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Abstract. In this paper we characterize the set of convergence of the
general logarithmic means of trigonometric Fourier series.

Let T := [−π, π] denotes an interval in the 1-dimensional Euclidean space
R. The notation a . b in the paper stands for a ≤ cb, where c is an absolute
constant.

We denote by Lp (T) the class of all measurable functions f that are 2π-
periodic with respect to all variables and satisfy

‖f‖p :=

∫
T

|f |p
 1

p

< ∞. 1 ≤ p ≤ ∞.

In case p = ∞, by Lp (T) we mean C (T), endowed with the supremum norm.
Let f ∈ L1 (T). The Fourier series of f with respect to the trigonometric

system is the series

S [f ] :=
+∞∑

n=−∞

f̂ (n) einx,

where

f̂ (n) :=
1

2π

∫
T

f (x) e−inxdx
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are the Fourier coefficients of the function f . The partial sums are defined as
follows:

SN (f, x) :=
N∑

n=−N

f̂ (n) einx.

In the literature, there is known the notion of the Riesz’s logarithmic means
of a Fourier series. The nth Riesz logarithmic mean of the Fourier series of an
integrable function f is defined by

1

ln

n∑
k=0

Sk (f)

k + 1
, ln :=

n∑
k=0

1

k + 1
,

where Sk (f) is the partial sum of its Fourier series. This Riesz’s logarithmic
means with respect to the trigonometric system has been studied by a lot of
authors. We mention for instance the papers of Szász and Yabuta [6],[8]. This
mean with respect to the Walsh, Vilenkin system is discussed by Simon, and
Gát [5],[1].

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The Nörlund means
for the Fourier series of f are defined by

1
n∑

k=0

qk

n∑
k=0

qkSn−k (f)

If qk =
1

k+1
, then we get the Nörlund logarithmic means:

Ln (f ; x) :=
1

ln

n∑
k=0

Sn−k (f)

k + 1
.

Although, it is a kind of ”reverse” Riesz’s logarithmic means. In [2, 3] it is
proved some convergence and divergence properties of the logarithmic means
of Walsh-Fourier series of functions in the class of continuous functions, and
in the Lebesgue space L.

In one of his last papers [7] Tkebuchava constructed a set of logarithmic
summation methods which contains both of the above mentioned logarithmic
summation methods as limit cases. Namely, for any integers n, n0 such that
0 ≤ n0 ≤ n let Tkebuchava’s means Tn,n0 be defined by

tn,n0 (f ;x) : =
1

l (n, n0)

(
n0−1∑
k=0

Sk (f, x)

n0 − k + 1
+ Sn0 (f, x) +

n∑
k=n0+1

Sk (f, x)

k − n0 + 1

)
,

where

l (n, n0) :=

n0−1∑
k=0

1

n0 − k + 1
+ 1 +

n∑
k=n0+1

1

k − n0 + 1
.

It is clear, that l (n, n0) � log n. This summation method includes the Riesz
(for n0 = 0) and Nörlund (for n0 = n) logarithmic methods, too.
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Define the kernels Fn,n0 of Tkebuchava’s means by

Fn,n0 :=
1

l (n, n0)

(
n0−1∑
k=0

Dk

n0 − k + 1
+Dn0 +

n∑
k=n0+1

Dk

k − n0 + 1

)
.

Tkebuchava [7] gave estimates of kernels. Namely, the following theorem
holds.

Theorem T. Let 0 ≤ n0 ≤ n. Then

1 +
log2 (n0 + 2)

log (n+ 2)
. ‖Fn,n0‖L1(T) . 1 +

log2 (n0 + 2)

log (n+ 2)
.

Analogical result for Walsh-Fourier series is proved by Gát and Nagy [4].
Moreover, the general logarithmic means of quadratical partial sums also
treated for double Walsh-Fourier series and trigonometric Fourier series. The
last trigonometric Fourier case was partially solved, only.

Set tn,n0f := Fn,n0 ∗ f the logarithmic means of Fourier series of f ∈ L1 (T).
The following theorem is proved by Tkebuchava [7]

Theorem T2. The following conditions are equivalent :

a) log n0 (n) = O
(√

log n
)
;

b) ‖tn,n0f − f‖C(T) → 0 as n → ∞ ∀f ∈ C (T);
c) ‖tn,n0f − f‖L1(T) → 0 as n → ∞ ∀f ∈ L1 (T).

Definition 1. Let f ∈ L1 (T), then x is a Lebesgue point of f if

lim
ε→0

1

ε

ε∫
0

|f (x+ t)− f (x)| dt = 0.

Theorem L (see [9]). Let f ∈ L1 (T), then

lim
ε→0

1

ε

ε∫
0

|f (x+ t)− f (x)| dt = 0 a.e. x in T.

In this paper we prove that the following is true.

Theorem 1. Let f ∈ L1 (T) and log n0 (n) = O
(√

log n
)
, then

(1) lim
n→∞

tn,n0 (f, x) = f (x)

at each Lebesgue point x of f . Thus (1) holds a.e. in T.
In order to prove Theorem 1 we need the following lemma.

Lemma 1. The following estimation holds

|Fn,n0 (x)| . nI[0, 1n) (x) +
1

x log n
I[ 1

n
, 1
n0

) (x)(2)

+
n0

log n
I[ 1

n
, 1
n0

) (x) log 1

x
+

1

x log n
I[ 1

n0
,π
] (x) log 1

x
.
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Proof. First, we note that

(3) Fn,n0 (x) =
1

l (n, n0)

(
n0+1∑
j=2

Dn0+1−j (x)

j
+Dn0 (x) +

n−n0+1∑
j=2

Dj+n0−1 (x)

j

)
.

Further from (3) we get

Fn,n0 (x) =
1

l (n, n0)

{
sin
(
n0 + 1 + 1

2

)
x

2 sin x
2

n0+1∑
j=2

cos jx

j
(4)

−
cos
(
n0 + 1 + 1

2

)
x

2 sin x
2

n0+1∑
j=2

sin jx

j

+Dn0 (x) +
sin
(
n0 − 1 + 1

2

)
x

2 sin x
2

n−n0+1∑
j=2

cos jx

j

+
cos
(
n0 − 1 + 1

2

)
x

2 sin x
2

n−n0+1∑
j=2

sin jx

j

}

=
1

l (n, n0)
{A1 + A2 + A3 + A4 + A5} .

It is well-known the following estimations (see [9, Ch.5])

(5)

∣∣∣∣∣
N∑
j=1

sin jx

j

∣∣∣∣∣ . 1, x ∈ T, N ≥ 1,

(6)

∣∣∣∣∣
N∑
j=1

cos jx

j

∣∣∣∣∣ . ln
1

x
, ∀x ∈ (0, π] ,

(7)

∣∣∣∣∣
N∑
j=1

cos jx

j

∣∣∣∣∣ . ln (m+ 2) , x ∈
[

1

m+ 2
, π

]
, ∀N ≥ 1.

We will use the estimation for case 0 ≤ x < 1/n

(8) |Fn,n0 (x)| ≤ n.

Set x ≥ 1/n. From (5)-(8) we get

|A1| .
1

log n

{
n0 log n0I[ 1

n
, 1
n0

) (x) + I[ 1
n0

,π
] (x) 1

x
log

1

x

}
,(9)

|A2| .
1

x log n
I[ 1n ,π] (x) ,

|A3| .
1

log n

{
n0I[ 1

n
, 1
n0

) (x) + 1

x
I[ 1

n0
,π
] (x)

}
,
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|A4| .
1

log n

{
n0I[ 1

n
, 1
n0

) (x) log 1

x
+ I[ 1

n0
,π
] (x) 1

x
log

1

x

}
,

|A5| .
1

x log n
I[ 1n ,π] (x) .

Combining (4) and (9) we complete the proof of Lemma 1. �

Proof of Theorem 1. First, we note that

|tn,n0 (f, x)− f (x)|(10)

≤


1
n∫

0

+

1
n0∫
1
n

+

π∫
1
n0

∣∣∣∣f (x+ t) + f (x− t)

2
− f(x)

∣∣∣∣ |Fn,n0 (t)| dt

= I1 + I2 + I3

From (2) we can write

(11) I1 . n

1
n∫

0

∣∣∣∣f (x+ t) + f (x− t)

2
− f(x)

∣∣∣∣ dt = o (1)

at every Lebesgue point x of f by virtue of theorem. Again by Lemma 1 we
have

I2 . 1

log n

1
n0∫
1
n

∣∣∣∣f (x+ t) + f (x− t)

2
− f(x)

∣∣∣∣ dtt(12)

+
n0

log n

1
n0∫
1
n

∣∣∣∣f (x+ t) + f (x− t)

2
− f(x)

∣∣∣∣ log 1

t
dt

:= I21 + I22.

Set

Fx (t) = F (t) =

t∫
0

∣∣∣∣f (x+ s) + f (x− s)

2
− f(x)

∣∣∣∣ ds,
Since F is absolutely continuous we can write

I21 .
1

log n

1
n0∫
1
n

F
′
(t)

t
dt,
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Integrating by parts we see that

(13) I21 .
1

log n

F (t)

t
|

1
n0
1
n

+
1

log n

1
n0∫
1
n

F (t)

t2
dt.

Since, F (t)
t

= o (1) at each Lebesgue point x of f , the integrated term in (13)
is o (1) as n → ∞. The same is true for the integral in (13), since given ε > 0

we may first choose n large enough so that F (t)
t

< ε in
[
1
n
, 1
n0

]
. Therefore the

integral does not exceed

(14) I21 .
ε

log n

1
n0∫
1
n

dt

t
. ε.

Analogously, we can prove that

(15) I22 = o (1) as n → ∞.

Combining (12), (14) and (15) we have

(16) I2 = o (1) as n → ∞.

We split I3 into two integrals,

(17) I3 =

η∫
1
n0

+

π∫
η

= I31 + I32,

Now, by (2) we have

I32 .
1

log n

1

η
log

1

η
cf ,

where cf depends, of course, on f . So this term can be made small, but there
must be a balance between η and n. Choosing η = 1

logn0
, for instance, we see at

once that I32 can be made arbitrarily small for sufficiently large n. Therefore,

(18) I32 = o (1) as n → ∞.

Now, by (2) it readily follows that

(19) I31 .
1

log n

1
logn0∫
1
n0

1

t
log

1

t

∣∣∣∣f (x+ t) + f (x− t)

2
− f(x)

∣∣∣∣ dt.
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We may rewrite (19) as

I31 .
1

log n

1
logn0∫
1
n0

1

t
log

1

t
F

′
(t) dt,

whence integrating by parts we see that

I31 .
1

log n

F (t)

t
log

1

t
|

1
logn0
1
n0

(20)

+
1

log n

1
logn0∫
1
n0

F (t)

t2
log

1

t
dt.

Since F (t)
t

= o (1) at each Lebesgue point x of f , the integrated term in (20)
is o (1) as n → ∞. The same in true for the integral in (20), since given ε > 0

we may first choose n large enough so that F (t)
t

< ε in
[

1
n0
, 1
logn0

]
. Therefore

for I31 we have

I31 .
ε

log n

1
logn0∫
1
n0

1

t
log

1

t
dt . ε log2 n0

log n
. ε.(21)

From (17), (18) and (21) we obtain that

(22) I3 = o (1) as n → ∞.

Combining (10), (11), (16) and (22) we conclude Theorem 1 �
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