SECOND ORDER PARALLEL TENSORS ON LP-SASAKIAN MANIFOLDS WITH A COEFFICIENT α

LOVEJOY S. DAS

Abstract

In 1926, Levy [3] had proved that a second order symmetric parallel nonsingular tensor on a space of constant curvature is a constant multiple of the metric tensor. Sharma [4] has proved that a second order parallel tensor in a Kähler space of constant holomorphic sectional curvature is a linear combination with constant coefficient of the Kählerian metric and the fundamental 2-form. In this paper, we have shown that a second order symmetric parallel tensor on Lorentzian Para Sasakian manifold (briefly LP-Sasakian) with a coefficient α (non zero Scalar function) is a constant multiple of the associated metric tensor and we have also proved that there is no non zero skew symmetric second order parallel tensor on a LP-Sasakian manifold.

1. Introduction

In 1923, Eisenhart [2] showed that a Riemannian manifold admitting a second order symmetric parallel tensor other than a constant multiple of metric tensor is reducible. In 1926 Levy [3] obtained the necessary and sufficient conditions for the existence of such tensors. Sharma [4] has generalized Levy's result by showing that a second order parallel (not necessarily symmetric and non-singular) tensor on an n-dimensional $(n>2)$ space of constant curvature is a constant multiple of the metric tensor. Sharma has also proved in [4] that on a Sasakian manifold, there is no non zero parallel 2-form. In this paper we have defined LP-Sasakian manifold with a coefficient α, (non zero scalar function) and have proved the following two theorems:

Theorem 1.1. On a LP-Sasakian manifold with a coefficient α, a second order symmetric parallel tensor is a constant multiple of the associated positive definite Riemannian metric tensor.

[^0]Theorem 1.2. On a LP-Sasakian manifold with a coefficient α, there is no non zero parallel 2-form.

Let M be an n-dimensional differentiable manifold of class c^{∞} endowed with $(1,1)$ tensor field Φ, a contravariant vector field T, a covariant vector field A and a Lorentzian metric g on M which makes T a timelike unit vector field such that the following conditions are satisfied [1].

$$
\begin{align*}
& A(T)=-1 \tag{1.1}\\
& \Phi(T)=0 \tag{1.2}\\
& A(\Phi X)=0 \\
& \Phi^{2} X=X+A(X) T \\
& A(X)=g(X, T) \\
& g(\Phi X, \Phi Y)=g(X, Y)+A(X) A(Y) \\
& \Phi(X, Y)=g(X, \Phi Y)=g(Y, \Phi X)=\Phi(X, Y) \\
& \Phi(X, T)=0
\end{align*}
$$

Then a manifold satisfying conditions (1.1)-(1.8) is called a LP-Sasakian structure (Φ, T, A, g) on M.
Definition 1.1. If in a LP-Sasakian manifold, the following relation

$$
\begin{align*}
& \Phi X=\frac{1}{\alpha}\left(\nabla_{X} T\right) \tag{1.9}\\
& \Phi(X, Y)=\frac{1}{\alpha}\left(\nabla_{X} A(Y)\right)=\frac{1}{\alpha}\left(\nabla_{X} A\right)(Y) \tag{1.10}\\
& \alpha(X)=\nabla_{X} \alpha \tag{1.11}\\
& g(X, \bar{\alpha})=\alpha(X) \tag{1.12}
\end{align*}
$$

$$
\begin{align*}
& \nabla_{X} \Phi(Y, Z)= \tag{1.13}\\
& \quad \alpha[\{g(X, Y)+\eta(Y) \eta(X)\} \eta(Z)+\{g(X, Z)+\eta(Z) \eta(X)\} \eta(Y)] .
\end{align*}
$$

hold, where ∇ denotes the Riemannian connection of the metric tensor g, then M is called a LP-Sasakian manifold with coefficient α.

2. Proofs of Theorem 1.1 and 1.2

In proving Theorems 1.1 and 1.2 we need the following theorems.
Theorem 2.1. On a LP-Sasakian manifold with coefficient α the following holds

$$
\begin{align*}
A(R(X, Y) Z)=\alpha^{2}[g(Y, Z) A(& X)-g(X, Z) A(Y)] \tag{2.1}\\
& -[\alpha(X) \Phi(Y, Z)-\alpha(Y) \Phi(X, Z)]
\end{align*}
$$

Proof. On differentiating (1.10) covariantly and using (1.11), (1.12) and (1.13) the proof follows immediately.

Theorem 2.2. For a LP-Sasakian manifold with coefficient α, we have:
(2.2) $\quad R(T, X) Y=\alpha^{2}[A(Y) X+g(X, Y) T]+\alpha(Y) \Phi X-\bar{\alpha} \Phi(X, Y)$,
where $g(X, \bar{\alpha})=\alpha(X)$.
Proof. The proof follows in an obvious manner after making use of (1.12) and (2.1).

Theorem 2.3. For a LP-Sasakian manifold, with a coefficient α the following holds:

$$
\begin{equation*}
R(T, X) T=\beta \phi x+\alpha^{2}[X+A(X) T] \tag{2.3}
\end{equation*}
$$

Proof. In view of equation (3.2), the proof follows immediately.
Proof of Theorem 1.1. Let J denote a (0,2 -tensor field on a LP-Sasakian manifold M with a coefficient α such that $\nabla J=0$, then it follows that

$$
\begin{equation*}
J(R(W, X) Y, Z)+J(Y, R(W, X) Z)=0 \tag{2.4}
\end{equation*}
$$

holds for arbitrary vector fields X, Y, Z, W on M. Substituting $W=Y=Z=$ T in (2.4) we get

$$
\begin{equation*}
J(R(T, X) T, T)+J(T, R(T, X) T)=0 . \tag{2.5}
\end{equation*}
$$

On using Theorem 3.3, the equation (2.5) becomes

$$
\begin{equation*}
2 \beta J(\Phi X, T)+2 \alpha^{2} J(X, T)+2 \alpha^{2} g(X, T) J(T, T)=0 . \tag{2.6}
\end{equation*}
$$

On simplifying (2.6), we get

$$
\begin{equation*}
-g(X, T) J(T, T)-J(X, T)-\frac{\beta}{\alpha^{2}} J(\Phi X, T)=0 \tag{2.7}
\end{equation*}
$$

Replacing X by ΦY in (2.7) we get

$$
\begin{equation*}
J(\Phi Y, T)=g(\Phi Y, T) J(T, T)+\frac{\beta}{\alpha^{2}} J\left(\Phi^{2} Y, T\right) \tag{2.8}
\end{equation*}
$$

Using (1.4) and (1.5) in the above equation we get

$$
\begin{equation*}
J(\Phi Y, T)=-\frac{\beta}{\alpha^{2}}[J(T, T) A(Y)+J(Y, T)] \tag{2.9}
\end{equation*}
$$

Using (2.7) and (2.9) we get

$$
\begin{equation*}
J(T, T) A(Y)+J(Y, T)=0 \text { if } \alpha^{4}+\beta^{2} \neq 0 \tag{2.10}
\end{equation*}
$$

Differentiating (2.10) covariantly with respect to y we get

$$
\begin{equation*}
J(T, T) g(X, \Phi Y)+2 g(X, T) J(\Phi Y, T)+J(X, \Phi Y)=0 \tag{2.11}
\end{equation*}
$$

From the above equation and (1.9) we obtain

$$
\begin{equation*}
J(T, T) g(X, \Phi Y)=-J(X, \Phi Y) \tag{2.12}
\end{equation*}
$$

Replacing Φy by y in (2.12) we get

$$
\begin{equation*}
J(X, Y)=-J(T, T) g(X, Y) \tag{2.13}
\end{equation*}
$$

In view of the fact that $J(T, T)$ is constant which can be checked by differentiating it along any vector field on M. Thus we have proved the theorem.

Proof of Theorem 1.2. Let J be a parallel 2-form on a LP-Sasakian manifold M with a coefficient α. Then putting $W=Y=T$ in (2.4) and using Theorem 3.3 and equations (1.1)-(1.6) we get

$$
\begin{align*}
\beta J(\Phi X, Z)+\alpha^{2} J(X, Z) & +\alpha^{2} J(T, Z) A(X)+\alpha^{2} J(T, X) A(Z) \tag{2.14}\\
& +J(T, \Phi X) \alpha(Z)-J(\bar{\alpha}, T) \Phi(X, Z)=0
\end{align*}
$$

Let us define Φ^{*} to be a $(2,0)$ tensor field metrically equivalent to Φ then contracting (2.14) with Φ^{*} and using the antisymmetry property of J and the symmetry property of Φ^{*}, we obtain in view of equations (1.3)-(1.6) and after simplifying the following:

$$
\begin{equation*}
J(\bar{\alpha}, T)=0 \tag{2.15}
\end{equation*}
$$

Substituting (2.15) in (2.14) we get

$$
\begin{align*}
\beta J(\Phi X, Z)+\alpha^{2}[J(X, Z)+J(T, Z) A(X) & +J(T, X) A(Z)] \tag{2.16}\\
& +J(T, \Phi X) \alpha(Z)=0
\end{align*}
$$

On simplifying (2.16) we get

$$
\begin{align*}
\beta J(\Phi Z, X)+\alpha^{2}[J(Z, X)+J(T, X) A(Z)+ & J(T, Z) A(X)] \tag{2.17}\\
& +J(T, \Phi Z) \alpha(X)=0 .
\end{align*}
$$

On simplifying (2.16) and (2.17) we get
(2.18) $-\beta[J(Z, \Phi X)+J(X, \Phi Z)]-\alpha(X) J(\Phi Z, T)-\alpha(Z) J(\Phi X, T)=0$.

On replacing X by ΦY in (2.18) we get
(2.19) $\quad-\beta\left[J\left(Z, \Phi^{2} Y\right)+J(\Phi Y, \Phi Z)\right]-$

$$
\alpha(\Phi Y) J(\Phi Z, T)-\alpha(Z) J\left(\Phi^{2} Y, T\right)=0
$$

On making use of (1.4) in the above equation, we get the following equation:

$$
\begin{align*}
-\beta[J(Z, Y)+J(Z, T) A(Y)+J(\Phi Y, \Phi Z)] & -\alpha(Z) J(Y, T) \tag{2.20}\\
& -\alpha(\Phi Y) J(\Phi Z, T)=0
\end{align*}
$$

On simplifying (2.20) we get

$$
\begin{align*}
-\beta[J(Y, Z)+J(Y, T) A(Z)+J(\Phi Z, \Phi Y)] & -\alpha(Y) J(Z, T) \tag{2.21}\\
& -\alpha(\Phi Z) J(\Phi Y, T)=0 .
\end{align*}
$$

In view of (2.20) and (2.21) and after simplifying we obtain

$$
\begin{align*}
& \beta[J(T, Z) A(Y)+J(T, Y) A(Y)]+\alpha(Z) J(T, Y) \tag{2.22}\\
& \quad+J(T, \Phi Z) \alpha(\Phi Y)+\alpha(Y) J(Z, T)+\alpha(\Phi Z) J(T, \Phi Y)=0 .
\end{align*}
$$

Putting $Y=\bar{\alpha}$ in (2.22) and using (2.15) we get

$$
\begin{equation*}
\beta J(T, Z) A(\bar{\alpha})+J(T, \Phi Z) \alpha(\Phi \bar{\alpha})+\alpha(\bar{\alpha}) J(Z, T)=0 \tag{2.23}
\end{equation*}
$$

Let us put $\alpha \bar{\alpha}=\widehat{\alpha}$ and $\widehat{\beta}=\alpha(\Phi, \bar{\alpha})$ in (2.23) we get

$$
\begin{equation*}
J(Z, T)[\beta A(\bar{\alpha})-\alpha(\bar{\alpha})]=J(T, \Phi Z) \widehat{\beta} . \tag{2.24}
\end{equation*}
$$

Replacing Z by ΦZ in (2.24) we get

$$
\begin{equation*}
J(\Phi Z, T)\left[\beta^{2}-\bar{\alpha}\right]=\widehat{\beta} J(T, Z) . \tag{2.25}
\end{equation*}
$$

Replacing Z by ΦZ in (2.25) we get

$$
\begin{equation*}
J\left(\Phi^{2} Z, T\right)=\frac{\widehat{\beta}}{\bar{\alpha}-\beta^{2}} J(\Phi Z, T) \tag{2.26}
\end{equation*}
$$

On making use of (2.25) and (1.4) in (2.26) we get

$$
\begin{equation*}
\frac{\bar{\alpha}-\beta^{2}}{\widehat{\beta}} J(Z, T)=\frac{\widehat{\beta}}{\bar{\alpha}-\beta^{2}} J(Z, T) . \tag{2.27}
\end{equation*}
$$

From (2.27) it follows immediately that

$$
\begin{equation*}
J(Z, T)=0 \text { unless }\left(\bar{\alpha}-\beta^{2}\right)^{2}-(\widehat{\beta})^{2} \neq 0 \tag{2.28}
\end{equation*}
$$

Using (2.28) in (2.28) we get

$$
\begin{equation*}
\beta J(Z, \Phi X)+\alpha^{2} J(Z, X)=0 \tag{2.29}
\end{equation*}
$$

Differentiating (2.28) covariantly along Y and using the fact that $\nabla J=0$ we get

$$
\begin{equation*}
J(Z, \Phi Y)=0 . \tag{2.30}
\end{equation*}
$$

In view of (2.30) and (2.29), we see that $J(Y, Z)=0$.

References

[1] L. S. Das and J. Sengupta. On conformally flat LP-Sasakian manifolds with a coefficient a. Bull. Calcutta Math. Soc., 98(4):377-382, 2006.
[2] L. P. Eisenhart. Symmetric tensors of the second order whose first covariant derivatives are zero. Trans. Amer. Math. Soc., 25(2):297-306, 1923.
[3] H. Levy. Symmetric tensors of the second order whose covariant derivatives vanish. Ann. of Math. (2), 27(2):91-98, 1925.
[4] R. Sharma. Second order parallel tensors on contact manifolds. Algebras Groups Geom., 7(2):145-152, 1990.

Received March 13, 2015.

Department of Mathematics, Kent State University,
New Philadelphia, Ohio 44663, USA
E-mail address: ldas@kent.edu

[^0]: 2010 Mathematics Subject Classification. 53C15, 53C25.
 Key words and phrases. Second Order parallel tensor, LP-Sasakian manifold with a coefficient, Parallel 2-form.

