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ON THE MATSUMOTO CHANGE OF A FINSLER SPACE
WITH MTH-ROOT METRIC

GAUREE SHANKER, RUCHI KAUSHIK SHARMA AND R.D.S. KUSHWAHA

Abstract. In the present paper, we find a condition under which a Finsler
space with Matsumoto change of mth-root metric is projectively related to
a mth-root metric and also we find a condition under which this Matsumoto
transformed mth-root Finsler metric is locally dually flat and projectively
flat.

1. Introduction

The concept of mth-root metric was introduced by Shimada [10] in 1979,
applied to ecology by Antonelli [3] and studied by several authors ([8], [11],
[12], [13], [14], [15]). It is regarded as a generalisation of Riemannian metric
in the sense that the second root metric is a Riemannian metric. For m =
3, it is called a cubic Finsler metric and for m = 4, it is quatric metric. In
four dimension, the special fourth root metric in the form F = 4

√
y1y2y3y4

is called the Berwald-Moor metric which is considered by physicists as an
important subject for a possible model of space-time. Recent studies show
that mth-root Finsler metrics play a very important role in physics, space-time
structure and gravitation as well as in unified gauge field theories. Li and Shen
[5] have studied the geometrical properties of locally projectively flat fourth

root metrics in the form F = 4
√
aijkl(x)yiyjykyl and generalised fourth root

metric in the form F =
√√

aijkl(x)yiyjykyl + bij(x)yiyj. In [12], Tayebi and

Najafi characterize locally dually flat and Antonelli mth-root metrics and in
[13] Tayebi, Peyghan and Shahbazi find a condition under which a generalized
mth-root metric is projectively related to mth-root metric. In [4], Brinzei
provides necessary and sufficient condition for a Finsler space with mth-root
metric to be projectively flat to Berwald space.
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In this paper, we find the condition under which the transformed Finsler
space is projectively related with given Finsler space. Also we find the con-
dition under which the transformed Finsler space is locally dually flat and
projectively flat.

2. Preliminaries

Let Mn be an n-dimensional C∞-manifold, TxM denotes the tangent space
of Mn at x. The tangent bundle TM is the union of tangent spaces, TM :=⋃

x∈M TxM . We denote the elements of TM by (x, y), where x = (xi) is a point
of Mn and y ∈ TxM called supporting element. We denote TM0 = TM \ {0}.

Definition. A Finsler metric on Mn is a function F : TM → [0,∞) with the
following properties:
(i) F is C∞ on TM0,
(ii) F is positively 1-homogeneous on the fibers of tangent bundle TM and

(iii) the Hessian of F 2 with element gij = 1
2

∂2F 2

∂yi∂yj
is positive definite on TM0.

The pair (Mn, F ) = F n is called a Finsler space, F is called the fundamental
function and gij is called the fundamental tensor of the Finsler space F n.

The normalized supporting element li, angular metric tensor hij and metric
tensor gij of F n are defined respectively as:

(2.1) li =
∂F

∂yi
, hij = F

∂2F

∂yi∂yj
and gij =

1

2

∂2F 2

∂yi∂yj
.

Let F be a Finsler metric defined by F = m
√
A, where A is given by A :=

ai1i2...im(x)yi1yi2 ...yim , with ai1...im symmetric in all its indices. Then F is called
an mth- root Finsler metric. Clearly, A is homogeneous of degree m in y.
Let

(2.2) Ai = aii2...im(x)yi2 ...yim =
1

m

∂A

∂yi
,

(2.3) Aij = aiji3...im(x)yi3 ...yim =
1

m(m− 1)

∂2A

∂yi∂yj
,

(2.4) Aijk = aijki4...im(x)yi4 ...yim =
1

m(m− 1)(m− 2)

∂3A

∂yi∂yj∂yk

The normalized supporting element of F n is given by

(2.5) li := Fyi =
∂F

∂yi
=
∂ m
√
A

∂yi
=

1

m

∂A
∂yi

A
m−1
m

=
Ai

Fm−1 .

Let us consider the transformation

(2.6) F =
F 2

F − β
,
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where F = m
√
A, is an mth-root metric and β = bi(x)yi is a one form on the

manifold Mn. Clearly F is also a Finsler metric on Mn, given by Matsumoto
change of mth- root metric. Throughout the paper, we call the Finsler metric
F as transformed mth-root metric and (Mn, F ) = F

n
as transformed Finsler

space. We restrict ourselves for m > 2 throughout the paper and also the
quantities corresponding to the transformed Finsler space F

n
will be denoted

by putting bar on the top of that quantity.

3. Fundamental Metric Tensor of Matsumoto Transformed
mth-root Metric

The Matsumoto metric F =
α2

α− β
, where α =

√
aijyiyj is a Riemannian

metric and β = bi(x)yi is a one-form, is an interesting (α, β)-metric introduced
by Matsumoto using gradient of slope, speed and gravity in [6]. This metric
formulates the model of a Finsler space. Many authors ([1], [3]) have studied
this metric by different prospectives.

The Finsler metric F =
F 2

F − β
is called the Matsumoto change of Finsler

metric [7].
The differentiation of (2.6) with respect to yi yields the normalized support-

ing element li given by

(3.1) li =
Ai

Fm−2
(F − 2β)

(F − β)2
+

F 2

(F − β)2
bi.

Again differentiation of (3.1) with respect to yj yields

hij = F
[(m− 1)(F − 2β)

Fm−2(F − β)2
Aij −

((m− 1)(F − 2β)

F 2m−4(F − β)2
− 2β2

F 2m−2(F − β)3

)
AiAj

− 2Fβ

Fm−1(F − β)3
(Aibj + Ajbi) +

2F 2

(F − β)3
bibj

]
.

(3.2)

From (3.1) and (3.2), the fundamental metric tensor gij of Finsler space F
n

is
given by

gij = hij + lilj,

After simplification, we get

(3.3) gij = ρAij + ρ0bibj + ρ1(Aibj + biAj) + ρ2AiAj,

where

ρ =
(m− 1)F (F − 2β)

Fm−2(F − β)2
,



258 GAUREE SHANKER, RUCHI KAUSHIK SHARMA AND R.D.S. KUSHWAHA

ρ0 =
2F 2F

(F − β)3
+

F 4

(F − β)4
,

ρ1 =
F 2(F − 2β)

Fm−2 − 2βF

Fm−2(F − β)3
,

ρ2 =
2β2F

F 2(m−1)(F − β)3
+

(F − 2β)2

(F − β)4F 2(m−2) −
(m− 1)F (F − 2β)

F 2(m−4)(F − β)2
.

The contravariant metric tensor gij of Finsler space F
n

is given by

(3.4) gij =
Aij

ρ
− σ0bibj − σ2yiyj − σ1(yibj + yjbi),

where

σ0 =
1

ρ+ δb2
+

ρ1
2

ρ2 − ρ12d2
,

σ1 =
ρ2

2

ρ2 − ρ12d2
,

σ2 =
ρ1ρ2ρ4

ρ2 − ρ12d2
,

d2 = didj =
[
ρ4b

i +
ρ2
ρ1
yi
][
bi +

ρ2
ρ1
Ai

]
= ρ4(b

2 + β) +
ρ2
ρ1

(
β +

ρ2
ρ1
Fm
)
,

ρ4 =
[1

ρ
− 1

ρ+ δb2

(
b2 +

ρ2
ρ1

)]
.

Proposition 1. The covariant metric tensor gij and contravariant metric ten-

sor gij of Matsumoto transformed mth-root Finsler space F
n

are given by the
equations (3.3) and (3.4) respectively.

4. Spray Coefficients of Matsumoto Transformed mth-root
metric

The geodesics of a Finsler space F n are given by the following system of
equations

d2xi

dt2
+Gi

(
x,
dx

dt

)
= 0,

where

Gi =
1

4
gil{[F 2]xkyly

k − [F 2]xl}

are called spray coefficients of F n.
Two Finsler metrics F and F on a manifold Mn are called projectively re-

lated if there is a scalar function P(x, y) defined on TM0 such that G
i

=

Gi + Pyi, where G
i

and Gi are the geodesics spray coefficients of F
n

and
F n respectively. In other words two metrics F and F are called projectively
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related if any geodesic of the first is also geodesic for the second and vice versa.

In the view of equation (3.3) the metric tensor gij of F
n

can be rewritten
as:

(4.1) gij =
ρFm−2

m− 1
gij + ρ0bibj + ρ1(Aibj + Ajbi) + ρ3AiAj,

where

ρ3 = ρ2 +
m− 2

(m− 1)Fm−2 ,

and

(4.2) gij = (m− 1)
Aij

Fm−2 − (m− 2)
AiAj

F 2(m−1) .

Further, in view of equation (3.4), contravariant metric tensor gij can be
rewritten as:

(4.3) gij =
m− 1

ρFm−2 g
ij − yi(σ1bj + σ3y

j)− bi(σ1yj + σ0b
j),

where

σ3 = σ2 +
m− 2

Fmρ
,

and

(4.4) gij =
Fm−2

m− 1
Aij +

(m− 2)yiyj

(m− 1)F 2
.

The spray coefficients of Matsumoto transformed Finsler space F
n

are given
by-

(4.5) G
i

=
1

4
gil{[F 2

]xkyly
k − [F

2
]xl}.

It can also be written as:

(4.6) G
i

=
1

4
gil
(

2
∂gjl
∂xk
−
∂gjk
∂xl

)
yjyk.

From (4.1) and (4.6), we have

(4.7) G
i

=
1

4
gil
[
2
∂

∂xk

(ρFm−2

m− 1
gjl + ρ0bjbl + ρ1(Ajbl + Albj) + ρ3AjAl

)
−

∂

∂xl

(ρFm−2

m− 1
gjk + ρ0bjbk + ρ1(Ajbk + Akbj) + ρ3AjAk

)]
yjyk,

which implies that

(4.8)

G
i

=
1

4
gil
[(

2
∂gjl
∂xk
− ∂gjk

∂xl

)ρFm−2

m− 1
+ 2gjlτk − gjkτl + 2

∂Xjl

∂xk
+
∂Xjk

∂xl

]
yjyk,
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where

τk =
∂

∂xk

(ρFm−2

m− 1

)
,

and

Xjl = ρ0bjbl + ρ1(Ajbl + Albj) + ρ3AjAk.

Now,

(4.9) G
i

=
1

4

[(m− 1)gil

ρFm−2 − yi(σ3yl + σ1b
l)− bi(σ1yl + σ0b

l)
]
×[(

2
∂gjl
∂xk
− ∂gjk

∂xl

)ρFm−2

m− 1
+ 2gjlτk − gjkτl + 2

∂Xjl

∂xk
− ∂Xjk

∂xl

]
yjyk,

On simplifying, we get

G
i

=
1

4
gil
(∂gjl
∂xk
− ∂gjk

∂xl

)
yjyk +

1

4

(m− 1)gil

ρFm−2

(
2gjlτk − gjkτl + 2

∂Xjl

∂xk
− ∂Xjk

∂xl

)
yjyk

−yi(σ3yl + σ1b
l)
[
(2
∂gjl
∂xk
− ∂gjk

∂xl
)
ρFm−2

m− 1
+ 2gjlτk − gjkτl + 2

∂Xjl

∂xk
− ∂Xjk

∂xl

]
yjyk

−bi(σ1yl + σ0b
l)
[
(2
∂gjl
∂xk
− ∂gjk

∂xl
)
ρFm−2

m− 1
+ 2gjlτk − gjkτl + 2

∂Xjl

∂xk
− ∂Xjk

∂xl

]
yjyk

Or

(4.10) G
i

= Gi +
m− 1

ρFm−2Rjkl

( Fm−2

m− 1
Ail +

m− 2

m− 1
yiyl
)
yjyk

− yi(σ3yl + σ1b
l)Sjkly

jyk − bi(σ1yl + σ0b
l)Sjkly

jyk,

where

Rjkl = 2gjlτk − gjkτl + 2
∂Xjl

∂xk
− ∂Xjk

∂xl
,

and

Sjkl =
(

2
∂gjl
∂xk
− ∂gjk

∂xl

)ρFm−2

m− 1
+ 2gjlτk − gjkτl + 2

∂Xjl

∂xk
− ∂Xjk

∂xl
.

The above equation may be written as

G
i

= Gi + Y iP +Qi,(4.11)

where

P =
m− 2

ρFm−2Rjkly
lyjyk − (σ3y

l + σ1b
l)Sjkly

jyk,

Qi =
RjklA

il

ρ
yjyk − bi(σ1yl + σ0b

l)Sjkly
jyk.

Now, F and F are projectively related if Qi = 0, which implies

(4.12) RjklA
il = ρbi(σ1y

l + σ0b
l)Sjkl.

Thus, we have the following
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Theorem 1. The Matsumoto transformed mth-root metric F and mth-root
metric F, on an open subset U of Mn, are projectively related if eq. (4.12) is
satisfied.

5. Locally Dually Flatness of Matsumoto Transformed
mth-root metric

The notion of dually flat Riemannian metrics was introduced by Amari
and Nagaoka [2], when they studied the information geometry on Riemannian
manifolds. In Finsler geometry, Shen [9] extended the notion of locally dually
flatness for Finsler metrics. Dually flat Finsler metrics form a special and
valuable class of Finsler metrics in Finsler information geometry, which plays a
very important role in studying flat Finsler information structure. Information
geometry has emerged from investigating the geometrical structure of a family
of probability distributions.

A Matsumoto transformed Finsler metric F = F (x, y) on a manifold Mn is
said to be locally dually flat, if at any point there is a standard co-ordinate

system (xi, yi) in TM such that [F
2
]xkyly

k = 2[F
2
]xl . In this case the co-

ordinate (xi) is called an adapted local co-ordinate system. Every locally
Minkowskian metric is locally dually flat.

Consider the Matsumoto transformation F =
F 2

F − β
, where F is an mth-root

metric.
We have,

[F
2
]xk =

4
m
A

4−m
m Axk

(F − β)2
−

2F 4( 1
m
A

1−m
m Axk − βk)

(F − β)3
.(5.1)

From (5.1), we get

[F
2
]xkyl =

[4(4−m)

m2

A
2(2−m)

m

(F − β)2
− 8

m2

A
5−2m

m

(F − β)3
− 2(5−m)

m2

A
5−2m

m

(F − β)3

]
AylAxk +[ 4

m

A
4−m
m

(F − β)2
− 2

m

A
5−m
m

(F − β)3

]
Axkyl +

[ 6

m2

A
5−m
m

(F − β)4
+

8

m

A
4−m
m

(F − β)3
−

6

m

A
5−m
m

(F − β)4

]
βkAyl + A

5
m blk − A

4
mβblk + 3A

4
mβkbl +

8

m

A
4−m
m

(F − β)3
Axkbl .



262 GAUREE SHANKER, RUCHI KAUSHIK SHARMA AND R.D.S. KUSHWAHA

and

(5.2)

[F
2
]xkyly

k =
[4(4−m)

m2

A
2(2−m)

m

(F − β)2
− 8

m2

A
5−2m

m

(F − β)3
−2(5−m)

m2

A
5−2m

m

(F − β)3

]
A0Ayl+[ 4

m

A
4−m
m

(F − β)2
− 2

m

A
5−m
m

(F − β)3

]
A0l +

[ 6

m2

A
5−m
m

(F − β)4
+

8

m

A
4−m
m

(F − β)3
−

6

m

A
5−m
m

(F − β)4

]
βkAyly

k + A
5
mβl − A

4
mββl + 3A

4
mβkbly

k +
8

m

A
4−m
m

(F − β)3
A0bl.

Let the Finsler metric F is locally dually flat. Then, we have

(5.3) [F
2
]xkyly

k − 2[F
2
]xl = 0.

Therefore from equations (5.1), (5.2) and (5.3), we obtain

(5.4)

[F
2
]xkyly

k−2[F
2
]xl =

[4(4−m)

m2

A
2(2−m)

m

(F − β)2
− 8

m2

A
5−2m

m

(F − β)3
−2(5−m)

m2

A
5−2m

m

(F − β)3

]
A0Ayl+[ 4

m

A
4−m
m

(F − β)2
− 2

m

A
5−m
m

(F − β)3

]
A0l +

[ 6

m2

A
5−m
m

(F − β)4
+

8

m

A
4−m
m

(F − β)3
−

6

m

A
5−m
m

(F − β)4

]
βkAyly

k + A
5
mβl − A

4
mββl + 3A

4
mβkbly

k +
8

m

A
4−m
m

(F − β)3
A0bl

− 2

(F − β)3

[ 4

m
(F − β)A

4−m
m Axl − 2

m
F 4A

1−m
m Axl + 2F 4βl

]
= 0.

From eq. (5.4), we get

4

m
(F − 2β)F 3Axl =

4

m2
{(m− 4β)− 5F}A

3−m
m A0Ayl +

2

m
(F − 2β)F 3A0l +

2F 3{3F (1−m) + 4m}
m2(F − β)

βkAyly
k +

8

m
F 3A0bl + F 5βl − F 4ββl + 3F 4βkbly

k − 4F 4A
m−1
m βl,

Therefore, F is locally dually flat metric if and only if

(5.5) Axl =
{(m− 4β)− 5F}
mA(F − 2β)

A0Ayl +
A0l

2
+
{3F (1−m) + 4m}
2m(F − β)(F − 2β)

βkAyly
k+

2A0bl
(F − 2β)

+
mF 2βl

4(F − 2β)
− mFββl

4(F − 2β)
+

3mFblβky
k

4(F − 2β)
− mFmβl

(F − 2β)
.

Thus, we have the following,
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Theorem 2. Let F be a Matsumoto transformed mth-root Finsler metric on
a manifold Mn. Then, F is locally dually flat if and only if equation (5.5) is
satisfied.

6. Projectively flatness of Matsumoto Transformed mth-root
metric

A Matsumoto transformed Finsler Space with metric F =
F 2

F − β
, on an

open subset U of manifold Mn, is projectively flat [5] if and only if it satisfies
the following equations :

(6.1)
[
F

2
]
xkyl

yk =
[
F

2
]
xl
.

Therefore, from eq. (5.1), (5.2) and (5.3), we obtain

[F
2
]xkyly

k−[F
2
]xl =

[4(4−m)

m2

A
2(2−m)

m

(F − β)2
− 8

m2

A
5−2m

m

(F − β)3
−2(5−m)

m2

A
5−2m

m

(F − β)3

]
A0Ayl+[ 4

m

A
4−m
m

(F − β)2
− 2

m

A
5−m
m

(F − β)3

]
A0l +

[ 6

m2

A
5−m
m

(F − β)4
+

8

m

A
4−m
m

(F − β)3
−

6

m

A
5−m
m

(F − β)4

]
βkAyly

k + A
5
mβl − A

4
mββl + 3A

4
mβkbly

k +
8

m

A
4−m
m

(F − β)3
A0bl

− 1

(F − β)3

[ 4

m
(F − β)A

4−m
m Axl − 2

m
F 4A

1−m
m Axl + 2F 4βl

]
= 0.

Above equation can be written as,

4

m
(F − 2β)F 3Axl =

8

m2
{(m− 4β)− 5F}A

3−m
m A0Ayl +

4

m
(F − 2β)F 3A0l +

4F 3{3F (1−m) + 4m}
m2(F − β)

βkAyly
k +

16

m
F 3A0bl + F 5βl − 2F 4ββl + 6F 4βkbly

k − 8F 4A
m−1
m βl,

Therefore, F is projectively flat metric if and only if

(6.2) Axl =
2{(m− 4β)− 5F}
mA(F − 2β)

A0Ayl + A0l +
{3F (1−m) + 4m}
m(F − β)(F − 2β)

βkAyly
k+

4A0bl
(F − 2β)

+
mF 2βl

2(F − 2β)
− mFββl

2(F − 2β)
+

3mFblβky
k

2(F − 2β)
− 2mFmβl

(F − 2β)
.

Thus, we have the following:

Theorem 3. A Finsler space F n = (Mn, F̄ ) with metric F̄ on an open subset
U of manifold Mn is projectively flat if and only if it satisfies the equation
(6.2).
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