POINTWISE CONVERGENCE OF LOGARITHMIC MEANS OF FOURIER SERIES

LASHA BARAMIDZE
Dedicated to Professor Ferenc Schipp on the occasion of his 75th birthday, to Professor William Wade on the occasion of his 70th birthday and to Professor Péter Simon on the occasion of his 65th birthday.

Abstract. In this paper we characterize the set of convergence of the general logarithmic means of trigonometric Fourier series.

Let $\mathbb{T}:=[-\pi, \pi]$ denotes an interval in the 1 -dimensional Euclidean space \mathbb{R}. The notation $a \lesssim b$ in the paper stands for $a \leq c b$, where c is an absolute constant.

We denote by $L_{p}(\mathbb{T})$ the class of all measurable functions f that are 2π periodic with respect to all variables and satisfy

$$
\|f\|_{p}:=\left(\int_{\mathbb{T}}|f|^{p}\right)^{\frac{1}{p}}<\infty . \quad 1 \leq p \leq \infty
$$

In case $p=\infty$, by $L_{p}(\mathbb{T})$ we mean $C(\mathbb{T})$, endowed with the supremum norm.
Let $f \in L_{1}(\mathbb{T})$. The Fourier series of f with respect to the trigonometric system is the series

$$
S[f]:=\sum_{n=-\infty}^{+\infty} \hat{f}(n) e^{i n x}
$$

where

$$
\hat{f}(n):=\frac{1}{2 \pi} \int_{\mathbb{T}} f(x) e^{-i n x} d x
$$

[^0]are the Fourier coefficients of the function f. The partial sums are defined as follows:
$$
S_{N}(f, x):=\sum_{n=-N}^{N} \hat{f}(n) e^{i n x}
$$

In the literature, there is known the notion of the Riesz's logarithmic means of a Fourier series. The nth Riesz logarithmic mean of the Fourier series of an integrable function f is defined by

$$
\frac{1}{l_{n}} \sum_{k=0}^{n} \frac{S_{k}(f)}{k+1}, \quad l_{n}:=\sum_{k=0}^{n} \frac{1}{k+1},
$$

where $S_{k}(f)$ is the partial sum of its Fourier series. This Riesz's logarithmic means with respect to the trigonometric system has been studied by a lot of authors. We mention for instance the papers of Szász and Yabuta [6],[8]. This mean with respect to the Walsh, Vilenkin system is discussed by Simon, and Gát [5],[1].

Let $\left\{q_{k}: k \geq 0\right\}$ be a sequence of nonnegative numbers. The Nörlund means for the Fourier series of f are defined by

$$
\frac{1}{\sum_{k=0}^{n} q_{k}} \sum_{k=0}^{n} q_{k} S_{n-k}(f)
$$

If $q_{k}=\frac{1}{k+1}$, then we get the Nörlund logarithmic means:

$$
L_{n}(f ; x):=\frac{1}{l_{n}} \sum_{k=0}^{n} \frac{S_{n-k}(f)}{k+1} .
$$

Although, it is a kind of "reverse" Riesz's logarithmic means. In [2, 3] it is proved some convergence and divergence properties of the logarithmic means of Walsh-Fourier series of functions in the class of continuous functions, and in the Lebesgue space L.

In one of his last papers [7] Tkebuchava constructed a set of logarithmic summation methods which contains both of the above mentioned logarithmic summation methods as limit cases. Namely, for any integers n, n_{0} such that $0 \leq n_{0} \leq n$ let Tkebuchava's means $T_{n, n_{0}}$ be defined by

$$
t_{n, n_{0}}(f ; x):=\frac{1}{l\left(n, n_{0}\right)}\left(\sum_{k=0}^{n_{0}-1} \frac{S_{k}(f, x)}{n_{0}-k+1}+S_{n_{0}}(f, x)+\sum_{k=n_{0}+1}^{n} \frac{S_{k}(f, x)}{k-n_{0}+1}\right),
$$

where

$$
l\left(n, n_{0}\right):=\sum_{k=0}^{n_{0}-1} \frac{1}{n_{0}-k+1}+1+\sum_{k=n_{0}+1}^{n} \frac{1}{k-n_{0}+1} .
$$

It is clear, that $l\left(n, n_{0}\right) \asymp \log n$. This summation method includes the Riesz (for $n_{0}=0$) and Nörlund (for $n_{0}=n$) logarithmic methods, too.

Define the kernels $F_{n, n_{0}}$ of Tkebuchava's means by

$$
F_{n, n_{0}}:=\frac{1}{l\left(n, n_{0}\right)}\left(\sum_{k=0}^{n_{0}-1} \frac{D_{k}}{n_{0}-k+1}+D_{n_{0}}+\sum_{k=n_{0}+1}^{n} \frac{D_{k}}{k-n_{0}+1}\right) .
$$

Tkebuchava [7] gave estimates of kernels. Namely, the following theorem holds.

Theorem T. Let $0 \leq n_{0} \leq n$. Then

$$
1+\frac{\log ^{2}\left(n_{0}+2\right)}{\log (n+2)} \lesssim\left\|F_{n, n_{0}}\right\|_{L_{1}(\mathbb{T})} \lesssim 1+\frac{\log ^{2}\left(n_{0}+2\right)}{\log (n+2)}
$$

Analogical result for Walsh-Fourier series is proved by Gát and Nagy [4]. Moreover, the general logarithmic means of quadratical partial sums also treated for double Walsh-Fourier series and trigonometric Fourier series. The last trigonometric Fourier case was partially solved, only.

Set $t_{n, n_{0}} f:=F_{n, n_{0}} * f$ the logarithmic means of Fourier series of $f \in L_{1}(\mathbb{T})$. The following theorem is proved by Tkebuchava [7]
Theorem T2. The following conditions are equivalent:
a) $\log n_{0}(n)=O(\sqrt{\log n})$;
b) $\left\|t_{n, n_{0}} f-f\right\|_{C(\mathbb{T})} \rightarrow 0$ as $n \rightarrow \infty \forall f \in C(\mathbb{T})$;
c) $\left\|t_{n, n_{0}} f-f\right\|_{L_{1}(\mathbb{T})} \rightarrow 0$ as $n \rightarrow \infty \forall f \in L_{1}(\mathbb{T})$.

Definition 1. Let $f \in L_{1}(\mathbb{T})$, then x is a Lebesgue point of f if

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{\varepsilon}|f(x+t)-f(x)| d t=0
$$

Theorem L (see [9]). Let $f \in L_{1}(\mathbb{T})$, then

$$
\lim _{\varepsilon \rightarrow 0} \frac{1}{\varepsilon} \int_{0}^{\varepsilon}|f(x+t)-f(x)| d t=0 \text { a.e. } x \text { in } \mathbb{T} \text {. }
$$

In this paper we prove that the following is true.
Theorem 1. Let $f \in L_{1}(\mathbb{T})$ and $\log n_{0}(n)=O(\sqrt{\log n})$, then

$$
\begin{equation*}
\lim _{n \rightarrow \infty} t_{n, n_{0}}(f, x)=f(x) \tag{1}
\end{equation*}
$$

at each Lebesgue point x of f. Thus (1) holds a.e. in \mathbb{T}.
In order to prove Theorem 1 we need the following lemma.
Lemma 1. The following estimation holds

$$
\begin{align*}
\left|F_{n, n_{0}}(x)\right| \lesssim & n \mathbb{I}_{\left[0, \frac{1}{n}\right)}(x)+\frac{1}{x \log n} \mathbb{I}_{\left[\frac{1}{n}, \frac{1}{n_{0}}\right)}(x) \tag{2}\\
& +\frac{n_{0}}{\log n} \mathbb{I}_{\left[\frac{1}{n}, \frac{1}{n_{0}}\right)}(x) \log \frac{1}{x}+\frac{1}{x \log n} \mathbb{I}_{\left[\frac{1}{n_{0}}, \pi\right]}(x) \log \frac{1}{x} .
\end{align*}
$$

Proof. First, we note that
(3) $F_{n, n_{0}}(x)=\frac{1}{l\left(n, n_{0}\right)}\left(\sum_{j=2}^{n_{0}+1} \frac{D_{n_{0}+1-j}(x)}{j}+D_{n_{0}}(x)+\sum_{j=2}^{n-n_{0}+1} \frac{D_{j+n_{0}-1}(x)}{j}\right)$.

Further from (3) we get

$$
\begin{align*}
F_{n, n_{0}}(x)= & \frac{1}{l\left(n, n_{0}\right)}\left\{\frac{\sin \left(n_{0}+1+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} \sum_{j=2}^{n_{0}+1} \frac{\cos j x}{j}\right. \tag{4}\\
& -\frac{\cos \left(n_{0}+1+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} \sum_{j=2}^{n_{0}+1} \frac{\sin j x}{j} \\
& +D_{n_{0}}(x)+\frac{\sin \left(n_{0}-1+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} \sum_{j=2}^{n-n_{0}+1} \frac{\cos j x}{j} \\
& \left.+\frac{\cos \left(n_{0}-1+\frac{1}{2}\right) x}{2 \sin \frac{x}{2}} \sum_{j=2}^{n-n_{0}+1} \frac{\sin j x}{j}\right\} \\
= & \frac{1}{l\left(n, n_{0}\right)}\left\{A_{1}+A_{2}+A_{3}+A_{4}+A_{5}\right\} .
\end{align*}
$$

It is well-known the following estimations (see [9, Ch.5])

$$
\begin{equation*}
\left|\sum_{j=1}^{N} \frac{\sin j x}{j}\right| \lesssim 1, \quad x \in \mathbb{T}, N \geq 1 \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{j=1}^{N} \frac{\cos j x}{j}\right| \lesssim \ln \frac{1}{x}, \quad \forall x \in(0, \pi], \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sum_{j=1}^{N} \frac{\cos j x}{j}\right| \lesssim \ln (m+2), \quad x \in\left[\frac{1}{m+2}, \pi\right], \quad \forall N \geq 1 . \tag{7}
\end{equation*}
$$

We will use the estimation for case $0 \leq x<1 / n$

$$
\begin{equation*}
\left|F_{n, n_{0}}(x)\right| \leq n \tag{8}
\end{equation*}
$$

Set $x \geq 1 / n$. From (5)-(8) we get

$$
\begin{align*}
\left|A_{1}\right| & \lesssim \frac{1}{\log n}\left\{n_{0} \log n_{0} \mathbb{I}_{\left[\frac{1}{n}, \frac{1}{n_{0}}\right)}(x)+\mathbb{I}_{\left[\frac{1}{n_{0}}, \pi\right]}(x) \frac{1}{x} \log \frac{1}{x}\right\}, \tag{9}\\
\left|A_{2}\right| & \lesssim \frac{1}{x \log n} \mathbb{I}_{\left[\frac{1}{n}, \pi\right]}(x), \\
\left|A_{3}\right| & \lesssim \frac{1}{\log n}\left\{n_{0} \mathbb{I}_{\left[\frac{1}{n}, \frac{1}{n_{0}}\right)}(x)+\frac{1}{x} \mathbb{I}_{\left[\frac{1}{n_{0}}, \pi\right]}(x)\right\},
\end{align*}
$$

$$
\begin{aligned}
\left|A_{4}\right| & \lesssim \frac{1}{\log n}\left\{n_{0} \mathbb{I}_{\left[\frac{1}{n}, \frac{1}{n_{0}}\right)}(x) \log \frac{1}{x}+\mathbb{I}_{\left[\frac{1}{n_{0}}, \pi\right]}(x) \frac{1}{x} \log \frac{1}{x}\right\}, \\
\left|A_{5}\right| & \lesssim \frac{1}{x \log n} \mathbb{I}_{\left[\frac{1}{n}, \pi\right]}(x)
\end{aligned}
$$

Combining (4) and (9) we complete the proof of Lemma 1.
Proof of Theorem 1. First, we note that

$$
\begin{align*}
& \left|t_{n, n_{0}}(f, x)-f(x)\right| \tag{10}\\
\leq & \left(\int_{0}^{\frac{1}{n}}+\int_{\frac{1}{n}}^{\frac{1}{n_{0}}}+\int_{\frac{1}{n_{0}}}^{\pi}\right)\left|\frac{f(x+t)+f(x-t)}{2}-f(x)\right|\left|F_{n, n_{0}}(t)\right| d t \\
= & I_{1}+I_{2}+I_{3}
\end{align*}
$$

From (2) we can write

$$
\begin{equation*}
I_{1} \lesssim n \int_{0}^{\frac{1}{n}}\left|\frac{f(x+t)+f(x-t)}{2}-f(x)\right| d t=o(1) \tag{11}
\end{equation*}
$$

at every Lebesgue point x of f by virtue of theorem. Again by Lemma 1 we have

$$
\begin{align*}
I_{2} \lesssim & \frac{1}{\log n} \int_{\frac{1}{n}}^{\frac{1}{n_{0}}}\left|\frac{f(x+t)+f(x-t)}{2}-f(x)\right| \frac{d t}{t} \tag{12}\\
& +\frac{n_{0}}{\log n} \int_{\frac{1}{n}}^{\frac{1}{n_{0}}}\left|\frac{f(x+t)+f(x-t)}{2}-f(x)\right| \log \frac{1}{t} d t \\
:= & I_{21}+I_{22} .
\end{align*}
$$

Set

$$
F_{x}(t)=F(t)=\int_{0}^{t}\left|\frac{f(x+s)+f(x-s)}{2}-f(x)\right| d s
$$

Since F is absolutely continuous we can write

$$
I_{21} \lesssim \frac{1}{\log n} \int_{\frac{1}{n}}^{\frac{1}{n_{0}}} \frac{F^{\prime}(t)}{t} d t
$$

Integrating by parts we see that

$$
\begin{equation*}
\left.I_{21} \lesssim \frac{1}{\log n} \frac{F(t)}{t}\right|_{\frac{1}{n}} ^{\frac{1}{n_{0}}}+\frac{1}{\log n} \int_{\frac{1}{n}}^{\frac{1}{n_{0}}} \frac{F(t)}{t^{2}} d t \tag{13}
\end{equation*}
$$

Since, $\frac{F(t)}{t}=o(1)$ at each Lebesgue point x of f, the integrated term in (13) is $o(1)$ as $n \rightarrow \infty$. The same is true for the integral in (13), since given $\varepsilon>0$ we may first choose n large enough so that $\frac{F(t)}{t}<\varepsilon$ in $\left[\frac{1}{n}, \frac{1}{n_{0}}\right]$. Therefore the integral does not exceed

$$
\begin{equation*}
I_{21} \lesssim \frac{\varepsilon}{\log n} \int_{\frac{1}{n}}^{\frac{1}{n_{0}}} \frac{d t}{t} \lesssim \varepsilon \tag{14}
\end{equation*}
$$

Analogously, we can prove that

$$
\begin{equation*}
I_{22}=o(1) \text { as } n \rightarrow \infty \tag{15}
\end{equation*}
$$

Combining (12), (14) and (15) we have

$$
\begin{equation*}
I_{2}=o(1) \text { as } n \rightarrow \infty . \tag{16}
\end{equation*}
$$

We split I_{3} into two integrals,

$$
\begin{equation*}
I_{3}=\int_{\frac{1}{n_{0}}}^{\eta}+\int_{\eta}^{\pi}=I_{31}+I_{32} \tag{17}
\end{equation*}
$$

Now, by (2) we have

$$
I_{32} \lesssim \frac{1}{\log n} \frac{1}{\eta} \log \frac{1}{\eta} c_{f},
$$

where c_{f} depends, of course, on f. So this term can be made small, but there must be a balance between η and n. Choosing $\eta=\frac{1}{\log n_{0}}$, for instance, we see at once that I_{32} can be made arbitrarily small for sufficiently large n. Therefore,

$$
\begin{equation*}
I_{32}=o(1) \text { as } n \rightarrow \infty . \tag{18}
\end{equation*}
$$

Now, by (2) it readily follows that

$$
\begin{equation*}
I_{31} \lesssim \frac{1}{\log n} \int_{\frac{1}{n_{0}}}^{\frac{1}{\log n_{0}}} \frac{1}{t} \log \frac{1}{t}\left|\frac{f(x+t)+f(x-t)}{2}-f(x)\right| d t \tag{19}
\end{equation*}
$$

We may rewrite (19) as

$$
I_{31} \lesssim \frac{1}{\log n} \int_{\frac{1}{n_{0}}}^{\frac{1}{\log n_{0}}} \frac{1}{t} \log \frac{1}{t} F^{\prime}(t) d t
$$

whence integrating by parts we see that

$$
\begin{align*}
I_{31} \lesssim & \left.\frac{1}{\log n} \frac{F(t)}{t} \log \frac{1}{t}\right|_{\frac{1}{n_{0}}} ^{\frac{1}{\log _{0}}} \tag{20}\\
& +\frac{1}{\log n} \int_{\frac{1}{n_{0}}}^{\frac{1}{\log n_{0}}} \frac{F(t)}{t^{2}} \log \frac{1}{t} d t .
\end{align*}
$$

Since $\frac{F(t)}{t}=o(1)$ at each Lebesgue point x of f, the integrated term in (20) is $o(1)$ as $n \rightarrow \infty$. The same in true for the integral in (20), since given $\varepsilon>0$ we may first choose n large enough so that $\frac{F(t)}{t}<\varepsilon$ in $\left[\frac{1}{n_{0}}, \frac{1}{\log n_{0}}\right]$. Therefore for I_{31} we have

$$
\begin{equation*}
I_{31} \lesssim \frac{\varepsilon}{\log n} \int_{\frac{1}{n_{0}}}^{\frac{1}{\log n_{0}}} \frac{1}{t} \log \frac{1}{t} d t \lesssim \frac{\varepsilon \log ^{2} n_{0}}{\log n} \lesssim \varepsilon \tag{21}
\end{equation*}
$$

From (17), (18) and (21) we obtain that

$$
\begin{equation*}
I_{3}=o(1) \text { as } n \rightarrow \infty . \tag{22}
\end{equation*}
$$

Combining (10), (11), (16) and (22) we conclude Theorem 1

References

[1] G. Gát. Investigations of certain operators with respect to the Vilenkin system. Acta Math. Hungar., 61(1-2):131-149, 1993.
[2] G. Gát and U. Goginava. Uniform and L-convergence of logarithmic means of WalshFourier series. Acta Math. Sin. (Engl. Ser.), 22(2):497-506, 2006.
[3] G. Gát and U. Goginava. On the divergence of Nörlund logarithmic means of WalshFourier series. Acta Math. Sin. (Engl. Ser.), 25(6):903-916, 2009.
[4] G. Gát and K. Nagy. On the logarithmic summability of Fourier series. Georgian Math. J., 18(2):237-248, 2011.
[5] P. Simon. Strong convergence of certain means with respect to the Walsh-Fourier series. Acta Math. Hungar., 49(3-4):425-431, 1987.
[6] O. Szász. On the logarithmic means of rearranged partial sums of a Fourier series. Bull. Amer. Math. Soc., 48:705-711, 1942.
[7] G. Tkebuchava. Logarithmic summability of Fourier series. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 21(2):161-167 (electronic), 2005.
[8] K. Yabuta. Quasi-Tauberian theorems, applied to the summability of Fourier series by Riesz's logarithmic means. Tôhoku Math. J. (2), 22:117-129, 1970.
[9] A. Zygmund. Trigonometric series. 2nd ed. Vols. I, II. Cambridge University Press, New York, 1959.

Received February 02, 2015.

Department of Mathematics,
Faculty of Exact and Natural Sciences, Tbilisi State University,
Chavchavadze str. 1, Tbilisi 0128, Georgia
E-mail address: lashabara@gmail.com

[^0]: 2010 Mathematics Subject Classification. 42A24, 40G05.
 Key words and phrases. Lebesgue points, logarithmic means, almost everywhere summability.

