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Abstract. The paper presents a survey of results related to continuity
properties of dyadic integrals used in solving the problem of recovering,
by generalized Fourier formulas, the coefficients of series with respect to
multiple Haar and Walsh systems.

1. Introduction

This paper can be considered as a supplement and a continuation of the
surveys [27] and [22]. We concentrate here first of all on continuity properties
of dyadic integrals used in the problem of recovering, by generalized Fourier
formulas, the coefficients of series with respect to Haar and Walsh systems.

For many classical orthogonal systems the uniqueness problem and the more
general problem of recovering the coefficients can be reduced to the problem of
recovering a function from its derivative with respect to a suitable derivation
basis. In particular to solve the coefficient problem for Haar and Walsh series
it is enough to recover a function (the so-called quasi-measure, defined by the
series) from its derivative with respect to the appropriate dyadic derivation
basis, and this in turn can be done by the choice of a suitable integration
process. The choice of a derivation basis depends on the type of convergence.
The difficulties which should be overcome in applying this method are related
to the fact that the primitive we want to recover is differentiable not everywhere
but outside an exceptional set and one have to impose on the primitive some
continuity assumptions at the points of the exceptional set to guarantee its
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uniqueness. Moreover the type of continuity we are choosing should be implied
by a corresponding assumption on the behaviour of the series.

The Walsh series can be considered on the unit interval or on the dyadic
Cantor group. In the case of the interval, exceptional sets appear unavoidably
even in the case of convergence everywhere. Namely the convergence at a
dyadic rational point does not imply differentiability of the quasi-measure. So
if we want to recover, by our method, the coefficients of everywhere convergent
Walsh series, we have to recover the primitive by the dyadic derivative defined
everywhere outside the set of the dyadic-rational points. In the case of the
one-dimensional interval, a usual continuity with respect to the dyadic basis is
enough to obtain the uniqueness of the primitive. But in a dimension greater
than one the set of points with at least one dyadic-rational coordinate is not
countable anymore and the continuity with respect to the multidimensional
dyadic bases does not supply the uniqueness. Besides, in the multidimensional
case various types of convergence and various types of corresponding dyadic
bases enter into play, and this fact also affects choice of the type of continuity.

If Walsh and Haar series are considered on the dyadic group then the re-
lation between convergence of the series and dyadic differentiability of the
quasi-measure is more close. Now there is no exceptional points of the type
mentioned above. But an exceptional set can appear, both in the case of group
and interval, if we consider the problem of recovering the coefficient for series
which are convergent not everywhere but outside some set of uniqueness. Be-
sides, some continuity assumptions can be required to justify correctness of
Perron type integrals which are used to solve the coefficient problem. Here
again the type of continuity is implied by the derivation basis we choose.

In this paper we consider unrestricted rectangular convergence (Pringsheim
convergence), regular rectangular convergence and its particular case — square
(or cubic) convergence for multiple series. To these modes of convergence there
correspond the dyadic basis, the regular dyadic basis and the cubic basis,
respectively.

The rectangular convergence of a Walsh series is rather strong assumption
and it implies strong enough type of continuity (so called Saks continuity),
which allows to recover the quasi-measure that is differentiable only outside
some comparatively large exceptional sets. In the case of regular convergence
of multiple Haar and Walsh series such a continuity is not available and more
delicate types of continuity are needed. These are so called ”chessboard” types
of continuity (see [12, 15, 18, 17, 19, 20]). While in the case of ”usual” types of
continuity of quasi-measures (such as continuity with respect of basis or Saks
continuity) we consider the values of the quasi-measure on dyadic intervals
and take the limit as the measure or diameter of dyadic intervals tends to 0
in some sense, the ”chessboard” continuity involves sums of the values of the
quasi-measure on adjacent dyadic intervals, taken with ± signs, and the signs
alternate in the chessboard pattern.
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In Section 2 we introduce basic notation. In Section 3 we consider types of
convergence of multiple Walsh and Haar series and discuss a method of appli-
cation of the dyadic derivatives and the dyadic integrals to the theory of Walsh
and Haar series which is based on the notion of a quasi-measure, generated by
the series. Section 4 is concerned with rectangular convergent series and with
the role which is plaid by the local Saks continuity in defining a Perron type
integral which solves the coefficient problem in the case of this convergence.
In the next sections we deal with uniqueness problems for regular rectangular
convergent multiple Haar and Walsh series and present multidimensional gen-
eralized integrals based on various notions of continuity. We discuss and apply
a local (point-wise) type of “chessboard” continuity in Section 5, a nonlocal
type of “chessboard” continuity in Section 6, and a “chessboard” smoothness
in Section 7.

2. Preliminaries

Here we introduce some notation having in mind both the group setting and
real interval setting for defining Walsh and Haar systems.

We denote the set of non-negative integers by N, the set of positive integers
by N+, the set of all real numbers by R, the set of positive real numbers by
R+.

Let Qd be the set of all dyadic-rational numbers in [0, 1], i.e., the numbers of
the form j

2n
with 0 ≤ j ≤ 2n, n = 0, 1, 2, . . .. The points [0, 1] \Qd constitute

the set of dyadic-irrational numbers in [0, 1].
We denote one-dimensional dyadic intervals by

I
(n)
j :=

[
j

2n
,
j + 1

2n

]
, 0 ≤ j ≤ 2n − 1,

where n = 0, 1, 2, . . . is the rank of the interval.
In what follows q ∈ N+ is usually stands for the dimension. If k = (k1, . . . , kq)

∈ Nq, then we agree 2k to denote the vector (2k1 , . . . , 2kq). The symbol 1 de-
notes the q-dimensional vector (1, . . . , 1), and the symbol 0 the q-dimensional
vector (0, . . . , 0). Let a = (a1, . . . , aq) ∈ Nq and b = (b1, . . . , bq) ∈ Nq. We say
that a ≤ b if ai ≤ bi for all i = 1, . . . , q. We set

‖k‖ := k1 + · · ·+ kq

for every k = (k1, . . . , kq) ∈ Nq.
We write [x] for the integer part of x ∈ R. We denote by int(E) the interior

of a set E and by |E| the Lebesgue measure of E.
By K we denote the unit cube [0, 1]q. An important role in this paper,

starting with Section 4, will be played by the set Z of points having at least
one dyadic-rational coordinate, i.e.,

(2.1) Z :=

q⋃
i=1

([0, 1]i−1 ×Qd × [0, 1]q−i).
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We shall use also a more general set

(2.2) Y :=

q⋃
i=1

([0, 1]i−1 × Yi × [0, 1]q−i)

where Yi, i = 1, 2, . . . , q, is any countable set containing Qd.
Let I be the family of all q-dimensional dyadic intervals

(2.3) I
(n)
j := I

(n1)
j1

× · · · × I
(nq)
jq

inK, where n = (n1, . . . , nq) is the rank of I
(n)
j . We denote by I(n) an arbitrary

interval of rank n and by I(n)(x), where x = (x1, . . . , xq) ∈ K, an interval of
rank n containing x.

The parameter of regularity of a dyadic interval (2.3) (or of a vector a =
(a1, . . . , aq)) is the number reg I(n) (resp. reg a) which is equal to min

i,j
{2ni/2nj}

(resp. min
i,j

{ai/aj}).
The dyadic intervals are used in the theory of dyadic integrals to construct

the so-called dyadic derivation basis B. Because of this it will be convenient
to refer to elements of I as B-intervals. We need not here a rather general
notion of derivation basis as it is usually understood in the Henstock theory of
integration (see [11] or [22]). For us it will be a collection of dyadic intervals
such that for each x, from the unit cube where the basis is defined, there is at
least a sequence {Aj} of sets from this collection with x ∈ Aj for every j and
diameter of Aj tending to 0 (see [3]).

So our dyadic derivation basis B is the union ∪x∈KB(x) where B(x) is, for
each fixed x ∈ K, a sequence (or subsequence) of B-intervals {I(n)(x)} such
that ∩nI

(n)(x) = {x}. Note that if x is an interior point of K, the sequence
{I(n)(x)} is constituted by 2s subsequences of pair-wise overlapping B-intervals
with nested projections to coordinate axis, where s is the number of dyadic-
rational coordinates of the point x. In particular, if x ∈ K \ Z, the sequence
{I(n)(x)} cannot be split into non-overlapping subsequences and x is an interior
point for any interval of this sequence.

We denote by Bρ the ρ-regular dyadic basis constituted by the collection of
those dyadic intervals whose parameter of regularity is ≥ ρ.

Now we pass to the terminology in the group setting.
The dyadic group G is the set of all 0–1 sequences t = (t0, t1, t2, . . .) =

(ti, i ∈ N) with the sequence 0 := (ti = 0, i ∈ N) as zero element of G and
with the group operation ⊕ given by

x⊕ y = (|xi − yi|, i ∈ N)
for every x = (xi, i ∈ N) ∈ G, y = (yi, i ∈ N) ∈ G.

The map

(2.4) λ : t 7→ x =
∞∑
i=1

ti

2i+1
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is one-to-one correspondence between the group G and the interval [0,1], up to
a countable set. Indeed, each x ∈ Qd has two dyadic expansions, a finite one
and an infinite one. If we exclude from G the elements corresponding to one
type of expansion, for example to the infinite one, then the correspondence
(2.4) is one-to-one and the converse mapping λ−1 is defined on [0,1).

We set ∆0
0 := G. Suppose n ∈ N+,

(2.5) j =
n−1∑
i=0

ji 2
i, ji ∈ {0, 1}, 0 ≤ i ≤ n− 1;

then the sets

(2.6) ∆
(n)
j := {t = (ti, i ∈ N) ∈ G : ti = jn−1−i, i = 0, . . . , n− 1}

are in fact cosets of the subgroup ∆
(n)
0 . We’ll write ∆(n) for an arbitrary coset

of rank k. As the function λ maps each set ∆(n) onto a dyadic interval I(n) we
shall often keep for ∆(n) the name dyadic interval of rank n of G.

We shall consider the dyadic product group Gq. For y = (y1, . . . , yq) ∈ Gq

and z = (z1, . . . , zq) ∈ Gq the sum y ⊕ z ∈ Gq is defined by

y ⊕ z = (y1 ⊕ z1, . . . , yq ⊕ zq).

Sets

∆
(n)
j :=∆

(n1)
j1

× . . .×∆
(nq)
jq

,

n = (n1, . . . , nq) ∈ Nq, j = (j1, . . . , jq) ∈ Nq, 0 ≤ j ≤ 2n − 1,
(2.7)

are called the B-intervals of rank n of Gq. We denote by ∆(n) an arbitrary
interval of rank n and by ∆(n)(t), where t = (t1, . . . , tq) ∈ Gq, the unique
interval of rank n containing t. Dyadic intervals

(2.8) ∆
(n)
j := ∆

(n,...,n)
j

are said to be the dyadic cubes of rank n.
The topology onGq is generated by the collection of all dyadic intervals. Each

dyadic interval is clopen in this topology. The dyadic group is metrizable (we
omit details, see [23, Introduction]). We write d(E) for the diameter of a set
E ⊂ Gq in this metric. We have [23, Introduction]

(2.9) d(∆(n)) =
√
2−2n1 + · · ·+ 2−2nq .

The parameter of regularity for B-interval ∆(n) is defined as for the interval
I(n), i.e., as mini,j{2ni/2nj}.

The dyadic group (Gq, ⊕) is a compact Abelian group. Denote by µ the nor-
malized Haar measure on Gq. Thus µ is a translation invariant Borel measure
on Gq such that µ(Gq) = 1. It is clear that

(2.10) µ(∆(n)) = 2−‖n‖.

B-intervals ∆(n) form a basis in Gq. There is a close relation between bases in
Gq and in K. But as we shall see below, the fact that Gq is a zero-dimensional



252 MIKHAIL PLOTNIKOV AND VALENTIN SKVORTSOV

space while [0, 1]q is connected, implies an essential difference in the properties
of the integrals defined with respect to those bases.

Set functions τ : I → R are called B-interval functions. We define the
derivative of a B-interval function with respect to our dyadic bases.

Definition 2.1. Given a B-interval function F , the upper and the lower
B-derivatives of F at a point x, with respect to the basis B, are defined as

DBF (x) := inf
δ>0

sup
d(I(n)(x))≤δ

F (I(n)(x))

|I(n)(x)|

and DBF (x) := sup
δ>0

inf
d(I(n)(x))≤δ

F (I(n)(x))

|I(n)(x)|
,

(2.11)

respectively. IfDBF (x) = DBF (x) we call this common value the B-derivative
DBF (x) at x. We say that F is B-differentiable at x if the B-derivative at
this point exists and is finite.

In the same way the Bρ-derivatives with respect to the basis Bρ and the
derivatives with respect to bases on group Gq are defined.

We also define the continuity with respect to the basis.

Definition 2.2. We say a B-interval function F is B-continuous (resp. Bρ-
continuous) at a point x, if

(2.12) lim
n→∞

F (I(n)(x)) = 0

(
resp. lim

n→∞, reg n≥ρ
F (I(n)(x)) = 0

)
.

3. Modes of convergence of multiple Walsh and Haar series.
Quasi-measure

We recall the definitions (see [5] and [23]).
The Walsh functions (in Paley numeration) on G are defined by

wn(t) := (−1)

∞∑
i=0

tini

where

t = {ti} ∈ G, n =
∞∑
i=0

ni2
i (ni ∈ {0, 1}).

Using mapping converse to λ : G → [0, 1] given by (2.4) we can define Walsh
system on the unit interval as w(λ−1(x)). For these functions we shall use the
same notation: w(x).

The Haar functions on G are defined as follows. χ0 ≡ 1. If n = 2k + j,
k = 0, 1, . . ., j = 0, . . . , 2k − 1, then

χn(t) :=


2k/2, if t ∈ ∆

(k+1)
2j ,

−2k/2, if t ∈ ∆
(k+1)
2j+1 ,

0, if t ∈ G \∆(k)
j .
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The Haar functions on [0, 1] are defined similarly. χ0(x) ≡ 1. If n = 2k + j,
k = 0, 1, . . ., j = 0, . . . , 2k − 1, we put

χn(x) :=


2k/2, if x ∈

(
2j

2k+1 ,
2j+1
2k+1

)
,

−2k/2, if x ∈
(
2j+1
2k+1 ,

2i+2
2k+1

)
,

0, if x ∈ (0, 1) \
[

2j
2k+1 ,

2j+2
2k+1

]
,

and we agree that at each point of discontinuity χn(x) =
1
2
(χn(x+0)+χn(x−0))

and that at x = 0 and x = 1 Haar functions are continuous from the right and
from the left, respectively.

A q-dimensional Walsh and Haar series are defined by

(3.1)
∞∑

n=0

anwn(x) :=
∞∑

n1=0

. . .
∞∑

nq=0

an1,...,nq

q∏
i=1

wni
(xi)

(3.2)
∞∑

n=0

bnχn(x) :=
∞∑

n1=0

. . .
∞∑

nq=0

bn1,...,nq

q∏
i=1

χni
(xi)

where an and bn are real numbers. It follows from the above definitions that
for n = (n1, . . . , nq) with 2kj−1 ≤ nj < 2kj , j = 1, . . . , q, the functions χn and
wn are constant in the interior of each dyadic interval of rank k = (k1, . . . , kq).
Moreover, with the same notation, the functions χn are supported by some
intervals of rank k− 1 = (k1 − 1, . . . , kq − 1).

If N = (N1, . . . , Nq), then the Nth rectangular partial sum SN of series (3.1)
(resp., (3.2)) at a point x = (x1, . . . , xq) is

SN(x) :=

N1−1∑
n1=0

. . .

Nq−1∑
nq=0

anwn(x) (resp., SN(x) :=

N1−1∑
n1=0

. . .

Nq−1∑
nq=0

bnχn(x) ).

The series (3.1) (or (3.2)) rectangularly converges to sum S(x) at a point x
and we write limN→∞ SN(x) = S(x) if

SN(x) → S(x) as min
i
{Ni} → ∞.

We say that the series (3.1) (or (3.2)) ρ-regular rectangularly converges to
sum S(x) if in the above definition the limit is taken under the additional
assumption that regN ≥ ρ. 1-regular rectangular convergence is called cubic
convergence.

Similarly, we can define an q-dimensional Walsh and Haar series on Gq by

(3.3)
∞∑

n=0

anwn(t) :=
∞∑

n1=0

. . .
∞∑

nq=0

an1,...,nq

q∏
i=1

wni
(ti)

(3.4)
∞∑

n=0

bnχn(t) :=
∞∑

n1=0

. . .
∞∑

nq=0

bn1,...,nq

q∏
i=1

χni
(ti),
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and the appropriate types of convergence of series (3.3) and (3.4).
A standard method (see [27]) of application of the dyadic derivative and the

dyadic integral to the theory of Walsh and Haar series is based on the fact
that for the partial sums S2k of those series, the integral

∫
I
(k)
j
S2k defines an

additive B-interval function ψ(I) on the family I of all dyadic intervals (in
fact it can be extended as an additive function to the algebra generated by
I, but we need not this). In dyadic analysis the function ψ is referred to as
the quasi-measure generated by the series (see [23], [33]). Since the sum S2k is

constant on interior of each I
(k)
j we get

(3.5) S2k(x) =
1

|I(k)j |

∫
I
(k)
j

S2k =
ψ(I

(k)
j )

|I(k)j |

for any point x ∈ int(I
(k)
j ).

In fact any additive B-interval function ψ defines Walsh or Haar series for
which it is a quasi-measure and (3.5) holds. So we have one-to-one correspon-
dence between family of additive B-interval functions and family of Walsh or
Haar series.

The equality (3.5) obviously gives a relation between B-differentiability of
ψ at x and convergence of the series. In particular, at least at the points
x ∈ K \ Z, we get

(3.6) lim
k→∞

S2k(x) = DBψ(x) and lim
k→∞, reg k≥ρ

S2k(x) = DBρψ(x)

and therefore the convergence of the series (3.1) (or (3.2)) at such points x to
a sum f(x) implies B-differentiability (or Bρ-differentiability) of the function
ψ at x with f(x) being the value of B-derivative (or Bρ-derivative).

In the case of the group we rewrite (3.5) in the form

(3.7) S2k(t) =
1

|∆(k)
j |

∫
∆

(k)
j

S2k =
ψ(∆

(k)
j )

|∆(k)
j |

,

and this time it is true for each t ∈ ∆
(k)
j . So in this case analogue of (3.6)

holds at each point of G as soon as at least one side of this equality exists.
Here is an advantage of considering Walsh series on the group.

The following statement is essential for establishing that a given Walsh or
Haar series is the Fourier series in the sense of some general integral (see for
example [27]); a proof, in the one-dimensional version, can be found in [5, Th.
3.1.8]).

Proposition 3.1. Let some integration process A be given which produces an
integral additive on I. Assume a series of the form (3.1) or (3.2) is given.
Let a B-interval function ψ be the quasi-measure generated by this series and
(3.5) holds. Then this series is the Fourier series of an A-integrable function
f if and only if ψ(I) = (A)

∫
I
f for any B-interval I.
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In view of (3.6) and the above proposition, in order to solve the coefficient
problem it is enough to show that the quasi-measure ψ generated by Haar
or Walsh series is the indefinite integral of its B-derivative which exists at
those points of G (or at points of K \ Z in case of unit cube as a domain) at
which the sequence of partial sums S2k of the series is convergent. By this we
reduce the problem of recovering the coefficients to the corresponding theorem
on recovering the primitive with appropriate continuity assumptions which
can be obtained either from a convergence condition or from some additional
growth assumptions imposed on the coefficients of the series.

4. Local Saks continuity and coefficient problem for
rectangular convergent multiple Walsh and Haar series

Here we consider the coefficient problem for multiple Walsh and Haar series
which are rectangular convergent everywhere outside some sets of uniqueness
or U -sets. We recall that a set E is said to be U -set for a system of functions if
the convergence of a series with respect to this system to zero outside the set
E implies that all coefficients of the series are zero. For references to a large
body of literature on the theory of uniqueness of Walsh, Haar and Vilenkin
series, including subtle theory of sets of uniqueness, see [1], [5], [23], [31], [32]
whereas the classical trigonometric case is treated for example in [6].

While looking for continuity assumptions which should be imposed on the
primitive at the points of these exceptional sets to guarantee its uniqueness,
it turns out that usual continuity with respect to the dyadic basis (see Defini-
tion 2.2) is not enough for this purpose in the multidimensional case, and we
introduce a stronger notion of continuity, which we call local Saks continuity
with respect to the basis.

We recall that an interval function F is said to be continuous in the sense of
Saks if lim|I|→0, F (I) = 0. We define a local version of this type of continuity
adjusted to B-interval functions.

Definition 4.1. We say that a B-interval function F is locally B-continuous
in the sense of Saks, or briefly BS-continuous, at a point x if

(4.1) lim
|I(n)(x)|→0

F (I(n)(x)) = 0.

In the two-dimensional case the last equality can be rewritten in terms of
ranks of B-intervals in the following way:

(4.2) lim
k+l→∞

F (I(k,l)(x)) = 0.

The most natural integration process to recover primitives is Kurzweil-
Henstock integral (see [29]). We are not going to give here the definition
of the multidimensional dyadic Kurzweil-Henstock integral (HB-integral, see
[22]), because we shall use here first of all Perron-type integrals. We just note
that although the HB-integral can be shown to have the local Saks continuity
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(see [28]), it solves the problem of recovering a primitive only in the case of
rather ”thin” exceptional sets. For example we have

Theorem 4.2 (See [28]). If an additive B-interval function F is B-differenti-
able with DBF (x) = f(x) everywhere on K outside a countable set where F is
B-continuous, then the function f is HB-integrable on K and F is its indefinite
HB-integral.

If instead of a countable set we use here the set (2.1) or (2.2) then this type
of theorem is not true anymore even with B-continuity being replaced with
BS-continuity. An example is given in [28].

In the one-dimensional case Z = Qd, that is the exceptional set Z (and Y ) is
in fact countable. Moreover B-continuity everywhere on [0, 1] follows from the
condition limn→∞ an = 0 (which in turn is a consequence of the convergence of
the series at least at one dyadic-irrational point). So we can apply Theorem 4.2
to get the following result:

Theorem 4.3. If the series (3.1) (in one dimension) is convergent to a sum f
outside a countable set, then f is HB-integrable and (3.1) is the Fourier–Walsh
series of f , i.e.,

an = (HB)

∫
[0,1]

fwn.

The Kurzweil-Henstock integral with respect to a basis is known to be equiv-
alent to the Perron integral with respect to the same basis (see [11]). In par-
ticular it is true for the dyadic basis. Moreover this Perron dyadic integral,
PB-integral, can be defined by B-continuous major and minor functions (see
[2] for the case of full interval basis, a proof for the dyadic case is similar). We
need not recall here the definition of PB-integral and we pass directly to con-
structing another Perron-type integral defined by BS-continuous major and
minor functions, which will be used to solve the coefficient problem.

Definition 4.4. Let f be a point function defined at least on K \ Z. An
additive BS-continuous on K B-interval function M (resp., m) is called a
BS-major (resp., BS-minor) function of f if the lower (resp., the upper) B-
derivative satisfies the inequality

(4.3) DBM(x) ≥ f(x) (resp. DBm(x) ≤ f(x)) for all x ∈ K \ Z.

It can be shown (see [28]) that if M and m are a BS-major and a BS-
minor function for a point-function f on K then for each B-interval I we have
M(I) ≥ m(I). This implies that for any function f we have

inf
M
{M(K)} ≥ sup

m
{m(K)}

where ”inf” and ”sup” are taken over all BS-major and BS-minor function of
f , respectively. This justifies the following definition.
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Definition 4.5. A point function f defined at least on K \ Z is said to be
PBS-integrable on K, if there exist at least one BS-major function and at least
one BS-minor function of f and

−∞ < inf
M
{M(K)} = sup

m
{m(K)} < +∞

where ”inf” and ”sup” are taken as above. The common value is called PBS-
integral of f on K and is denoted by (PBS)

∫
K
f .

In the same way we can define PBS-integral on any B-interval I.
Directly from the definitions we get the following result which shows that

the PBS-integral solves the problem of recovering the primitive from its B-
derivative in the form we need.

Theorem 4.6 (See [28]). If an additive BS-continuous B-interval function F
is B-differentiable with DBF (x) = f(x) everywhere on K \Z then the function
f is PBS-integrable on K and F is its indefinite PBS-integral.

We can extend the previous definition of PBS-integral to the case when the
inequalities (4.3) related to major and minor function hold outside a fixed set
Y defined by (2.2). Such an integral for a function f , defined at least on K \Y ,
depends on the chosen exceptional set Y and we call it P Y

B S-integral. As Y
contains Z, P Y

B S-integral includes PBS-integral. Theorem 4.6, with Z replaced
by Y , holds true for this integral.

It follows from an example given in [28] that the assumption of BS-continuity
of F in the above theorem cannot be weakened to the one of B-continuity.

The following propositions were proved in [25] and [26], respectively.

Proposition 4.7. If a two-dimensional series (3.1) is rectangular convergent
everywhere on the ”cross” {a× [0, 1]}∩{[0, 1]×b}, where (a, b) ∈ K, a, b /∈ Qd,
except a countable set then for this series

(4.4) lim
i+j→∞

ai,j = 0.

Proposition 4.8. If a two-dimensional series (3.2) is rectangular convergent
on the ”cross” {a×[0, 1]}∩{[0, 1]×b}, (a, b) ∈ K, everywhere except a countable
set E and at each point of E we have

(4.5) lim
k,l→∞

bnk,ml
χnk,ml

(x, y)

2k2l
= 0,

then for this series

(4.6) lim
k+l→∞

bnk,ml
χnk,ml

(a, b)

2k2l
= 0

where 2k−1 ≤ nk < 2k, 2l−1 ≤ ml < 2l.

Note that (4.6) and (4.5) are in fact meaningful only for those indexes nk,ml

for which the support of function χnk,ml
contains the point (x, y).

Similar propositions can be formulated for any dimension.
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On the basis of these propositions it was proved in fact in [25] that Z (and
also Y ) is U -set for rectangular convergent multiple Walsh series (see also
[7]). So it makes sense to state a problem of recovering the coefficients of
those series from their sums defined outside of these U -sets. As for Haar
series, non-empty U -sets exist only under additional assumptions of the type
(4.5) or (4.6). Namely, Z is U -sets for Haar series under condition, that (4.6)
holds everywhere. Under weaker assumption (4.5) on the exceptional set only
countable sets are U -sets for rectangular convergent Haar series. Note that for
ρ-regular convergent Haar series, with ρ close to 1, even the empty set is not
U set (see [13, 16]).

Now we consider continuity properties of the quasi-measure (see, for exam-
ple, [28]).

Lemma 4.9. If the coefficients of two-dimensional series (3.1) satisfy the
condition (4.4), then at each point (x, y) ∈ K the quasi-measure ψ is BS-
continuous, i.e., (4.2) holds everywhere on K.

Lemma 4.10. If the coefficients of two-dimensional series (3.2) satisfy the
condition (4.6) at a point (x, y) ∈ K, then at this point the quasi-measure ψ
is BS-continuous, i.e., (4.2) holds at (x, y).

Note that the above statement is not true for Walsh series which are con-
vergent with respect to regular rectangles, for example with respect to cubes,
even under assumption of convergence everywhere on K (see [19]).

In view of (3.6) and the Proposition 3.1, we can solve now the coefficient
problem. It is enough to show that the quasi-measure ψ generated by Haar or
Walsh series is the indefinite integral of its B-derivative which exists at least
on K \ Z. To this end we use the corresponding theorem on recovering the
primitive with appropriate continuity assumptions.

Using Theorem 4.6 we get

Theorem 4.11. If a series (3.1) is rectangular convergent to a sum f every-
where in K \Z, then f is PBS-integrable on K and the coefficients of the series
are PBS-Fourier coefficients of f .

We can enlarge the exceptional set Z here by replacing it by the set Y
defined in (2.2). Then we get

Theorem 4.12 (See [28]). If the series (3.1) is rectangular convergent to a
sum f everywhere in K \Y , then f is P Y

B S-integrable on K and the coefficients
of the series are P Y

B S-Fourier coefficients of f .

In the same way using Proposition 4.8 and Lemma 4.10 we obtain

Theorem 4.13 (See [28]). If a two-dimensional series (3.2) is rectangular
convergent to a sum f everywhere in K outside a countable set E and (4.5)
holds everywhere on E then f is PBS-integrable on K and the coefficients of
the series are PBS-Fourier coefficients of f .
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Note that in the above theorem we can omit condition (4.5) if we assume
that the series (3.2) is convergent everywhere on K.

Analyzing the proof of the above theorem and the one of Lemma 4.9 we
note that the convergence everywhere of the series has been used in order to
obtain the condition (4.6) on coefficients of the series which in turn implies
BS-continuity everywhere. So we can weaken the assumption of convergence in
the formulation of Theorem 4.13 by supposing a priori that the condition (4.6)
are fulfilled. In this way we can obtain the following version of Theorem 4.13.

Theorem 4.14 (See [28]). If the series (3.2) is rectangular convergent to a
sum f everywhere in K \Z and the coefficients of the series satisfy everywhere
the condition (4.6), then f is PBS-integrable on K and the coefficients of the
series are PBS-Fourier coefficients of f .

5. Σ-continuity and uniqueness problems for regular
convergent multiple Haar and Walsh series on the dyadic

product group

5.1. Σ-continuity. Σ-continuity was introduced in [15] and applied in [19, 18,
15] for constructing generalized integrals which solve the problem of recovering
the coefficients of regular convergent multiple Haar and Walsh series from their
sums, by generalized Fourier formulas. In those papers the regular convergence
everywhere outside some at most countable exceptional sets is considered.

The choice of this continuity has a double reason. First, Σ-continuity being
imposed on the primitive, guarantee its uniqueness. Secondly, Σ-continuity
of quasi-measures is provided by regular convergence of appropriate multiple
Haar and Walsh series, while, as it is shown in [19], regular convergence of
those series to a finite function, even everywhere, does not guarantee that
the corresponding quasi-measure is BS-continuous or Bρ-continuous at some
points.

We write Σ for the set {0, 1}q of 0–1 q-dimensional vectors. If σ = (σ1, . . . , σq)
∈ Σ, let |σ| denote the sum σ1 + · · ·+ σq.

For a fixed point t0 ∈ Gq and k = (k1, . . . , kq) ∈ Nq consider the interval

(5.1) ∆(k)(t0) = ∆(k1) × · · · ×∆(kq)

and for each i = 1, 2, . . . , q denote

(5.2) ∆
(ki)
(0) = ∆(ki), ∆

(ki)
(1) = ∆(ki−1) \∆(ki).

If σ = (σ1, . . . , σq) ∈ Σ then we put

(5.3) ∆
(k)
(σ) = ∆

(k1)
(σ1)

× · · · ×∆
(kq)

(σq)
.

Definition 5.1. We say a B-interval function τ is Σ-continuous (is Σ-bounded)
at the point t0 ∈ Gq if it satisfies

lim
k1=...=kq→∞

∑
σ∈Σ

(−1)|σ|τ
(
∆

(k)
(σ)

)
= 0
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resp.,

∑
σ∈Σ

(−1)|σ|τ
(
∆

(k)
(σ)

)
= O(1) as k1 = . . . = kq → ∞

)
.

The definition of Σ-continuity for quasi-measures may be reformulated in an
equivalent form.

Definition 5.2. We say a B-interval function τ is Σ∗-continuous at some point
t0 ∈ Gq if

(5.4) lim
k1=...=kq→∞

∑
σ∈Σ

(
− 1

2

)|σ|

τ
(
∆(k−σ)(t0)

)
= 0.

Theorem 5.3 (See [15]). Suppose a B-interval function τ is a quasi-measure.
Then τ is Σ-continuous at some point t0 ∈ Gq if and only if τ is Σ∗-continuous
at t0.

5.2. Relation between Σ-continuity and other types of continuity.
Here we consider a relation between Σ-continuity and both Bρ-continuity and
BS-continuity.

The next result follows from Theorem 5.3 and formula (5.4).

Theorem 5.4 (See [15]). If a quasi-measure τ is Bρ-continuous with ρ = 1/2
at a point t0 ∈ Gq, then τ is Σ-continuous at t0.

Corollary 5.5. In the one-dimensional case, any B-continuous at a point
t0 ∈ G quasi-measure is Σ-continuous at t0.

The following example shows that ρ-continuity and BS-continuity are not
more general than Σ-continuity.

Example 1. Assume that q ≥ 2. We consider dyadic cubes (2.8) and set

(5.5) τ(∆
(k)
0 ) = 1, k = 0, 1, 2, . . . .

Further, let ∆ be a dyadic cube such that ∆ 6= ∆
(k)
0 for any k = 0, 1, 2, . . ..

Clearly,

(5.6) ∆ ⊂ ∆(k)
σ

holds for the uniquely determined σ ∈ Σ, σ 6= 0, and k ∈ N+. We set

(5.7) τ(∆) =


− µ(∆)

(2q − 2)µ(∆
(k)
σ )

, if σ1 + · · ·+ σq = 0 (mod 2),

µ(∆)

2q µ(∆
(k)
σ )

, if σ1 + · · ·+ σq = 1 (mod 2).

So, the set function τ is defined on B1. It is not difficult to check that the
equality

(5.8) τ(∆
(k)
j ) =

∑
σ∈Σ

τ(∆
(k+1)
2j+σ )
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holds for each dyadic cube ∆
(k)
j of the form (2.8). Therefore, τ can be extended

to a quasi-measure.
It follows from (5.7) that the quasi-measure τ is absolutely continuous, with

respect to the Haar measure, on each dyadic cube ∆ ⊂ Gq \ {0}. This ob-
servation implies that τ is Σ-continuous at each point t ∈ Gq \ {0}. After
elementary calculations it can be proved that also τ is Σ-continuous at the
point 0.

Finally, τ(∆
(k)
0 ) = 1 for all k = 0, 1, 2, . . . by (5.5). Consequently, the quasi-

measure τ is not B1-continuous at the point 0. This implies that τ is not
Bρ-continuous at the point 0 for any ρ ∈ (0, 1] and is not BS-continuous.

Now we construct a quasi-measure τ such that τ is B1-continuous everywhere
on Gq, but not Σ-continuous at some point.

Example 2. Assume that q ≥ 2. We consider dyadic cubes (2.8) and set

(5.9) τ(∆
(k)
0 ) =

1

2k
, k = 0, 1, 2, . . . .

Further, let us fix two arbitrary non-zero vectors σ0, σ1 ∈ Σ satisfying

(5.10) |σ0| = 0 (mod 2), |σ1| = 1 (mod 2).

Let ∆ be a dyadic cube such that ∆ 6= ∆
(k)
0 for any k = 0, 1, 2, . . .. Then (5.6)

holds for the uniquely determined σ ∈ Σ, σ 6= 0, and k ∈ N+ (see Example 1).
We set

(5.11) τ(∆) =



(
1 + 1

2k

)
µ(∆)

µ(∆
(k)
σ )

, if σ = σ0,

− µ(∆)

µ(∆
(k)
σ )

, if σ = σ1,

0, if σ 6= σ0 and σ 6= σ1.

So, the set function τ is defined on B1. It is not difficult to check that (5.8)

holds for each dyadic cube ∆
(k)
j of the form (2.8). Therefore, τ can be extended

to a quasi-measure.
It follows from (5.11) that the quasi-measure τ is locally absolutely contin-

uous, with respect to the Haar measure, on Gq \{0}. This observation implies
that τ is B1-continuous at each point t ∈ Gq \ {0}. The formula (5.9) yields
that τ is B1-continuous at the point 0.

Finally, for every k ∈ N+ we have∑
σ∈Σ

(−1)|σ|τ(∆
(k)
(σ))

(5.6), (5.9), (5.10), (5.11)
=

1

2k
+

(
1 +

1

2k

)
− (−1) = 2 +

1

2k−1
.

Therefore the quasi-measure τ is not Σ-continuous at the point 0.

In the one-dimensional case the notion of continuity which involves the dif-
ferences of the values of the quasi-measure on adjacent dyadic intervals was



262 MIKHAIL PLOTNIKOV AND VALENTIN SKVORTSOV

considered in [24, 34, 35]. But the following statement shows that Σ-continuity
gives a new notion only in a multidimensional case.

Theorem 5.6. A quasi-measure τ is Σ-continuous at a point t ∈ G if and
only if τ is B-continuous at t.

Proof. By Corollary 5.5, it is sufficient to prove that if the quasi-measure τ is
Σ-continuous at a point t ∈ G, then τ is continuous at t.

Let the quasi-measure τ is Σ∗-continuous at the point t0. We choose and fix
any ε > 0. Then there exists k0 = k0(ε) such that

(5.12)

∣∣∣∣τ(∆k+1)−
1

2
τ(∆k)

∣∣∣∣ < ε, for each k ≥ k0.

We shall prove by induction with respect to k = k0, k0+1, . . . that for all such
k the next inequality holds:

(5.13) |τ(∆(k+1)| < 1

2k+1−k0
|τ(∆(k))|+ ε

(
2− 1

2k−k0

)
.

If k = k0, then (5.13) immediately follows from (5.12). Assume inductively
that (5.13) is proved for each k ≤ k1 − 1 and prove (5.13) for k = k1. The
formula (5.12) implies

(5.14)
∣∣τ(∆(k1+1))

∣∣ < 1

2

∣∣τ(∆(k1+1))
∣∣+ ε.

Then by the inductive assumption

(5.15)
∣∣τ(∆(k+1))

∣∣ < 1

2k1−k0

∣∣τ(∆(k0))
∣∣+ ε

(
2− 1

2k1−1−k0

)
.

Combining (5.14) and (5.15), we obtain:∣∣τ(∆(k1+1))
∣∣ < 1

2

∣∣τ(∆(k1))
∣∣+ ε

<
1

2

(
1

2k1−k0

∣∣τ(∆(k0))
∣∣+ ε

(
2− 1

2k1−1−k0

))
+ ε

=
1

2k1+1−k0

∣∣τ(∆(k0))
∣∣+ ε

(
2− 1

2k1−k0

)
.

(5.16)

It follows from (5.16) that the formula (5.13) is true if k = k1. Consequently,
(5.13) holds for all k ≥ k0. Since ε > 0 is arbitrary, (5.13) yields the continuity
of the quasi-measure τ at the point t0. The theorem is proved. �

Summing up the results of this subsection, we get the following conclusion.

(1) Σ-continuity is strictly more general than BS-continuity.
(2) If q ≥ 2 and ρ ∈ (0, 1/2], then Σ-continuity is strictly more general

than Bρ-continuity.
(3) If q ≥ 2, then Σ-continuity and B1-continuity are incomparable.
(4) If q = 1, then Σ-continuity is equal to B-continuity.
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5.3. Σ-continuity, generalized integral, and uniqueness problems for
multiple Haar and Walsh series. In [17, 19] Σ-continuity was applied for
constructing some dyadic Perron-type integral and for solving the uniqueness
problem and the coefficients problem for multiple Haar and Walsh series.

Definition 5.7. Let f be a point function defined on Gq except possibly on
some at most countable set E. A Σ-continuous quasi-measure M (resp., m) is
called a Σ-major (resp., Σ-minor) function of f if the lower (resp., the upper)
B1-derivative satisfies the inequality

(5.17) DB1
M(t) ≥ f(t) (resp. DB1m(t) ≤ f(t))

at each point t ∈ Gq \ E.

It can be shown (see [19]) that if M and m are a Σ-major and a Σ-minor
function for a point function f on Gq then for each B-interval ∆ we have
M(∆) ≥ m(∆). This implies that for any function f and for each B-interval
∆ we have

(5.18) inf
M
{M(∆)} ≥ sup

m
{m(∆)}

where ”inf” and ”sup” run over all Σ-major and Σ-minor function of f , re-
spectively. This justifies the following definition.

Definition 5.8. Suppose a finite-valued point function f is defined everywhere
on Gq except possibly on some at most countable set E. We say the function
f is PΣ-integrable if there exists at least one Σ-major function and at least one
Σ-minor function of f and

−∞ < inf
M
{M(Gq)} = sup

m
{m(Gq)} < +∞

where ”inf” and ”sup” are taken as above. The common value is called PΣ-
integral of f on Gq and is denoted by (PΣ)

∫
Gq f .

In the same way we can define PΣ-integral on any B-interval ∆. It is easy
to see that the value of PΣ-integral does not depend on the choice of an ex-
ceptional at most countable set E.

The following result which follows directly from the definitions, shows that
the PΣS-integral solves the problem of recovering the primitive from its B-
derivative in the form we need.

Theorem 5.9 (See [19]). Suppose an additive Σ-continuous B-interval func-
tion F is B1-differentiable with DB1F (t) = f(t) nearly everywhere on Gq; then
the function f is PΣ-integrable on Gq and F is its indefinite PΣ-integral.

The next example shows that Σ-continuity can’t be replaced by Σ-bounded-
ness at no point t0 ∈ Gq.
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Example 3. Choose an arbitrary point t0 ∈ Gq and consider any non-trivial
quasi-measure τ supported by the one-point set {t0}:

τ(∆) =

{
C 6= 0, if t0 ∈ ∆,

0, if t0 /∈ ∆.

Then clearly τ is Σ-bounded everywhere on Gq and DB1τ(t) = 0 on Gq \ {t0}
(moreover, DBτ(t) = 0 on Gq \ {t0} ) but τ is not identical zero.

Lemmas 5.10–5.13 proved in [17, 19] establish the connections between se-
ries (3.3) or (3.4) and quasi-measures generated by these series. Notice (see
Lemma 5.12) that for multiple Haar series Σ-continuity of quasi-measure gen-
erated by it means exactly that the series satisfies some weak multidimensional
analogue of well-known Arutyunyan–Talalyan condition.

Lemma 5.10. Suppose a series (3.3) satisfy

(5.19) lim an1,...,nq = 0 as 2k ≤ n1, . . . , nq ≤ 2k+1 − 1 and k → ∞;

then the quasi-measure ψ generated by this series is Σ-continuous at each point
t ∈ Gq.

Lemma 5.11. Suppose a series (3.3) 1/2-regular rectangularly converges to a
finite some at least in one point t0 ∈ Gq, then the quasi-measure ψ generated
by this series is Σ-continuous everywhere on Gq.

Lemma 5.12. A series (3.4) satisfies the condition

bn1,...,nqχn1,...,nq(t0) = o(n1 · · · · · nq)

as 2k ≤ n1, . . . , nq ≤ 2k+1 − 1 and k → ∞
(5.20)

(weak multidimensional analogue of Arutyunyan–Talalyan condition) if and
only if the quasi-measure ψ generated by this series is Σ-continuous at the
point t0.

Lemma 5.13. If the rectangular partial sums SN = SN1,...,Nq of a series (3.4)
at a point t0 ∈ Gq satisfy the condition

SN1,...,Nq(t0) = o(N1 · · · · ·Nq)

as 2k ≤ N1, . . . , Nq ≤ 2k+1 − 1 and k → ∞,
(5.21)

then the quasi-measure ψ generated by this series is Σ-continuous at the point
t0.

Combining (3.6), Proposition 3.1, and the above lemmas we can get now
the solution of coefficient problem for multiple Haar and Walsh series on the
dyadic product group under regular convergence.

Theorem 5.14 (See [19]). If a series (3.3) satisfies (5.19) and is cubic con-
vergent to a finite-valued function f nearly everywhere on Gq, then f is PΣ-
integrable on Gq and the coefficients of this series are PΣ-Fourier–Walsh coef-
ficients of f .
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Theorem 5.15 (See [19]). If a series (3.3) is cubic convergent to a finite-
valued function f nearly everywhere on Gq and 1/2-regular rectangular con-
vergent to a finite sum at some point t0 ∈ Gq, then f is PΣ-integrable on Gq

and the coefficients of the series are PΣ-Fourier–Walsh coefficients of f .

Corollary 5.16. If a series (3.3) 1/2-regular rectangularly converges to a
finite-valued sum f everywhere on Gq, then f is PΣ-integrable on Gq and the
coefficients of the series are PΣ-Fourier–Walsh coefficients of f .

Theorem 5.17 (See [19]). If a series (3.4) satisfies (5.20) or (5.21) every-
where on Gq and is cubic convergent to a finite-valued function f nearly every-
where on Gq, then f is PΣ-integrable on Gq and the coefficients of the series
are PΣ-Fourier–Haar coefficients of f .

Corollary 5.18. Every at most countable set E ⊂ Gq is a U-set for cubic
convergent series (3.4) under one of the conditions (5.20) or (5.21).

Notice that the condition (5.20) or (5.21) can not be relaxed even at a single
point. Having fixed any point t0 ∈ Gq it is not difficult to construct a non-
trivial series (3.4) satisfying (5.20) or (5.21) at the point t0 and rectangular
convergent to zero everywhere on Gq \ {t0}.

Note also that 1/2-regular rectangular convergence to a finite sum at some
point t0 ∈ Gq of a series (3.4) implies that both the conditions (5.20) and
(5.21) hold. This fact with Theorem 5.17 yields the following statement.

Theorem 5.19 (See [19]). If a series (3.4) 1/2-regular rectangularly converges
to a finite-valued function f everywhere on Gq, then f is PΣ-integrable on Gq

and the coefficients of the series are PΣ-Fourier–Haar coefficients of f .

6. (Σ,∆)-continuity of quasi-measures on the dyadic product
group

A non-local analog of Σ-continuity was suggested in [17, 20].

Definition 6.1. Let ∆ ⊂ Gq be a dyadic cube. We say a B-interval function
τ is (Σ,∆)-continuous if

(6.1) lim
k→∞

∑
(−1)j1+···+jqτ(∆

(k)
j ) = 0

where sum runs over all dyadic cubes ∆
(k)
j of the form (2.8) such that ∆

(k)
j ⊂ ∆.

In [20] it is shown that every quasi-measure τ being absolutely continuous
with respect to the Haar measure is (Σ,∆)-continuous for every dyadic cube
∆.

In [20] (Σ,∆)-continuity was applied for constructing some dyadic Perron-
type integral and for solving the uniqueness problem and the coefficient one
for multiple Haar and Walsh series.
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Definition 6.2. We say a set F ⊂ Gq is a RDq-set (a Rademacher–Dirichlet
set) if there exists an increasing sequence {ks}∞s=1 of non-negative integers,
such that

F ⊂
∞⋂
s=1

Fks ,

where Fk denotes the ”kth chessboard set” defined as the union of all dyadic
cubes (2.8) of rank k, satisfying

j1 + · · ·+ jq = 0 (mod 2).

Proposition 6.3 (See [21]). 1) µ(F ) = 0 for all RDq-sets F .
2) For every positive integer q there exist perfect RDq-sets, the Hausdorff

dimension of whose is equal q.

Definition 6.4. Let f be a point function defined on Gq except possibly on
some set F ∪ E ⊂ Gq where F is RDq-set and E is at most countable set.
We say a quasi-measure M (resp., m) is (Σ,∆)-major (resp., (Σ,∆)-minor)
function of f if it is (Σ,∆)-continuous for any dyadic cube ∆ ⊂ Gq and satisfies
the condition (5.17) everywhere on Gq \ (F ∪ E).

It can be shown (see [20]) that (5.18) holds for each B-interval ∆ where
”inf” and ”sup” run over all (Σ,∆)-major and (Σ,∆)-minor function of f ,
respectively. This justifies the following definition.

Definition 6.5. Suppose a finite-valued point function f is defined everywhere
on Gq except possibly on some set F ∪ E ⊂ Gq where F is RDq-set and E is
at most countable set. We say the function f is PΣ,∆-integrable if there exists
at least one (Σ,∆)-major function and at least one (Σ,∆)-minor function of
f and

−∞ < inf
M
{M(Gq)} = sup

m
{m(Gq)} < +∞

where ”inf” and ”sup” are taken as above. The common value is called PΣ,∆-
integral of f on Gq and is denoted by (PΣ,∆)

∫
Gq f .

In the same way we can define PΣ,∆-integral on any B-interval ∆. In [20] it
is proved that the value of PΣ,∆-integral does not depend on the choice of an
exceptional set F ∪ E.

Theorem 6.6 (See [20]). Let f be a finite-valued point function defined every-
where on Gq except possibly on some set F ∪ E where F is RDq-set and E is
at most countable set. If f is summable, then f is PΣ,∆-integrable and

(L)

∫
∆

f = (PΣ,∆)

∫
∆

f

for each B-interval ∆.

It follows from the definitions above that the PΣ,∆S-integral solves the prob-
lem of recovering the primitive from its B1-derivative in the form we need.
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Theorem 6.7 (See [20]). Suppose a (Σ,∆)-continuous quasi-measure F is
B1-differentiable with DB1F (t) = f(t) everywhere on Gq except possibly on
some set F ∪E where F is RDq-set and E is at most countable set. Then the
function f is PΣ,∆-integrable on Gq and F is its indefinite PΣ,∆-integral.

The following result shows the relation between convergence of multiple
Walsh series (3.3) and (Σ,∆)-continuity of quasi-measures.

Lemma 6.8 (See [20]). Suppose a series (3.3) is cubic convergent to a finite
sum on some Borel set A. Then the quasi-measure ψ generated by this series
is (Σ,∆)-continuous for each dyadic cube ∆ ⊂ Gq such that µ(∆ ∩ A) > 0.

Corollary 6.9. If a series (3.3) is cubic convergent to a finite sum almost
everywhere on Gq, then the quasi-measure ψ generated by this series is (Σ,∆)-
continuous for every dyadic cube ∆ ⊂ Gq.

Combining (3.6), Propositions 3.1 and 6.3, and Corollary 6.9 we get a solu-
tion of the coefficient problem for cubic convergent multiple Walsh series on
the dyadic product group.

Theorem 6.10 (See [20]). Suppose a series (3.3) is cubic convergent to a
finite-valued function f everywhere on Gq except possibly on some set F ∪ E
where F is RDq-set and E is at most countable set. Then f is PΣ,∆-integrable
on Gq and this series is PΣ,∆-Fourier–Walsh series of f .

Taking into account Theorems 6.6 and 6.10 we get the solution of the coef-
ficient problem for multiple Walsh series which is cubic convergent to a sum-
mable function.

Theorem 6.11 (See [20]). Suppose a series (3.3) is cubic convergent to a
finite-valued summable function f everywhere on Gq except possibly on some
set F ∪ E where F is RDq-set and E is at most countable set. Then the
coefficients of the series are Fourier–Walsh coefficients of f .

Each of the Theorems 6.10 and 6.11 implies the following important corol-
lary.

Theorem 6.12 (See [20]). Any set F ∪ E ⊂ Gq, where F is RDq-set and E
is at most countable set, is a U-set for cubic convergent series (3.3).

7. (Σ, α)-smoothness of quasi-measures on the unit cube

7.1. (Σ, α)-smoothness in the two-dimensional case. (Σ, α)-smoothness
was introduced in the two-dimensional case in [12].

Let K be the two-dimensional unit square [0, 1]2. For a given point x0 ∈ Z
there exist 2s sequences {I(k1,k2)(x0), k1, k2 ∈ N} of dyadic intervals containing
the point x0 and such that

I(k1+1,k2)(x0) ⊃ ∆(k1,k2)(x0),I
(k1,k2+1)(x0) ⊃ ∆(k1,k2)(x0),

rank I(k1,k2)(x0) = (k1, k2), k1, k2 ∈ N,
(7.1)
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where s is the number of dyadic-rational coordinates of the point x0, different
from 0 or 1. We fix one of this sequences and set

I
(k,k)
(0,0) = I(k,k)(x0)

I
(k,k)
(1,0) = I(k−1,k)(x0) \ I(k,k)(x0), I

(k,k)
(0,1) = I(k,k−1)(x0) \ I(k,k)(x0),

I
(k,k)
(1,1) = I(k−1,k−1)(x0) \

(
I(k,k−1)(x0) ∪ I(k−1,k)(x0)

)
, k ∈ N+.

Supposing x0 ∈ Qd × Id, we say a B-interval function τ is (Σ, α)-smooth
at the point x0 if for any sequence {I(k1,k2)(x0), k1, k2 ∈ N} of B-intervals
containing the point x0 and satisfying (7.1) the following condition is true:

lim
k→∞

1∣∣∣I(k,k)(0,0)

∣∣∣α
(
τ
(
I
(k,k)
(0,0)

)
− τ

(
I
(k,k)
(1,0)

))
= 0.

In the case x0 ∈ Id ×Qd, we say a B-interval function τ is (Σ, α)-smooth at
the point x0 if

lim
k→∞

1∣∣∣I(k,k)(0,0)

∣∣∣α
(
τ
(
I
(k,k)
(0,0)

)
− τ

(
I
(k,k)
(0,1)

))
= 0.

for any sequences {I(k1,k2)(x0), k1, k2 ∈ N} of B-intervals containing the point
x0 and satisfying (7.1).

Finally, in the case x0 ∈ Qd × Qd we say a B-interval function τ is (Σ, α)-
smooth at the point x0 if

lim
k→∞

1∣∣∣I(k,k)(0,0)

∣∣∣α
(
τ
(
I
(k,k)
(0,0)

)
− τ

(
I
(k,k)
(0,1)

)
− τ

(
I
(k,k)
(0,1)

)
+ τ

(
I
(k,k)
(1,1)

))
= 0

for any sequence {I(k1,k2)(x0), k1, k2 ∈ N} of B-intervals containing the point
x0 and satisfying (7.1).

Definition 7.1. Let f be a point function defined on K \Z. A quasi-measure
M (resp., m) is called a (Σ, 1)-major (resp., (Σ, 1)-minor) function of f if it
is (Σ, 1)-smooth on Z and satisfies

(7.2) DB1
M(x) ≥ f(x) (resp. DB1m(x) ≤ f(x))

at each point x ∈ K \ Z.

In [12] it was proved that if M and m are a (Σ, 1)-major and a (Σ, 1)-minor
function for a point function f on K, then for each B-interval I the inequality
(4.3) holds where ”inf” and ”sup” in (4.3) run over all (Σ, 1)-major and (Σ, 1)-
minor function of f , respectively. This justifies the following definition.

Definition 7.2. We say a finite-valued point function f , defined everywhere
on K \ Z, is PΣ,1-integrable on K if there exists at least one (Σ, 1)-major
function and at least one (Σ, 1)-minor function of f and

−∞ < inf
M
{M(K)} = sup

m
{m(K)} < +∞
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where ”inf” and ”sup” are taken as above. The common value is called PΣ,1-
integral of f on K and is denoted by (PΣ,1)

∫
K
f . Similarly we can define

PΣ,1-integral on any B-interval I.

An interesting fact is that the (PΣ,1)-integral and the Lebesgue one are
incomparable [14]. But it follows from results of [18] that if a finite-valued
function f both summable and (PΣ,1)-integrable then we have

(L)

∫
I

f = (PΣ,1)

∫
I

f

for every dyadic interval I.

Theorem 7.3 (See [12]). Suppose an additive (Σ, 1)-smooth B-interval func-
tion F is B1-differentiable with DB1F (x) = f(x) everywhere on K \ Z. Then
the function f is PΣ,1-integrable on K and F is its indefinite PΣ,1-integral.

Now we consider (see [12]) the relationship between convergence of two-
dimensional series (3.2) and (Σ, 1)-smoothness of quasi-measures.

Lemma 7.4. Suppose a two-dimensional series (3.2) is 1/2-regular rectangular
convergent to a finite sum at some point x ∈ Z. Then the quasi-measure ψ
generated by this series is (Σ, 1)-smooth at x.

Theorem 7.3 and Lemma 6.8 yield the solution of coefficient problem for
regular converging multiple Haar series on K.

Theorem 7.5 (See [12]). Let a two-dimensional series (3.2) is cubic con-
vergent to a finite-valued function f on K \ Z and 1/2-regular rectangular
convergent to a finite sum on Z. Then f is PΣ,1-integrable and this series is
the PΣ,1-Fourier–Haar series of f .

Corollary 7.6. Let a two-dimensional series (3.2) everywhere on K is 1/2-
regular rectangular convergent to a finite-valued function f . Then f is PΣ,1-
integrable and this series is the PΣ,1-Fourier–Haar series of f .

Corollary 7.7. The empty set is a U-set for everywhere 1/2-regular rect-
angular convergent two-dimensional series (3.2). In other words, if a two-
dimensional series (3.2) everywhere on K 1/2-regular rectangular converges to
zero, then all of its coefficients are equal to zero.

Corollary 7.7 remains true if 1/2-regular rectangular convergence is replaced
by ρ-regular rectangular convergence where ρ ∈ (0,

√
2/2) [16]. The constant√

2/2 is sharp: for each ρ ∈ (
√
2/2, 1] there exists a non-trivial two-dimensional

series (3.2) 1/2-regular rectangular convergent to zero everywhere on K [13].
In particular, there exists a non-trivial two-dimensional series (3.2) which is
square convergent to zero everywhere on K.
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7.2. (Σ, α)-smoothness in general case. We return to a general case. Let
K be again the unit square [0, 1]q.

We recall (see Subsection 5.1) that Σ denote the set {0, 1}q of 0–1 q-dimensio-

nal vectors and |σ| def
= σ1+· · ·+σq if σ = (σ1, . . . , σq) ∈ Σ. Let s be the number

of dyadic-rational coordinates of the point x ∈ Z. We write Σx for the set of
0–1 q-dimensional vectors σ = (σ1, . . . , σq) such that σi = 0 if ith coordinate
of the point x is dyadic-irrational. Obviously, Σx ⊂ Σ and the set Σx contains
2s elements.

Clearly, there exist 2s sequences {I(k)(x), k ∈ Nq} of B-intervals such that

x ∈ I(k)(x), I(k)(x) ⊃ ∆(k+σ)(x), rank I(k)(x) = k,

for all k ∈ Nq and σ ∈ Σ.
(7.3)

We fix the point x and one of these sequences.
Let

(7.4) I(k)(x) = I(k1) × · · · × I(kq).

If ki = 1, 2, . . . , then we set

(7.5) I
(ki)
(0) = I(ki), I

(ki)
(1) = I(ki−1) \ I(ki).

For σ = (σ1, . . . , σq) ∈ Σ we put

(7.6) I
(k)
(σ) = I

(k1)
(σ1)

× · · · × I
(kq)

(σq)
.

Definition 7.8. Given α ∈ R+ we say a B-interval function τ is (Σ, α)-smooth
at the point x if

(7.7)
1∣∣∣I(k)(σ)

∣∣∣α
∑
σ∈Σx

(−1)|σ|τ
(
I
(k)
(σ)

)
= o(1) as k1 = . . . = kq → ∞,

holds for any sequence {I(k)(x), k ∈ Nq} of B-intervals satisfying (7.3).

Theorem 7.9 (See [15]). Let E ⊂ K be some at most countable set. Suppose
a quasi-measure τ has the following properties:

(1) if a point x ∈ Z \ E has exactly s dyadic-rational coordinates, then τ
is (Σ, 1− s/q)-smooth at the point x;

(2) DB1τ(x) = 0 at each point x ∈ K \ (Z ∪ E);
(3) if x ∈ K, then

(7.8)
∑
σ∈Σ

(−1)|σ|τ
(
I
(k)
(σ)

)
= o(1) as k1 = . . . = kq → ∞,

for any sequence {I(k)(x), k ∈ Nq} of B-intervals satisfying (7.3).

Then τ(I) = 0 for every I ∈ B.

Theorem 7.9 is sharp in the following sense: ”o” in the condition (7.8) can
not be replaced by ”O” even at a single point x ∈ K. Moreover, (Σ, 1− s/q)-
smoothness in the condition (1) can not be replaced by the condition (7.7)
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with ”O” instead ”o” at all points x ∈ Z \E having exactly s dyadic-rational
coordinates. The last fact is implied by the following theorem.

Theorem 7.10 (See [21]). There exists a non-trivial quasi-measure τ such
that

(1) if a point x ∈ Z \E has exactly s dyadic-rational coordinates, then we
have

1∣∣∣I(k)(σ)

∣∣∣1−s/q

∑
σ∈Σ

(−1)|σ|τ
(
I
(k)
(σ)

)
= O(1), as k1 = . . . = kq → ∞;

(2) DB1τ(x) = 0 at each point x ∈ K \ Z;
(3) (7.8) holds for any sequences {I(k)(x), k ∈ Nq} of B-intervals satisfying

(7.3) for x ∈ K.

Definition 7.11. Let f be a finite-valued function defined at least on a set
K \ (Z ∪ E) where E is some at most countable set. We say a function f
is PΣ,∗-integrable if there exists at least one quasi-measure M ((Σ, ∗)-major
function of f) and at least one quasi-measure m ((Σ, ∗)-minor function of f)
satisfying the following conditions:

(A) if a point x ∈ Z \E has exactly s dyadic-rational coordinates, then M
and m are (Σ, 1− s/q)-smooth at this point;

(B) DB1
M(x) ≥ f(x) ≥ DB1m(x) at each point x ∈ K \ (Z ∪ E);

(C) M and m satisfy (7.8) at each point x ∈ K;
(D) the inequalities

(7.9) −∞ < inf
M
{M(K)} = sup

m
{m(K)} < +∞

are true, where ”inf” and ”sup” in (7.9) run over all (Σ, ∗)-major and
(Σ, ∗)-minor function of f , respectively.

The common value in (7.9) is called PΣ,∗-integral of f on K and is denoted by
(PΣ,∗)

∫
K
f . Similarly we can define PΣ,∗-integral on any B-interval I.

Correctness of this definition was justified in [15] by proving the inequal-
ity infM{M(K)} ≥ supm{m(K)} whenever the conditions (A), (B), (C) of
Definition 7.11 hold.

The next lemmas [15] establish the relationships between a rate of growth
of the partial sums of multiple Haar series (3.2) and behaviour of the quasi-
measures.

Lemma 7.12. Consider any α ∈ R+ and a multiple Haar series of the form
(3.2). Suppose

(7.10) SN(x) = o ((N1 · · · · ·Nq)
α) as min

i
{Ni} → ∞ and reg N ≥ 1/2

holds for Nth rectangular partial sums SN(x) = SN1,...,Nq(x) of this series at
some point x ∈ Z. Then the quasi-measure ψ generated by this series is
(Σ, 1− α)-smooth at x.
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Lemma 7.13. Consider any multiple Haar series of the form (3.2). Suppose
the series satisfies at a point x ∈ K at least one of the following conditions:

(7.11) SN(x) = o ((N1 · . . . ·Nq)) as min
i
{Ni} → ∞ and reg N ≥ 1/2;

bn1,...,nqχn1,...,nq(x0) = o(n1 · · · · · nq)

as 2k ≤ n1, . . . , nq ≤ 2k+1 − 1 and k → ∞.
(7.12)

Then the quasi-measure ψ generated by this series is (Σ, 0)-smooth at x.

Combining the analogue of Theorem 4.6 for PΣ,∗-integral and Lemmas 7.12
and 7.13, we get the solution of the coefficient problem for regular convergent
multiple Haar series on K.

Theorem 7.14 (See [15]). Suppose an q-multiple Haar series of the form (3.2)
and a finite-valued function f , defined at least on a set K \ (Z ∪ E) where E
is some at most countable set, satisfy the following conditions:

(1) if a point x ∈ Z \E has exactly s dyadic-rational coordinates, then we
have the equality

(7.13)
SN(x) = o

(
(N1 · . . . ·Nq)

s/q
)

as min
i
{Ni} → ∞ and reg N ≥ 1/2;

(2) the series rectangularly converges to f everywhere on K \ (Z ∪ E);
(3) everywhere on K we have at least one of the equalities (7.11) or (7.12).

Then the function f is PΣ,∗-integrable and the series is the PΣ,∗-Fourier–Haar
series of f .

Theorem 7.14 yields the following corollaries.

Theorem 7.15 (See [15]). Let E ⊂ K be some at most countable set. Suppose
a series of the form (3.2) satisfy the following conditions:

(1) if a point x ∈ Z \E has exactly s dyadic-rational coordinates, then the
rectangular partial sums of the series satisfies (7.13) at the point x;

(2) the series 1/2-regular rectangularly converges to zero everywhere on
K \ (Z ∪ E);

(3) the series satisfies (7.11) or (7.12) everywhere on K.

Then all the coefficients of the series are equal zero.

Theorem 7.16 (See [15]). Let E be some at most countable set. Suppose a
series (3.2) 1/2-regular rectangularly converges to zero everywhere on K \ E
and satisfies (7.11) or (7.12) everywhere on K. Then all its coefficients are
equal 0. In other words, any at most countable set is a U-set for ρ-regular
rectangular convergent series (3.2) under condition (7.11) or (7.12) if ρ ≤ 1/2.

Theorem 7.17 (See [15]). The trivial series is the only series of the form
(3.2), which is 1/2-regular rectangular convergent to zero everywhere on K.
It means that ∅ is a U-set for ρ-regular rectangular convergent series (3.2) if
ρ ≤ 1/2.
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The above results are sharp in the following sense. Theorem 7.15 becomes
false if we replace ”o” in (7.11) or (7.12) by ”O” even at a single point x ∈ K.
Moreover, ”o” in (7.13) can not be replaced by ”O” at all points x ∈ Z \ E
having exactly s dyadic-rational coordinates. The last fact is justified by the
following theorem.

Theorem 7.18 (See [21]). There exists a non-trivial series of the form (3.2)
such that

(1) if a point x ∈ Z \E has exactly s dyadic-rational coordinates, then the
equality

SN(x) = O
(
(N1 · · · · ·Nq)

s/q
)

as min
i
{Ni} → ∞ and reg N ≥ 1/2

holds for the N th rectangular partial sums of the series (S);
(2) the series 1/2-regular rectangularly converges to zero everywhere on

K \ Z;
(3) the series satisfies both the conditions (7.11) and (7.12) everywhere on

K.

Theorems 7.9, 7.10, 7.15, and 7.18 underline once again a deep duality be-
tween Haar series and the quasi-measures generated by these series. In con-
trast to the case of Walsh series where, according to (3.6), B-differentiability at
points x ∈ K\Z of the quasi-measure generated by a Walsh series is equivalent
to the convergence of the subsequence S2n of the partial sums, which is not
equivalent to the convergence of the series, in the Haar case the convergence of
the above subsequence and the convergence of the series are equivalent. This
explains why the same number s/q appears both in the condition for unique-
ness of the quasi-measures given by Theorems 7.9 and 7.10 and in the condition
for uniqueness of series (3.2) given by Theorems 7.15 and 7.18. This method
based on duality between Haar series and the quasi-measures is useful not only
in the problem of uniqueness, but also in some other areas of the Haar series
theory (see, for example, [4, 8, 9, 10, 30]).
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sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh (Multiplicative system

of functions and harmonic analysis on zero-dimensional groups). “Èlm”, Baku, 1981.
[2] B. Bongiorno, L. Di Piazza, and V. Skvortsov. On continuous major and minor functions

for the n-dimensional Perron integral. Real Anal. Exchange, 22(1):318–327, 1996/97.
[3] M. de Guzmán. Differentiation of integrals in Rn. Lecture Notes in Mathematics, Vol.

481. Springer-Verlag, Berlin-New York, 1975. With appendices by Antonio Córdoba,
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