, . . . ,m), x ∈ Rn

}
with one variable and three constraints, i.e. with n = 1 and m = 3, and then we

will show that for this LP-problem L[x(r),u(r)] is not monotonic.
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LP-problem (28) is a special case of the convex programming problem (1) for

which the equations (17), (18), (19), (20) take the form

m∑
i=1

uiai = c(29)

uiΠi = r(30)
m∑
i=1

dui

dr
ai = 0(31)

dui

dr
·Πi + ui

(
a>i

dx

dr

)
· Π′i = 1 (i = 1, 2, . . . ,m)(32)

respectively, and the equation (26) (if we take into account (31)) takes the form

(33)
dL

dr
=

m∑
i=1

bi
dui

dr
.

Multiplying (32) by uiai, then summing up the products for i = 1, 2, . . . ,m and

considering (30), (31), and (29), we get

(34) r2
m∑
i=1

Π′i
Π2
i

(
a>i

dx

dr

)
·ai = c .

Obviously, from (29) and (30) we have

(35) r

m∑
i=1

1

Πi
ai = c .

Thus we eliminated variables ui and
dui

dr
(i = 1, 2, . . . ,m) from (29–32).

Consider now the case of one variable (i.e. x ∈ R) and a fixed value r > 0. Then

we can solve the equation (35) for x(r) ∈ K0, and thus from (34) we get

(36)
dx

dr
= cr−2

[
m∑
i=1

(
ai

Πi

)2

Π′i

]−1

.

Further, from (30) we get ui and finally, from (32) we get
dui

dr
, which is used in

(33) for evaluating the derivative
dL

dr
.

The above sequence of computations can be simplified by introducing the fol-

lowing auxiliary function

F (x) = c− r
m∑
i=1

ai

Πi
(i.e. F (x) = T ′(x, r)),
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for which

F ′(x) = r

m∑
i=1

(
ai

Πi

)2

Π′i > 0.

Let xr be the root of (35), i.e.

(37) F (xr) = 0.

Then (36) can be rewritten as

dx

dr
=

c

rF ′(xr)
;

thus, (30) and (32) yield

(38)
dui

dr
=

1

Πi

[
1−

c

F ′(xr)
ai

Π′i
Πi

]
.

Finally, substituting (38) into (33) we get

dL

dr
=

m∑
i=1

bi

Πi
−

c

F ′(xr)
·
m∑
i=1

biaiΠ
′
iΠ
−2
i .

Let r = 1 and Π(ξ) = eξ−1 . Now consider the LP-problem (28) of one variable

and three constraints with the following input:

a1 = 10 b1 = 0

a2 = −1 b2 = − ln 20

a3 = −3 b3 = − ln 22000

c = 10/(1010 − 1)− 8/7

Then the root of (35) (or (37)) is: xr = ln 10. (In fact, we had first chosen xr and

then adjusted the value of c.)

Thus for gi = gi(xr) = aixr − bi, and for Πi = exp(gi)− 1 we have:

g1 = 10 ln 10 Π1 = 1010 − 1 Π′1 = 1010

g2 = ln 2 Π2 = 1 Π′2 = 2

g3 = ln 22 Π3 = 21 Π′3 = 22

F ′(xr) =
1012

(1010 − 1)2
+

120

49
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and

(39)
dxr

dr
=

c

F ′(xr)
= −

7

10

[
4− 43ε+ 39ε2

6 + 233ε+ 6ε2

]
, where ε = 10−10.

From (39) it follows that

(40) −
7

15
<
dxr

dr
<

(
−

7

15
+ ε1

)
, where ε1 = 100ε

and from (38), (40) we get

(41)
du2

dr
=

(
1 + 2

dxr

dr

)
> 0 ,

du3

dr
=

1

21

(
1 +

22

7

dxr

dr

)
< 0 .

The relations (40) and (41) imply the following estimations

(42)
1

15
<
du2

dr
<

(
1

15
+ 2ε1

)
, −

1

45
<
du3

dr
<

(
−

1

45
+ ε1

)
.

Obviously,

(43)
b2 = − ln 20 = −2.995732 > −3 ,

b3 = − ln 22000 = −9.998797 < −9.99 .

Finally, by (33), (42) and (43) we get

dL

dr
=

3∑
i=1

bi
dui

dr
= b2

du2

dr
+ b3

du3

dr
> 0.022− 16ε1 > 0

The theorem is proved. �

Note that boundedness of the set of feasible solutions and presence of the redun-

dant inequality in the above example are substantial for the non-monotonicity of

L(r). Indeed, the monotonicity of L(r) for the one-dimensional LP-problem with

two constraints and with the bounded set of feasible solutions is the consequence

of Theorem 3 of the following section.

The question whether or not the absence of redundant constraints in general

can guarantee the monotonicity of L(r) is still open.

5. Monotonicity of L[x(r),u(r)] for Linear Programming

In the previous section we proved that the basic assumptions (A∗), (B∗), (C∗) for

Π(ξ) are not generally sufficient to ensure monotonicity of the Lagrangian function.

In this section we give two special classes of linear programming problems for
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which the Lagrangian function is strictly monotonic for any Π(ξ) under the basic

assumptions (A∗), (B∗), (C∗). The first class consists of LP-problems with the

set of feasible solutions being a simplex. The second one consists of LP-problems,

where the set of feasible solutions forms a parallelepiped.

We begin with a lemma which relates the boundedness of a nonempty set

(44) X =
{
x ∈ Rn |a>i x− bi ≥ 0, (i = 1, 2, . . . ,m)

}
with certain properties of the vectors ai ∈ Rn (i = 1, 2, . . . ,m).

Lemma 3. Let X ⊂ Rn, defined by (44), be nonempty and bounded. Then:

a) The linear hull of the vectors ai ∈ Rn (i = 1, 2, . . . ,m) spans Rn, i.e. n linearly

independent vectors ai (i = k1, k2, . . . , kn) can be chosen.

b) There exist yi > 0, (i = 1, 2, . . . ,m) such that

m∑
i=1

aiyi = 0.

Proof. Consider the recession cone

Z =
{
z ∈ Rn |a>i z ≥0, (i = 1, 2, . . . ,m)

}
of the nonempty convex set X ⊂ Rn defined by (44). Since X is bounded, the

recession cone Z of X consists of the zero vector alone [10, Theorem 8.4, p. 64],

i.e.

(i) there does not exist z 6= 0, such that a>i z = 0, (i = 1, 2, . . . ,m), and

(ii) there does not exist z 6= 0, such that a>i z ≥ 0, (i = 1, 2, . . . ,m), and

at least for one index k (1 ≤ k ≤ m) a>k z > 0.

a) The statement of Lemma 3a) follows directly from (i). Indeed, if the linear

hull of vectors ai ∈ Rn (i = 1, 2, . . . ,m) spans a proper subspace of Rn, there

would exist at least one nonzero z ∈ Rn, orthogonal to that subspace, which

contradicts (i).

b) The statement of Lemma 3b) follows from (ii) and from Stiemke’s theorem

of the alternatives [8, p. 32]. The lemma is proved. �

Corollary. If the assumptions of Lemma 3 are satisfied, then for every vector

z ∈ Rn there exists an ak (1 ≤ k ≤ m) such that a>k z ≤ 0.

Proof. Follows directly from the proof of Lemma 3 (part (ii)). �

Remark 3. In Lemma 3 for boundedness of the nonempty set X (44) the

conditions a), b) are necessary. However, it can also be proved by the same

arguments that these conditions are even sufficient.
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Now we return to the investigation of the function L[x(r),u(r)] defined in sec-

tion 3. Note that this function depends on the objective function f(x), the con-

straint functions gi(x) (i = 1, 2, . . . ,m) and the function Π(ξ).

Consider the linear programming problem

(45) Min
{
c>x | a>i x− bi ≥ 0, (i = 1, 2, . . . ,m)

}
with the set of feasible solutions X, defined by (44).

Theorem 3. Suppose that for LP-problem (45), with the set of feasible solu-

tions (44), the following assumptions hold:

a) The system of inequalities a>i x − bi ≥ 0 (i = 1, 2, . . . ,m) does not contain

redundant ones.

b) The set X, defined by (44), is either

(i) n-dimensional simplex, or

(ii) n-dimensional parallelepiped.

Suppose the function Π(ξ) ∈ C1 satisfies (A∗), (B∗), (C∗), and Π′(ξ) > 0. Then

the function L[x(r),u(r)] is monotonically decreasing.

Proof. Because of Lemma 3a, boundedness of the simplex (i) or the paral-

lelepiped (ii) implies, that there exist n linearly independent vectors ai. Obviously,

Π′(ξ) > 0 implies Γ′′(ξ) > 0. Now, from the structure of

∇2T (x, r) = r

m∑
i=1

Γ′′[a>i x− bi] aia
>
i

we can see that the Hessian matrix ∇2T (x, r) is positive definite. So, the assump-

tions of Lemma 2 are satisfied and the properties (17)–(20) are valid. In our linear

case (19) takes the form

(46)
m∑
i=1

ai
dui

dr
= 0

and (20) can be rewritten as

(47)
dui

dr
=

1

Πi

[
1− r

Π′i
Πi

(
a>i

dx

dr

)]
.

Since
dL

dr
= −

m∑
i=1

dui

dr

(
a>i x− bi

)
,

it is sufficient to prove that

dui

dr
> 0, (i = 1, 2, . . . ,m).
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(i) First, let X satisfy the assumption b), (i). Since X is an n-dimensional

simplex and there are no redundant inequalities, we have m = n+ 1. The simplex

is a nonempty, bounded set and so by Lemma 3a there exist n linearly independent

vectors ai and thus the equation

(48)
n+1∑
i=1

aiλi = 0

has a one-dimensional set of solutions. By Lemma 3b the system (48) has a

positive solution and hence every solution
dui

dr
, (i = 1, 2, . . . , n + 1) of (48) is

either positive or negative. Now it remains to prove that there exists at least one

positive component
dui

dr
. So, we use the equation (47), in which obviously r > 0,

Π′i > 0 and Πi > 0. From Corollary it follows that for the vector
dx

dr
there exists

a vector ak, such that a>k
dx

dr
≤ 0. Then by (47) we have

duk

dr
> 0.

(ii) Now let X satisfy the assumption b), (ii). Since X is an n-dimensional

parallelepiped and there are no redundant inequalities, we have m = 2n. By

Lemma 3b there exist n linearly independent vectors ai. Without loss of generality

we can assume that the first n vectors ai (i = 1, 2, . . . , n) are linearly independent

and an+i = −λiai, where λi (i = 1, 2, . . . ,m) are positive numbers (as X is a

parallelepiped). Thus from (46) we have

2n∑
i=1

ai
dui

dr
=

n∑
i=1

(
ai
dui

dr
+ an+i

dun+i

dr

)
=

n∑
i=1

ai

(
dui

dr
− λi ·

dun+i

dr

)
= 0.

Since ai (i = 1, 2, . . . , n) are linearly independent, we have

(49)
dui

dr
= λi ·

dun+i

dr
, λi > 0 , (i = 1, 2, . . . , n).

Now we will use the equation (47), in which obviously r > 0, Πi > 0 and Π′i > 0.

If a>i
dx

dr
≤ 0, then evidently

dui

dr
> 0 and by (49) also

dun+i

dr
> 0. If a>i

dx

dr
> 0,

then (an+i)
> dx

dr
< 0 and by (47)

dun+i

dr
> 0, so by (49)

dui

dr
> 0. Theorem 3 is

proved. �
Remark 4. A parallelepiped can be interpreted as a Cartesian product of n

one-dimensional simplices. This fact leads directly to the generalization of The-

orem 3 for the case when the set X is represented as a Cartesian product of s

simplices of dimension nj (j = 1, 2, . . . , s), such that n1 + n2 + . . .+ nS = n. The

proof technique is the same as in Theorem 3, but is very cumbersome, so we do

not present it here.
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