ON SOME LOCAL PROPERTIES OF THE CONJUGATE FUNCTION AND THE MODULUS OF CONTINUITY OF k-TH ORDER

ANA DANELIA

Abstract

In the present paper we study a local smoothness of the conjugate functions of several variables in the space $\mathbb{C}\left(T^{n}\right)$. The direct estimates are obtained and exactness of these estimates are established by proper examples.

1. Introduction

Let $\mathbb{R}^{n}\left(n=1,2, \ldots ; \mathbb{R}^{1} \equiv \mathbb{R}\right)$ be the n-dimensional Euclidean space of points $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ with real coordinates. Let B be an arbitrary nonempty subset of the set $M=\{1, \ldots, n\}$. Denote by $|B|$ the cardinality of B. Let x_{B} be such a point in \mathbb{R}^{n} whose coordinates with indices in $M \backslash B$ are zero.

As usual $\mathbb{C}\left(T^{n}\right)\left(\mathbb{C}\left(T^{1}\right) \equiv \mathbb{C}(T)\right)$, where $T=[-\pi, \pi]$, denotes the space of all continuous functions $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ that are 2π-periodic in each variable, endowed with the norm

$$
\|f\|=\max _{\bar{x} \in T^{n}}|f(\bar{x})| .
$$

If $f \in L\left(T^{n}\right)$, then following Zhizhiashvili [10], we call the expression

$$
\tilde{f}_{B}(\bar{x})=\left(-\frac{1}{2 \pi}\right)^{|B|} \int_{T^{|B|}} f\left(\bar{x}+s_{B}\right) \prod_{i \in B} \cot \frac{s_{i}}{2} d s_{B}
$$

the conjugate function of n variables with respect to those variables whose indices form the set B (with $\widetilde{f}_{B} \equiv \widetilde{f}$ for $n=1$).

Suppose that $f \in \mathbb{C}\left(T^{n}\right), 1 \leq i \leq n$, and $h \in T$. Then for each $\bar{x} \in T^{n}$ let us consider the difference of k-th order

$$
\Delta_{i}^{k}(h) f(\bar{x})=\sum_{j=0}^{k}(-1)^{k-j}\binom{k}{j} f\left(x_{1}, \ldots, x_{i-1}, x_{i}+j h, x_{i+1}, \ldots, x_{n}\right)
$$

[^0]and define the partial modulus of continuity of k-th order of the function f with respect to the variable x_{i} by the equality
$$
\omega_{k, i}(f ; \delta)=\sup _{|h| \leq \delta}\left\|\Delta_{i}^{k}(h) f\right\| .
$$
$\left(\Delta_{i}^{k}(h) f(x) \equiv \Delta^{k}(h) f(x)\right.$ and $\omega_{k, i}(f ; \delta) \equiv \omega_{k}(f ; \delta)$ for $\left.n=1\right)$.
Definition 1. We say that a function φ is almost decreasing in $[a, b]$ if there exists a positive constant A such that $\varphi\left(t_{1}\right) \geq A \varphi\left(t_{2}\right)$ for $a \leq t_{1} \leq t_{2} \leq b$.
Definition 2. A function $\omega_{k}:[0, \pi] \rightarrow \mathbb{R}$ which satisfies the following four conditions:
(1) $\omega_{k}(0)=0$,
(2) ω_{k} is nondecreasing,
(3) ω_{k} is continuous,
(4) $\frac{\omega_{k}(t)}{t^{k}}$ is almost decreasing in $[0, \pi]$,
we call the modulus of continuity of k-th order.
Definition 3. We say that the modulus of continuity of k-th order ω_{k} satisfies Zygmund's condition if
$$
\int_{0}^{\delta} \frac{\omega_{k}(t)}{t} d t+\delta^{k} \int_{\delta}^{\pi} \frac{\omega_{k}(t)}{t^{k+1}} d t=O\left(\omega_{k}(\delta)\right), \quad \delta \rightarrow 0+
$$

Let ω_{k} be a modulus of continuity of k-th order. Then we denote by $H_{i}\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)(i=1, \ldots, n)$ the set of all functions $f \in \mathbb{C}\left(T^{n}\right)$ such that

$$
\omega_{k, i}(f ; \delta)=O\left(\omega_{k}(\delta)\right), \quad \delta \rightarrow 0+, \quad i=1, \ldots, n
$$

We set

$$
H\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)=\bigcap_{i=1}^{n} H_{i}\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)
$$

By I we denote the following subset of the set \mathbb{R}^{n} :

$$
\{\bar{x}: \bar{x}=(\underbrace{x, \ldots, x}_{n}) ; x \in T\} .
$$

Moduli of smoothness play a basic role in approximation theory, Fourier analysis and their applications. For a given function f, they essentially measure the structure or smoothness of the function via the k-th difference $\Delta_{i}^{k}(h) f(\bar{x})$. In fact, for the functions f belonging to the Lebesgue space $L^{p}(1 \leq p<$ $+\infty)$ or the space of continuous functions \mathbb{C}, the classical k-th modulus of continuity has turned out to be a rather good measure for determining the rate of convergence of best approximation. On this direction one could see books by V. K. Dzyadyk, I. A. Shevchuk [4] and by R. Trigub, E. Belinsky [9].

In the theory of functions of real variables there is a well-known theorem of Privalov on the invariance of the functional class $\operatorname{Lip}(\alpha, C(T))(0<\alpha<1)$ under the conjugate function \widetilde{f}. If $\alpha=1$ the invariance of the functional class
fails. Later Zygmund [10] established that the analogous theorem is valid in the case $\alpha=1$ for the modulus of continuity of the second order.Afterwards Bari and Stechkin obtained results connected with behaviour of the moduli of continuity of k-th order of the function f and its conjugate function. They obtained the necessary and sufficient condition on the modulus of continuity of k-th order ω_{k} for the invariance of $H\left(\omega_{k} ; \mathbb{C}(T)\right)$ class under the conjugate function \widetilde{f}. As to the functions of many variables, the first result in this direction belongs to Cesari and Zhak. They showed that the class $\operatorname{Lip}\left(\alpha, C\left(T^{2}\right)\right)(0<\alpha<1)$ is not invariant under the conjugate operators of two variables. Later, there were obtained the sharp estimates for partial moduli of continuity of different orders in the space of continuous functions [2, 3, 7]. The cases when moduli of continuity of different orders satisfy Zygmund's condition were considered in works $[1,5,6]$. In the present work, we study the behaviour of the smoothness of the conjugate functions \widetilde{f}_{B} on the set I. If we restrict the function \widetilde{f}_{B} on the set I, we can consider it as a function of one variable.the following question arises: what we can say about the smoothness of this 'new function' if the function f belongs to $H\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)$ and the modulus of continuity ω_{k} satisfies Zygmund's condition.

We now state the facts on which the proof of the main results is based.
Lemma 1 (see [3, p. 283]). Let ω_{k} be a modulus of continuity of k-th order, I_{l} be a system of pairwise disjoint intervals, $I_{l} \subset T$ for each $l(l=1,2, \ldots)$. Let $\left(f_{l}\right)_{l \geq 1}$ be a sequence of functions such that for each l, $f_{l} \in \mathbb{C}(T)$ and $f_{l}(x)=0$ when $x \in T \backslash I_{l}$. If

$$
\omega_{k}\left(f_{l} ; \delta\right) \leq \omega_{k}(\delta), \quad 0 \leq \delta \leq \pi, \quad l=1,2, \ldots
$$

and the function f is defined by the equality $f(x)=\sum_{l=1}^{\infty} f_{l}(x)$, then

$$
\omega_{k}(f ; \delta) \leq(k+1) \omega_{k}(\delta), \quad 0 \leq \delta \leq \pi .
$$

Note that the case $k=1$ is considered in [8, Lemma 1].
Remark 1. [3, p. 285] By the definition of the partial modulus of continuity of the multivariable function $f \in \mathbb{C}\left(T^{n}\right)$, it is easy to obtain the multivariable versions of Lemma 1 for partial moduli of continuity.

2. Main Results

We can state and prove the following Theorem.
Theorem 1. a) Let $f \in H\left(\omega_{k}, \mathbb{C}\left(T^{n}\right)\right)$ and modulus of continuity of k-th order satisfies Zygmund's condition. Then

$$
\begin{equation*}
\sup _{\bar{h} \in I,|h| \leq \delta} \sup _{\bar{x} \in I}\left|\Delta_{j}^{k}(h) \widetilde{f}_{B}(\bar{x})\right|=O\left(\omega_{k}(\delta)|\ln \delta|^{|B|-1}\right), \quad j \in B, \quad \delta \rightarrow 0+, \tag{1}
\end{equation*}
$$

(2) $\sup _{\bar{h} \in I,|h| \leq \delta} \sup _{\bar{x} \in I}\left|\Delta_{j}^{k}(h) \widetilde{f}_{B}(\bar{x})\right|=O\left(\omega_{k}(\delta)|\ln \delta|^{|B|}\right), \quad j \in M \backslash B, \quad \delta \rightarrow 0+$.
b) For each $B \subseteq M$ there exist functions F and G such that $F, G \in$ $H\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)$ and
(3) $\sup _{\bar{h} \in I,|h| \leq \delta} \sup _{\bar{x} \in I}\left|\Delta_{j}^{k}(h) \widetilde{F}_{B}(\bar{x})\right| \geq C \omega_{k}(\delta)|\ln \delta|^{|B|-1}, \quad j \in B, \quad 0 \leq \delta \leq \delta_{0}$,

$$
\begin{equation*}
\sup _{\bar{h} \in I,|h| \leq \delta} \sup _{\bar{x} \in I}\left|\Delta_{j}^{k}(h) \widetilde{G}_{B}(\bar{x})\right| \geq C \omega_{k}(\delta)|\ln \delta|^{|B|}, \quad j \in M \backslash B, \quad 0 \leq \delta \leq \delta_{0} \tag{4}
\end{equation*}
$$

where C and δ_{0} are positive constants.
Proof. a) Part a) is the particular case of the first part of the theorem given in [3].
b) Without loss of generality, we shall carry out the proof of part (b) for the case $B=\{1, \ldots, m\}(1 \leq m \leq n)$.

Let first $B=\{1, \ldots, m\}(1 \leq m<n)$. Let us consider a strictly decreasing sequence of positive numbers $\left(b_{l}\right)_{l \geq 1}$ such that

$$
\sum_{l=0}^{\infty} b_{l} \leq 1 \quad\left(b_{0}=0\right)
$$

We set

$$
\begin{aligned}
\tau_{p} & =2 \sum_{j=0}^{p-1} \omega_{k}^{-1}\left(b_{j}\right), \\
\tau_{p}^{*} & =\tau_{p}+\frac{2}{k} \omega_{k}^{-1}\left(b_{p}\right), \\
\tau_{p, q} & =\tau_{p}+q\left(\tau_{p}^{*}-\tau_{p}\right), \quad q=2, \ldots, k-1 ; p=1,2, \ldots,
\end{aligned}
$$

where $\omega_{k}^{-1}\left(b_{p}\right),(p=1,2, \ldots)$ is a certain element of the set $\left\{t: \omega_{k}(t)=b_{p}\right\}$.
Let $\tau_{p} \equiv \tau_{p, 1}$ and $\tau_{p+1} \equiv \tau_{p, k}$. We define the functions $g_{p, q}$ and $h_{p}(p=$ $1,2, \ldots ; q=1, \ldots, k-1)$ in T as follows:

$$
\begin{gathered}
g_{p, q}(x)= \begin{cases}\frac{\left(x-\tau_{p, q}\right)^{k}\left(\tau_{p, q+1}-x\right)^{k}}{\left(\tau_{p}^{*}-\tau_{p}\right)^{2 k}}, & x \in\left[\tau_{p, q} ; \tau_{p, q+1}\right], \\
0, & \text { otherwise. }\end{cases} \\
h_{p}(x)= \begin{cases}0, & x \in\left[-\pi ; 2 \tau_{p}-\tau_{p}^{*}\right], \\
\frac{\left(x+\tau_{p}^{*}-2 \tau_{p}\right)^{k}}{\left(\tau_{p}^{*}-\tau_{p}\right)^{k}}, & x \in\left(2 \tau_{p}-\tau_{p}^{*} ; \tau_{p}\right], \\
1, & x \in\left(\tau_{p} ; \pi-\tau_{p}^{*}+\tau_{p}\right] \\
\frac{(\pi-x)^{k}}{\left(\tau_{p}^{*}-\tau_{p}\right)^{k}}, & x \in\left(\pi-\tau_{p}^{*}+\tau_{p} ; \pi\right] .\end{cases}
\end{gathered}
$$

We define the function $G_{p, q}(p=1,2, \ldots ; q=1, \ldots, k-1)$ in T^{n} as follows:

$$
G_{p, q}\left(x_{1}, \ldots, x_{n}\right)=b_{p} \prod_{i=1}^{m} h_{p}\left(x_{i}\right) g_{p, q}\left(x_{m+1}\right)
$$

Consider the function G defined by the series

$$
G\left(x_{1}, \ldots, x_{n}\right)=\sum_{p=1}^{\infty} \sum_{q=1}^{k-1} G_{p, q} .
$$

We extend this function $G 2 \pi$-periodically in each variable to the whole space \mathbb{R}^{n}.

We claim that

$$
G \in H\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)
$$

It is known [4, p. 195] that if the function of one variable f has k th derivative on $(x, x+k h)$ then

$$
\Delta_{k}(h) f(x)=h^{k} f^{(k)}(x+k \theta h), \quad 0<\theta<1 .
$$

In our situation using the definition of the function $G_{p, q}$ and this fact we can conclude that

$$
\left|\Delta_{i}^{k}\left(G_{p, q} ; h\right)\right| \leq D_{1}\left|h^{k}\right| \frac{b_{p}}{\left(\tau_{p}^{*}-\tau_{p}\right)^{k}}, \quad D_{1}=\text { const, } \quad i=1, \ldots, m+1
$$

Using this fact and the fact that $\frac{\omega_{k}(t)}{t^{k}}$ is almost decreasing we get

$$
\omega_{k, i}\left(G_{p, q} ; \delta\right) \leq D_{2} \omega_{k}(\delta), \delta \rightarrow 0+, \quad D_{2}=\text { const }
$$

By Remark for Lemma 1 we conclude

$$
\omega_{k, i}(G ; \delta)=O\left(\omega_{k}(\delta)\right), \quad \delta \rightarrow 0+, i=1, \ldots, m+1 .
$$

If $i \in m+2, \ldots, n$ then it is easy to conclude that

$$
\omega_{k, i}(G ; \delta)=O\left(\omega_{k}(\delta)\right), \quad \delta \rightarrow 0+
$$

Hence

$$
G \in H\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)
$$

Let $h=\tau_{p}^{*}-\tau_{p}$ and $x_{i}=\tau_{p}, i=1, \ldots, n$.
According to the definition of the function G we obtain

$$
\begin{aligned}
\left|\Delta_{n}^{k}(h) \widetilde{G}_{\{1, \ldots, m\}}\left(\tau_{p}, \ldots, \tau_{p}\right)\right| & \geq D_{3} b_{p} \int_{\left[\tau_{p}^{*}-\tau_{p}, 1\right]^{m}} \prod_{i=1}^{m} s_{i}^{-1} d s_{i} \\
& =D_{3} \omega_{k}\left(\tau_{p}^{*}-\tau_{p}\right)\left|\ln \left(\tau_{p}^{*}-\tau_{p}\right)\right|^{m}, D_{3}=\mathrm{const}
\end{aligned}
$$

Therefore, the inequality (4) is proved.
To prove the inequality (3) we use the function F considered in [3, p. 289]

$$
F(x)=F\left(x_{1}, x_{2}, \ldots, x_{n}\right)=
$$

$$
\left\{\begin{array}{lll}
\prod_{i=1}^{m} x_{i}^{k-1}\left(\pi-x_{i}\right)^{k-1} \int_{x_{1}\left(\pi-x_{1}\right)}^{2 x_{1}\left(\pi-x_{1}\right)} \cdots \int_{x_{m}\left(\pi-x_{m}\right)}^{2 x_{m}\left(\pi-x_{m}\right)} \frac{\min _{i \leq i \leq m} \omega_{k}\left(t_{i}\right)}{\prod_{i=1}^{m} t_{i}^{k}} \times & x_{i} \in[0, \pi], i=1, \ldots, m, \\
\times \prod_{i=1}^{m} \frac{\left(t_{i}-x_{i}\left(\pi-x_{i}\right)\right)^{k}}{t_{i}^{k}} \frac{\left(2 x_{i}\left(\pi-x_{i}\right)-t_{i}\right)^{k}}{t_{i}^{k}} d t, & x_{j} \in[-\pi, \pi], \\
0, & & j=m+1, \ldots, n, \\
& \text { if at least one } x_{i} \in[-\pi, 0] \\
& (i=1, \ldots, m) .
\end{array}\right.
$$

We extend the function $F 2 \pi$-periodically in each variable to the whole space \mathbb{R}^{n}.

In [3] we have proved that $F \in H\left(\omega_{k} ; \mathbb{C}\left(T^{n}\right)\right)$ and

$$
\begin{aligned}
& \left|\Delta_{m}^{k}(-h) \widetilde{F}_{\{1, \ldots, m\}}(0, \ldots, 0, \ldots, 0)\right| \\
& \quad \geq D_{4} \int_{[0, \pi]^{m}} \min \left(h^{k}, s_{m}^{k}\right) s_{m}^{-k} \min _{1 \leq i \leq m} \omega_{k}\left(s_{i}\right) \prod_{i=1}^{m} s_{i}^{-1} d s_{i},
\end{aligned}
$$

where D_{4} is a positive constant.
Using the fact that ω_{k} satisfies Zygmund's condition we get

$$
\begin{aligned}
\mid \Delta_{m}^{k}(-h) \widetilde{F}_{\{1, \ldots, m\}}(0, \ldots, & 0, \ldots, 0) \mid \\
& \geq D_{5} \omega_{k}\left(\tau_{p}^{*}-\tau_{p}\right)\left|\ln \left(\tau_{p}^{*}-\tau_{p}\right)\right|^{m-1}, \quad D_{5}=\text { const }
\end{aligned}
$$

The inequality (3) is proved.
Corollary 1. Let the modulus of continuity ω satisfies Zygmund's condition. Then for each $B \subset\{1, \ldots, n\}$ there exist a function $f \in H\left(\omega, \mathbb{C}\left(T^{n}\right)\right)$ and C, δ_{0} positive constants for which we have

$$
\sup _{\bar{h} \in I,|h| \leq \delta} \sup _{\bar{x} \in I}\left|\widetilde{f}_{B}(\bar{x}+\bar{h})-\widetilde{f}_{B}(\bar{x})\right| \geq \omega(\delta)|\ln \delta|^{|B|}
$$

where $0 \leq \delta \leq \delta_{0}, B \neq\{1,2, \ldots, n\}$.

$$
\sup _{\bar{h} \in I,|h| \leq \delta} \sup _{\bar{x} \in I}\left|\widetilde{f}_{B}(\bar{x}+\bar{h})-\widetilde{f}_{B}(\bar{x})\right| \geq \omega(\delta)|\ln \delta|^{n-1},
$$

where $0 \leq \delta \leq \delta_{0}, B=\{1,2, \ldots, n\}$.

References

[1] A. Danelia. On certain properties of the conjugate functions of many variables in the spaces $C\left(\mathbb{T}^{m}\right)$ and $L\left(\mathbb{T}^{m}\right)$. East J. Approx., 7(4):401-415, 2001.
[2] A. Danelia. Estimates for the modulus of continuity of conjugate functions of many variables. East J. Approx., 13(1):7-19, 2007.
[3] A. Danelia. Conjugate function and the modulus of continuity of k-th order. Acta Math. Hungar., 138(3):281-293, 2013.
[4] V. K. Dzyadyk and I. A. Shevchuk. Theory of uniform approximation of functions by polynomials. Walter de Gruyter GmbH \& Co. KG, Berlin, 2008. Translated from the Russian by Dmitry V. Malyshev, Peter V. Malyshev and Vladimir V. Gorunovich.
[5] M. M. Lekishvili and A. N. Danelia. A multidimensional conjugation operator, and deformations of the classes $Z\left(\omega^{(2)} ; C\left(T^{m}\right)\right)$. Mat. Zametki, 63(6):853-861, 1998.
[6] V. A. Okulov. A multidimensional analogue of a theorem of Privalov. Mat. Sb., 186(2):93-104, 1995.
[7] V. A. Okulov. A multidimensional analogue of a theorem of Zygmund. Mat. Zametki, 61(5):717-727, 1997.
[8] K. I. Oskolkov. The sharpness of the Lebesgue estimate for the approximation of functions with prescribed modulus of continuity by Fourier sums. Trudy Mat. Inst. Steklov., 112:337-345, 389, 1971. Collection of articles dedicated to Academician Ivan Matveevič Vinogradov on his eightieth birthday, I.
[9] R. M. Trigub and E. S. Bellinsky. Fourier analysis and approximation of functions. Kluwer Academic Publishers, Dordrecht, 2004.
[10] L. Zhizhiashvili. Trigonometric Fourier series and their conjugates, volume 372 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 1996.

Received November 8, 2015.

Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, 2, University St., Tbilisi 0143,

Georgia

E-mail address: ana.danelia@tsu.ge

[^0]: 2010 Mathematics Subject Classification. 42B35.
 Key words and phrases. conjugate functions of several variables, modulus of continuity.
 This work was funded by Shota Rustaveli National Science Foundation, grant DI/9/5100/13.

