
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
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Abstract. The index of composition of an integer n ≥ 2 is defined as
λ(n) = (log n)/(log γ(n)), where γ(n) stands for the largest square-free
divisor of n. Let ϕ stand for the Euler totient function. We show that the
index of composition of the k-fold iterate of ϕ(n) is 1 on a set of density 1
and that an analogous result holds if n runs over the set of shifted primes.

1. Introduction and notation

The index of composition of an integer n ≥ 2 is defined as λ(n) = (log n)/
(log γ(n)), where γ(n) stands the largest square-free divisor of n. For conve-
nience, we set λ(1) = γ(1) = 1. The index of composition was introduced by
Browkin in 2000. Later, De Koninck and Doyon [3] obtained various results
concerning its global and local behaviour. In particular, they proved that the
average value of λ(n) is 1. This function was also the subject of various papers,
namely De Koninck and Kátai [4], De Koninck, Kátai and Subbarao [5], Zhai
[8], Zhang, Lü and Zhai [9], Zhang and W. Zhai [9] as well as Robert and
Tenenbaum [7]. Recently, De Koninck and Luca [6] proved that the average
value of λ(ϕ(n)), where ϕ is the Euler totient function, is also 1.

For each integer k ≥ 1, let ϕk = ϕ ◦ ϕk−1, with ϕ0(n) = n for all n ∈ N,
stand for the k-fold iterate of the Euler ϕ function. Here, we show that the
index of composition of the k-fold iterate of ϕ(n) is 1 on a set of density 1 and
that an analogous result holds if n runs over the set of shifted primes.

Let ω(n) stand for the number of distinct prime divisors of the integer n ≥ 2,
setting ω(1) = 0. Bassily, Kátai and Wijsmuller [1] obtained the distribution
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of the function ω(ϕk(n)) which counts the number of distinct prime factors of
the k-fold iterate of the Euler function.

We let π(x) stand for the number primes not exceeding x and Ω(n) stand for
the number of prime divisors of n counting their multiplicity, setting Ω(1) = 0.

As usual, we let li(x) :=

∫ x

2

dt

log t
and let π(x; k, `) be the number of primes

p ≤ x such that p ≡ ` (mod k). We let P (n) stand for the largest prime
factor of n ≥ 2 and set P (1) = 1. For convenience, we shall write log2 x for
max(1, log log x), log3 x for max(1, log log2 x), and so on. From here on, the
letter c, with or without subscript, stands for an absolute positive constant,
but not necessarily the same at each occurrence, while the letters p, q,Q, π,
with or without subscript, will always denote primes.

2. Preliminary results

Writing Φ(z) =
1√
2π

∫ ∞

z

e−w2/2 dw (z ∈ R) for the normal distribution func-

tion, and setting

ak =
1

(k + 1)!
, bk =

1

k!
√
2k + 1

(k = 1, 2, . . .),

Bassily, Kátai and Wijsmuller [1] proved that

lim
x→∞

1

x
#

{
n ≤ x :

∣∣∣∣ω(ϕk(n))− ak(log2 x)
k+1

bk(log2 x)
k+1/2

∣∣∣∣ < z

}
= Φ(z),(1)

lim
x→∞

1

π(x)
#

{
p ≤ x :

∣∣∣∣ω(ϕk(p− 1))− (log2 x)
k+1

bk(log2 x)
k+1/2

∣∣∣∣ < z

}
= Φ(z).(2)

Letting ∆(n) := Ω(n)−ω(n), Bassily, Kátai and Wijsmuller [2] proved that,
given any positive integer k, as x → ∞,

(3) ∆(ϕk(n)) = (1 + o(1))ak−1(log2 x)
k (log4 x) for almost all n ≤ x.

Lemma 1. Given a positive integer D and any fixed integer `, let

s(x;D, `) :=
∑
p≤x

p≡` (mod D)

1

p
.

Then, uniformly for D ∈ [1, x], x ≥ 3, if ` = 1 or −1,

s(x;D, `) ≤ c log2 x

ϕ(D)
.

Proof. This is Lemma 2.5 in Bassily, Kátai and Wijsmuller [1]. �

Lemma 2. Given integers k ≥ 0 and D ≥ 1, let Uk(x,D) := #{n ≤ x : D |
ϕk(n)}. Then, for every integer k ≥ 0, there exist constants C(k, 0), C(k, 1),
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C(k, 2), . . . satisfying C(k, r) ≤ C(k, r + 1) for r = 0, 1, 2, . . ., such that

Uk(x,D) ≤ C(k,Ω(D))
x(log2 x)

kΩ(D)

D
(1 ≤ D ≤ x, x > ee).

Proof. The proof of this result can be found in Bassily, Kátai and Wijsmuller
[2]. �

3. Main results

Theorem 1. Given any positive integer k,

λ(ϕk(n)) → 1 as n → ∞ on a set of density 1.

Theorem 2. Let k be a positive integer. Given an arbitrarily small number
ε > 0,

1

π(x)
#{p ≤ x : |λ(ϕk(p− 1))− 1| > ε} → 0 as x → ∞.

4. Proof of Theorem 1

One can write any integer n ≥ 2 as n = A(n) · B(n), where A(n) is the
square-full part of n and B(n) its square-free part. In light of Lemma 2, we
have

U∗
k (x, p

2) := #
{x
2
< n ≤ x : p2 | ϕk(n)

}
≤ C(k, 2)

x(log2 x)
2k

p2
.

As a consequence of this inequality, we have that∑
p>(log2 x)

k

U∗
k (x, p

2) ≤ 2C(k, 2)x(log2 x)
2k

∫ ∞

(log2 x)
k

du

u2 log u

≤ 4C(k, 2)x

k log3 x
= o(x) (x → ∞).

It follows from this that

(4) P (A(ϕk(n))) ≤ (log2 x)
k for almost all n ≤ x.

Hence, assuming (4), we have, in light of (3),

A(ϕk(n))

γ(A(ϕk(n)))
=

∏
pα‖ϕk(n)

pα−1 ≤ ((log2 x)
k)∆(ϕk(n))

≤ exp{2kak−1(log2 x)
k log3 x log4 x} ≤ exp{εx · log x},

say. It follows from this that, for almost all n ≤ x, we have

γ(ϕk(n)) = γ(A(ϕk(n))) · γ(B(ϕk(n)))

≥ γ(B(ϕk(n)))A(ϕk(n)) exp{−εx · log x}
= B(ϕk(n))A(ϕk(n)) exp{−εx · log x}
= ϕk(n) exp{−εx · log x}.
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Hence, for all but o(x) of integers n ∈ [x/2, x], we have

λ(ϕk(n)) =
logϕk(n)

log γ(ϕk(n))
≤ logϕk(n)

logϕk(n)− εx · log x

≤ 1 +
εx log x

logϕk(n)
.(5)

On the other hand,

ϕk(n)

n
=

k−1∏
j=0

ϕj+1(n)

ϕj(n)
≥

(∏
p≤x

(
1− 1

p

))k

≥ c(log x)−k,

thereby implying that

logϕk(n) ≥ c log n− ck log2 x ≥ c log(x/2)− ck log2 x (n ∈ [x/2, x]),

which substituted in (5) yields

λ(ϕk(n)) ≤ 1 +
εx log x

c(log(x/2)− k log2 x)
≤ 1 + o(1),

thus completing the proof of Theorem 1.

5. Proof of Theorem 2

As in the paper of Bassily, Kátai and Wijsmuller [1], we say that a k+1-tuple
of primes (q0, q1, . . . , qk) is a k-chain if qi−1 | qi − 1 for i = 1, 2, . . . , k.

Before we start the proof of Theorem 2, we shall prove the following lemma.

Lemma 3. If p0 | ϕk(n), then there exists an `-chain (p0, p1, . . . , p`) with ` ≤ k
and p` | n.

Proof. We use an induction argument. First of all, in the case k = 1, if
p0 | ϕ(n), then either p0 | n, in which case we are done, or p0 | p1 − 1 with
p1 | n, in which case the result holds also. So let us assume that the result
is true up to k − 1. If p0 | ϕk(n), then either p0 | ϕk−1(n), in which case we
are done, or p1 | ϕk−1(n) with p1 ≡ 1 (mod p0). By applying the induction
argument, the result is then also true for k. �

We are now ready to prove Theorem 2.

Proof of Theorem 2. Let δ > 0 be small number and let x be a fixed large
number.

We first drop those primes p ≤ x for which any of the following three
conditions holds:

(i) |ω(ϕj(p− 1))− aj(log2 x)
j+1| > δ(log2 x)

j+1 for at least one j ∈ {1, . . . ,
k};

(ii)
∑
q|p−1

xδ<q<x1/3

1 ≤ 2;

(iii) P (p− 1) > x1−δ.
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Indeed, the number of primes p ≤ x thereby dropped is at most cδx/ log x.
To see this, observe that, in light of (2), the number of those primes p ≤
x dropped by condition (i) does not exceed c1δπ(x), while the number of
those primes p ≤ x dropped through condition (iii) clearly does not exceed
c2δx/ log x. Finally, to account for the number of primes p ≤ x dropped
through condition (ii), observe that, setting

ω1(p− 1) :=
∑
q|p−1

xδ<q<x1/3

1,

we have ∑
p≤x

ω1(p− 1)−
∑

xδ<q<x1/3

1

q − 1

2

≤ c3li(x)
∑

xδ<q<x1/3

1

q

and therefore, since
∑

xδ<q<x1/3

1

q − 1
= log(1/3) + log(1/δ) + o(1) (as x becomes

large), we may conclude that the number of those primes p ≤ x dropped
through condition (ii) is at most c3δ li(x). It follows from these observations
that, indeed, the number of primes p ≤ x thereby dropped by conditions (i),
(ii) and (iii) is at most cδx/ log x.

We shall now denote by ℘x the set of those primes p ≤ x not dropped by
any of the above three conditions and further introduce the quantities

(6) z = z(x) =
log x

2k+1 · (log2 x)5k+1
, T = T (x) = b(log2 x)5k+1c.

Given a prime Q ≤ z, let us count the number of those primes p ∈ ℘x for

which Q2kT | ϕk(p − 1) and write ϕk−1(p − 1) = πα1
1 · · ·παm

m . For each k ∈ N,
two separate cases can occur:

• Case I(k): Q2k−1T | ϕk−1(p− 1);

• Case II(k): there exists a prime πj for which πj−1 ≡ 0 (mod Qb2k−1T/mc).

We start with Case II(k). Set q0 := πj. For any given such q0, there exists
a prime p and a `-chain (q0, q1, . . . , q`) with ` ≤ k for which q` | p−1. We then
have two possibilities: either ` = k or ` < k. Assume first that ` = k. In this
case, let S denote the scenario

qj+1−1 ≡ 0 (mod qj) for j = 1, . . . , k−1 and q0−1 ≡ 0 (mod Qb2k−1T/mc).

Summing over all such possible scenarios S, we get

(7)
∑
S

π(x; qk−1, 1) ≤ C(δ) li(x)
∑
S

1

qk−1

.

Observe that ∑
S

1

qk−1

=
∑
q0

1

q0
. . .
∑
qk−1

1

qk−1
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≤ c log2 x
∑
q0

1

q0
. . .
∑
qk−2

1

qk−2

...

≤ c(log2 x)
k−1

∑
q0−1≡0 (mod Qb2k−1T/mc)

1

q0
.

≤ c(log2 x)
k

Qb2k−1T/mc ,(8)

where we used Lemma 1. It follows from the definition of T given in (6) that

b2k−1T/mc ≥ (1− 2δ)2k−1(log2 x)
3k ≥ 2k−2(log2 x)

4k,

say. Using this last estimate in (8), we obtain that

(9)
∑
S

1

qk−1

≤ c(log2 x)
k

Q2k−2(log2 x)
4k .

In the case where ` < k, one can easily show that the same bound (as in (9))
still holds. Hence, in both cases, by substituting (9) in (7), it follows that the
number of primes p ∈ ℘x satisfying Case II(k) is no more than

c(log2 x)
k

Q2k−2(log2 x)
4k C(δ) li(x).

The Case I(k) can be reduced to the Case I(k − 1), for which the estimate
is similar. In Case I(0), we have QT | p− 1, which occurs less than c li(x)/QT

times. Hence, from the above reasoning, it follows that

#{p ∈ ℘x : Q2kT | ϕk(p− 1)} ≤ cC(δ)li(x)
(log2 x)

k

Q2k−2(log2 x)
4k .

Thus, the number of primes p ∈ ℘x for which there is at least one prime Q ≤ z

for which Q2kT | ϕk(p− 1) is at most o(li(x)) as x → ∞.
Let us now introduce the function

Ek(p; z) :=
∏

qαq ‖ϕk(p−1)
q≤z

qαq .

Observe that we have just established that for every q ≤ z with qαq‖ϕk(p− 1),
we can assume that αq ≤ 2kT and that this holds for all p ∈ ℘x with at most
o(li(x)) exceptions.

Hence, using (6), it follows that

(10) Ek(p; z) ≤

(∏
q≤z

q

)2kT

≤ exp{2k+1Tz} ≤ exp

{
log x

log log x

}
.
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Let P2(n) := maxQ2|nQ
2 stand for the largest prime squared divisor of n,

setting P2(n) = 1 if n is square-free. We then have

#{p ≤ x : Q2 | ϕk(p− 1)} ≤ #{n ≤ x : Q2 | ϕk(n)}

≤ C(k, 2)x · (log2 x)2k

Q2
,

from which it follows that∑
Q>Y

#{p ≤ x : Q2 | ϕk(p− 1)} ≤ c
x · (log2 x)2k

Y log Y
,

which itself implies that

1

π(x)
#{p ≤ x : P2(ϕk(p− 1)) > (log x · (log2 x)2k)2} → 0 as x → ∞.

It follows from this estimate that we only need to consider those primes p ≤ x
such that P2(ϕk(p− 1)) ≤ (log x · (log2 x)2k)2.

Recalling the definition of z = z(x) provided in (6), we now introduce the
interval

L = L(x) = [z(x), (log x)(log2 x)
2k].

For each Q ∈ L, we will now estimate

H(Q) := #{p ∈ ℘x : Q2 | ϕk(p− 1)}.
One can easily see that if Q2 | ϕk(p − 1), then one of the following situation
occurs:

(a) Q3 | ϕk−1(p− 1);
(b) Q2‖ϕk−1(p− 1) and π | ϕk−1(p− 1) with π ≡ 1 (mod Q);
(c) there exist π1, K1 ∈ ℘ such that Q | π1 − 1, Q | K1 − 1, π1 6= K1,

π1K1 | ϕk−1(p− 1).

In the worst case scenario, that is in case (c), we have the following situation:

(R) :
Q → π1 → π2 → · · · → πk

Q → K1 → K2 → · · · → Kk
πkKk | p− 1.

(Here, πj → πj+1 means that πj+1 − 1 ≡ 0 (mod πj).)
Now, using Lemma 1, the number of such primes p ≤ x does not exceed∑

(R)

π(x;πkKk, 1) ≤ C(δ)li(x)
∑
(R)

1

πkKk

≤ C(δ)li(x)(log2 x)
2
∑
(R)

1

πk−1Kk−1

...

≤ C(δ)li(x)(log2 x)
2(k−1)

∑
π1−1≡0 (mod Q)
K1−1≡0 (mod Q)

1

π1K1
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� C(δ)li(x)
(log2 x)

2k

Q2
.

Since it is clear that ∑
Q∈L

1

Q2
≤ c

z(x) log z(x)

and since the contribution of the other cases, namely cases (a) and (b), is no
larger than the worst case, we obtain that

P2(ϕk(p− 1)) ≤ z2(x) for all but o(π(x)) of the primes p ∈ ℘x.

Let us now set
Vk(p; z) :=

∏
qαq ‖ϕk(p−1)

q>z

qαq .

Since Vk(p; z) =
∏

q|ϕk(p−1)
q>z

q for all p ∈ ℘x, with the possible exception of o(π(x))

primes, it follows, using (10), that

γ(ϕk(p− 1)) ≥ ϕk(p− 1)

Ek(p; z)
≥ ϕk(p− 1) · x−εx ,

where εx → 0 as x → ∞, so that

λ(ϕk(p−1)) =
logϕk(p− 1)

log γ(ϕk(p− 1))
≤ logϕk(p− 1)

logϕk(p− 1)− εx log x
= 1+

εx log x

logϕk(p− 1)
,

thereby implying

#{p ≤ x : |λ(ϕk(p− 1))− 1| ≥ ε} ≤ C(δ)π(x) + o(π(x)),

thus completing the proof of Theorem 2. �
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[4] J. M. De Koninck and I. Kátai. On the mean value of the index of composition of an
integer. Monatsh. Math., 145(2):131–144, 2005.
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Québec G1V 0A6,
Canada
E-mail address: jmdk@mat.ulaval.ca

Imre Kátai,
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