Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 33 (2017), 115-116 www.emis.de/journals ISSN 1786-0091

ERRATUM TO "NEW APPROACH FOR CLOSURE SPACES BY RELATIONS"

AMR ZAKARIA

ABSTRACT. In this note, an alleged lemma 3.6 stated in [2] is incorrect in general, by giving an example. In addition to this point, if the closure space studied in [2] was T_1 space, then it is the discrete space (X, P(X)). As a consequence, Proposition 6.4, Corollary 6.4, Proposition 6.5, Corollary 6.6, Proposition 6.6 and Corollary 6.7 mentioned in [2] are trivially satisfied without proof.

1. INTRODUCTION

Definition 1. [1] Let X be a nonempty set and R be a binary relation on X. The minimal neighbourhood of $x \in X$ is defined as:

(1) $\langle x \rangle_R = \cap \{ pR : x \in pR \},\$

where $pR = \{q \in X : (p,q) \in R\}.$

Definition 2. [2] Let R be a binary relation on a nonempty set X. The closure operation on X, denoted by cl_R , defined as follows:

(2)
$$cl_R(A) = A \cup \{x \in X : \langle x \rangle_R \cap A \neq \emptyset\}.$$

Theorem 1. [2] Let R be a binary relation on a nonempty set X. Then a closure space (X, cl_R) is an Alexandrov topological space.

Lemma 1. [3] Let (X, τ) be an Alexandrov T_1 -space. Then (X, τ) is the discrete space; that is, $\tau = P(X)$.

Lemma 3.6 in [2] claimed that for any binary relation R on X the following implication has been satisfied:

$$x \in cl_R(\{y\}) \Rightarrow y \in \langle x \rangle_R.$$

This assertion is wrong in general by giving example.

²⁰¹⁰ Mathematics Subject Classification. 54F05; 54A05.

Key words and phrases. Closure space; Alexandrov space; minimal neighbourhood.

A. ZAKARIA

2. Main results

The following example shows that the sufficient condition of Lemma 3.6 in [2] is incorrect in general.

Example 1. Let $X = \{a, b, c, d\}$ and $R = \{(a, a), (a, b), (b, c), (d, a)\}$. Then $\langle a \rangle_R = \{a\}, \langle b \rangle_R = \{a, b\}, \langle c \rangle_R = \{c\}$ and $\langle d \rangle_R = \emptyset$. It's clear that $d \in cl_R(\{d\}) = \{d\}$, but $d \notin \langle d \rangle_R$.

Proposition 1. Let R be a binary relation on a nonempty set X. Then any closure space (X, cl_R) which is T_1 is the discrete space (X, P(X)).

Proof. The result is a direct consequence of Theorem 1 and Lemma 1. \Box

Remark 1. It should be noted that Proposition 1 implies that Proposition 6.4, Corollary 6.4, Proposition 6.5, Corollary 6.6, Proposition 6.6 and Corollary 6.7 stated in [2] are trivially satisfied without proof.

References

- A. A. Allam, M. Y. Bakeir, and E. A. Abo-Tabl. New Approach for Basic Rough Set Concepts, pages 64–73. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.
- [2] A. A. Allam, M. Y. Bakeir, and E. A. Abo-Tabl. New approach for closure spaces by relations. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22(3):285–304, 2006.
- [3] A. Kandil, M. M. Yakout, and A. Zakaria. Generalized rough sets via ideals. Ann. Fuzzy Math. Inform., 5(3):525–532, 2013.

Received September 23, 2016.

PERMANENT ADDRES DEPARTMENT OF MATHEMATIC, FACULTY OF EDUCATION, AIN SHAMS UNIVERSITY, ROXY 11341, CAIRO, EGYPT

CURRENT ADDRESS INSTITUTE OF MATHEMATICS, UNIVERSITY OF DEBRECEN, H-4002 DEBRECEN, PF. 400, HUNGARY, *E-mail address*: amr.zakaria@edu.asu.edu.eg

116