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SECOND ORDER PARALLEL TENSORS ON LP-SASAKIAN
MANIFOLDS WITH A COEFFICIENT α

LOVEJOY S. DAS

Abstract. In 1926, Levy [3] had proved that a second order symmetric
parallel nonsingular tensor on a space of constant curvature is a constant
multiple of the metric tensor. Sharma [4] has proved that a second order
parallel tensor in a Kähler space of constant holomorphic sectional curvature
is a linear combination with constant coefficient of the Kählerian metric and
the fundamental 2-form. In this paper, we have shown that a second order
symmetric parallel tensor on Lorentzian Para Sasakian manifold (briefly
LP-Sasakian) with a coefficient α (non zero Scalar function) is a constant
multiple of the associated metric tensor and we have also proved that there
is no non zero skew symmetric second order parallel tensor on a LP-Sasakian
manifold.

1. Introduction

In 1923, Eisenhart [2] showed that a Riemannian manifold admitting a sec-
ond order symmetric parallel tensor other than a constant multiple of metric
tensor is reducible. In 1926 Levy [3] obtained the necessary and sufficient con-
ditions for the existence of such tensors. Sharma [4] has generalized Levy’s
result by showing that a second order parallel (not necessarily symmetric and
non-singular) tensor on an n-dimensional (n > 2) space of constant curvature
is a constant multiple of the metric tensor. Sharma has also proved in [4] that
on a Sasakian manifold, there is no non zero parallel 2-form. In this paper
we have defined LP-Sasakian manifold with a coefficient α, (non zero scalar
function) and have proved the following two theorems:

Theorem 1.1. On a LP- Sasakian manifold with a coefficient α, a second
order symmetric parallel tensor is a constant multiple of the associated positive
definite Riemannian metric tensor.
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Theorem 1.2. On a LP-Sasakian manifold with a coefficient α, there is no
non zero parallel 2-form.

Let M be an n-dimensional differentiable manifold of class c∞ endowed with
(1,1) tensor field Φ, a contravariant vector field T , a covariant vector field A
and a Lorentzian metric g on M which makes T a timelike unit vector field
such that the following conditions are satisfied [1].

A (T ) = −1(1.1)

Φ (T ) = 0(1.2)

A (ΦX) = 0(1.3)

Φ2X = X + A (X)T(1.4)

A (X) = g(X,T )(1.5)

g (ΦX,ΦY ) = g (X,Y ) + A (X)A(Y )(1.6)

Φ (X, Y ) = g (X,ΦY ) = g (Y,ΦX) = Φ(X,Y )(1.7)

Φ (X,T ) = 0.(1.8)

Then a manifold satisfying conditions (1.1)–(1.8) is called a LP-Sasakian struc-
ture (Φ, T, A, g) on M .

Definition 1.1. If in a LP-Sasakian manifold, the following relation

ΦX =
1

α
(∇XT )(1.9)

Φ (X, Y ) =
1

α
(∇XA (Y )) =

1

α
(∇XA)(Y )(1.10)

α (X) = ∇Xα(1.11)

g (X,α) = α(X)(1.12)

(1.13) ∇XΦ (Y, Z) =

α[{g (X, Y ) + η (Y ) η (X)} η (Z) + {g (X,Z) + η (Z) η (X)} η (Y )].

hold, where ∇ denotes the Riemannian connection of the metric tensor g, then
M is called a LP-Sasakian manifold with coefficient α.

2. Proofs of Theorem 1.1 and 1.2

In proving Theorems 1.1 and 1.2 we need the following theorems.

Theorem 2.1. On a LP-Sasakian manifold with coefficient α the following
holds

(2.1) A (R (X,Y )Z) = α2 [g (Y, Z)A (X)− g (X,Z)A (Y )]

− [α (X) Φ (Y, Z)− α (Y ) Φ (X,Z)]

Proof. On differentiating (1.10) covariantly and using (1.11), (1.12) and (1.13)
the proof follows immediately. □
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Theorem 2.2. For a LP-Sasakian manifold with coefficient α, we have:

(2.2) R (T,X)Y = α2 [A (Y )X + g (X, Y )T ] + α (Y ) ΦX − αΦ (X, Y ) ,

where g (X,α) = α(X).

Proof. The proof follows in an obvious manner after making use of (1.12) and
(2.1). □
Theorem 2.3. For a LP-Sasakian manifold, with a coefficient α the following
holds:

(2.3) R (T,X)T = βϕx+ α2[X + A (X)T ]

Proof. In view of equation (3.2), the proof follows immediately. □
Proof of Theorem 1.1. Let J denote a (0, 2)–tensor field on a LP-Sasakian
manifold M with a coefficient α such that ∇J = 0, then it follows that

(2.4) J (R (W,X)Y, Z) + J (Y,R (W,X)Z) = 0

holds for arbitrary vector fields X, Y, Z,W on M . Substituting W = Y = Z =
T in (2.4) we get

(2.5) J (R (T,X)T, T ) + J (T,R (T,X)T ) = 0.

On using Theorem 3.3, the equation (2.5) becomes

(2.6) 2βJ (ΦX,T ) + 2α2J (X,T ) + 2α2g (X,T ) J (T, T ) = 0.

On simplifying (2.6), we get

(2.7) −g (X,T ) J (T, T )− J (X,T )− β

α2
J (ΦX,T ) = 0

Replacing X by ΦY in (2.7) we get

(2.8) J (ΦY, T ) = g (ΦY, T ) J (T, T ) +
β

α2
J
(
Φ2Y, T

)
Using (1.4) and (1.5) in the above equation we get

(2.9) J (ΦY, T ) = − β

α2
[J (T, T )A (Y ) + J(Y, T )]

Using (2.7) and (2.9) we get

(2.10) J (T, T )A (Y ) + J (Y, T ) = 0 if α4 + β2 ̸= 0

Differentiating (2.10) covariantly with respect to y we get

(2.11) J (T, T ) g (X,ΦY ) + 2g (X,T ) J (ΦY, T ) + J (X,ΦY ) = 0

From the above equation and (1.9) we obtain

(2.12) J (T, T ) g (X,ΦY ) = −J (X,ΦY )

Replacing Φy by y in (2.12) we get

(2.13) J (X, Y ) = −J (T, T ) g (X,Y )
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In view of the fact that J(T, T ) is constant which can be checked by differen-
tiating it along any vector field on M . Thus we have proved the theorem. □
Proof of Theorem 1.2. Let J be a parallel 2-form on a LP-Sasakian manifoldM
with a coefficient α. Then putting W = Y = T in (2.4) and using Theorem 3.3
and equations (1.1)–(1.6) we get

(2.14) βJ (ΦX,Z) + α2J (X,Z) + α2J (T, Z)A (X) + α2J (T,X)A (Z)

+ J (T,ΦX)α (Z)− J (α, T ) Φ (X,Z) = 0

Let us define Φ∗ to be a (2, 0) tensor field metrically equivalent to Φ then
contracting (2.14) with Φ∗ and using the antisymmetry property of J and the
symmetry property of Φ∗, we obtain in view of equations (1.3)–(1.6) and after
simplifying the following:

(2.15) J (α, T ) = 0.

Substituting (2.15) in (2.14) we get

(2.16) βJ (ΦX,Z) + α2 [J (X,Z) + J (T, Z)A (X) + J (T,X)A(Z)]

+ J (T,ΦX)α (Z) = 0.

On simplifying (2.16) we get

(2.17) βJ (ΦZ,X) + α2 [J (Z,X) + J (T,X)A (Z) + J (T, Z)A(X)]

+ J (T,ΦZ)α (X) = 0.

On simplifying (2.16) and (2.17) we get

(2.18) −β[J (Z,ΦX) + J(X,ΦZ)]− α (X) J (ΦZ, T )− α (Z) J (ΦX,T ) = 0.

On replacing X by ΦY in (2.18) we get

(2.19) − β[J
(
Z,Φ2Y

)
+ J (ΦY,ΦZ)]−

α (ΦY ) J (ΦZ, T )− α (Z) J
(
Φ2Y, T

)
= 0.

On making use of (1.4) in the above equation, we get the following equation:

(2.20) − β[J (Z, Y ) + J (Z, T )A (Y ) + J(ΦY,ΦZ)]− α (Z) J (Y, T )

− α (ΦY ) J (ΦZ, T ) = 0.

On simplifying (2.20) we get

(2.21) − β[J (Y, Z) + J (Y, T )A (Z) + J(ΦZ,ΦY )]− α (Y ) J (Z, T )

− α (ΦZ) J (ΦY, T ) = 0.

In view of (2.20) and (2.21) and after simplifying we obtain

(2.22) β[J (T, Z)A (Y ) + J (T, Y )A(Y )] + α(Z)J(T, Y )

+ J (T,ΦZ)α (ΦY ) + α (Y ) J (Z, T ) + α (ΦZ) J (T,ΦY ) = 0.
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Putting Y = α in (2.22) and using (2.15) we get

(2.23) βJ (T, Z)A (α) + J (T,ΦZ)α (Φα) + α (α) J (Z, T ) = 0

Let us put αα = α̂ and β̂ = α (Φ, α) in (2.23) we get

(2.24) J (Z, T ) [βA (α)− α (α)] = J(T,ΦZ)β̂.

Replacing Z by ΦZ in (2.24) we get

(2.25) J (ΦZ, T )
[
β2 − α

]
= β̂J (T, Z) .

Replacing Z by ΦZ in (2.25) we get

(2.26) J
(
Φ2Z, T

)
=

β̂

α− β2
J (ΦZ, T ) .

On making use of (2.25) and (1.4) in (2.26) we get

(2.27)
α− β2

β̂
J (Z, T ) =

β̂

α− β2
J (Z, T ) .

From (2.27) it follows immediately that

(2.28) J (Z, T ) = 0 unless
(
α− β2

)2 − (β̂)
2
̸= 0.

Using (2.28) in (2.28) we get

(2.29) βJ (Z,ΦX) + α2J (Z,X) = 0

Differentiating (2.28) covariantly along Y and using the fact that ∇J = 0 we
get

(2.30) J (Z,ΦY ) = 0.

In view of (2.30) and (2.29), we see that J (Y, Z) = 0. □
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