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Abstract. In this paper we prove and discuss some new (Hp, Lp)-type in-
equalities of weighted maximal operators of Vilenkin –Nörlund means with
non-increasing coefficients. These results are the best possible in a special
sense. As applications, both some well-known and new results are pointed
out in the theory of strong convergence of Vilenkin –Nörlund means with
non-increasing coefficients.

1. Introduction

The definitions and notations used in this introduction can be found in our
next section. In the one-dimensional case the weak (1, 1)-type inequality for
maximal operator of Fejér means σ∗f := supn∈N |σnf | can be found in Schipp
[18] for Walsh series and in Pál, Simon [17] for bounded Vilenkin series. Fujji
[6] and Simon [19] verified that σ∗ is bounded from H1 to L1. Weisz [28] gen-
eralized this result and proved boundedness of σ∗ from the martingale space
Hp to the Lebesgue space Lp for p > 1/2. Simon [20] gave a counterexample,
which shows that boundedness does not hold for 0 < p < 1/2. A counterexam-
ple for p = 1/2 was given by Goginava [9]. Weisz [31] proved that the maximal
operator of the Fejér means σ∗ is bounded from the Hardy space H1/2 to the
space weak − L1/2.

In [8] Goginava investigated the behaviour of Cesàro means in detail. In the
two-dimensional case approximation properties of Nörlund and Cesàro means
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was considered by Nagy [13]. Weisz [30] proved that the maximal operator
of Cesàro means σα,∗f := supn∈N |σα

nf | is bounded from the martingale space
Hp to the space Lp for p > 1/ (1 + α). Goginava [10] gave a counterexample,
which shows that boundedness does not hold for 0 < p ≤ 1/ (1 + α). Simon
and Weisz [22] showed that the maximal operator σα,∗ (0 < α < 1) of the (C, α)
means is bounded from the Hardy space H1/(1+α) to the space weak−L1/(1+α).
In [4] and [25] it was also proved that the maximal operator

σ̃α,∗
p := sup

n∈N
|σα

nf | / (n+ 1)1/p−α−1 log(1+α)[p+α(1+α)] (n+ 1)

is bounded from the Hardy spaceHp to the space Lp, where 0 < p ≤ 1/ (1 + α).

Moreover, the rate of the weights
{
(n+ 1)1/p−α−1 log(1+α)[p+α(1+α)] (n+ 1)

}∞

n=1
in nth Cesàro mean is given exactly.

It is well-known that Vilenkin systems do not form bases in the space
L1 (Gm). Moreover, there is a function in the Hardy space H1 (Gm), such
that the partial sums of f are not bounded in L1-norm. Simon [21] (for p = 1
see [1] and [7] and for 0 < p < 1 it was shown in [24]) proved that there exists
an absolute constant cp, depending only on p, such that

(1)
1

log[p] n

n∑
k=1

‖Skf‖pp
k2−p

≤ cp ‖f‖pHp
, (0 < p ≤ 1)

for all f ∈ Hp and n ∈ N+, where [p] denotes the integer part of p. In [23] it
was proved that sequence {1/k2−p}∞k=1 (0 < p < 1) in (1) can not be improved.

In [5] it was proved that there exists an absolute constant cp, depending only
on p, such that

(2)
1

log[1/2+p] n

n∑
k=1

‖σkf‖pp
k2−2p

≤ cp ‖f‖pHp
, (0 < p ≤ 1/2, n = 2, 3, . . .) .

Analogical result for (C,α) (0 < α < 1) means when p = 1/ (1 + α) was
generalized in [4] and the case 0 < p < 1/ (1 + α) was proved in [25]. In
particular the following inequality

1

log[α/(1+α)+p] n

n∑
k=1

‖σα
k f‖

p
p

k2−(1+α)p
≤ cp ‖f‖pHp

, (0 < p ≤ 1/ (1 + α) , n = 2, 3, . . .)

holds.
Móricz and Siddiqi [12] investigated the approximation properties of some

special Nörlund means of Lp function in norm. For more information on
Nörlund logarithmic means, see paper of Blahota and Gát [2] and Nagy [14]
(see also [16] and [15]). In [3] there were proved strong convergence theorems
of Nörlund means and boundedness of weighted maximal operators of Nörlund
means

t̃∗f := sup
n∈N

|tnf | / log1+α (n+ 1)
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from the Hardy space H1/(1+α) to the space L1/(1+α), but in the case when
sequence {qn : n ≥ 0} is non-increasing, such that

(3) nα/Qn = O (1) , as n→ ∞,

and

(4) (qn − qn+1) /n
α−2 = O (1) , as n→ ∞,

where Qn :=
∑n−1

k=0 qk.
In this paper we prove and discuss some new (Hp, Lp)-type inequalities of

weighted maximal operators of Vilenkin –Nörlund means with non-increasing
coefficients. As applications, both some well-known and new results are pointed
out in the theory of strong convergence of Vilenkin –Nörlund means.

This paper is organized as follows: in order not to disturb our discussions
later on some definitions and notations are presented in Section 2. The main
results and some of its consequences can be found in Section 3. For the proofs
of main results we need some auxiliary results. These results are presented in
Section 4. The detailed proofs are given in Section 5.

2. Definitions and Notations

Denote by N+ the set of the positive integers, N := N+ ∪ {0}. Let m :=
(m0,m1, . . .) be a sequence of the positive integers not less than 2. Denote by
Zmn := {0, 1, . . . ,mn−1} the additive group of integers modulomn. Define the
group Gm as the complete direct product of the groups Zmn with the product
of the discrete topologies of Zmn ‘s.

In this paper we discuss bounded Vilenkin groups, i.e. the case when supnmn <
∞.

The direct product µ of the measures

µn ({j}) := 1/mn, (j ∈ Zmn)

is the Haar measure on Gm with µ (Gm) = 1.
The elements of Gm are represented by sequences

x := (x0, x1, . . . , xn, . . .) , (xn ∈ Zmn) .

It is easy to give a base for the neighbourhood of Gm :

I0 (x) := Gm, In(x) := {y ∈ Gm | y0 = x0, . . . , yn−1 = xn−1}
for x ∈ Gm, n ∈ N.

Denote In := In (0) , for n ∈ N+ and

en := (0, . . . , xn = 1, 0, . . .) ∈ Gm, (n ∈ N) .

It is evident that

(5) IN =

(
N−2⋃
k=0

N−1⋃
l=k+1

Ik,lN

)⋃(
N−1⋃
k=1

Ik,NN

)
,
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where
Ik,lN :={

IN(0, . . . , 0, xk 6= 0, 0, . . . , 0, xl 6= 0, xl+1, . . . , xN−1, . . .), for k < l < N,

IN(0, . . . , 0, xk 6= 0, 0, . . . , xN−1 = 0, xN , . . .), for l = N.

If we define the so-called generalized number system based on m in the
following way :

M0 := 1, Mn+1 := mnMn (n ∈ N),
then every n ∈ N can be uniquely expressed as n =

∑∞
k=0 nkMk, where nk ∈

Zmk
(k ∈ N+) and only a finite number of nk‘s differ from zero.

Next, we introduce onGm an orthonormal system which is called the Vilenkin
system. At first, we define the complex-valued function rk : Gm → C, the gen-
eralized Rademacher functions, by

rk (x) := exp (2πıxk/mk) ,
(
ı2 = −1, x ∈ Gm, k ∈ N

)
.

Now, define the Vilenkin system ψ := (ψn : n ∈ N) on Gm as:

ψn(x) :=
∞∏
k=0

rnk
k (x) (n ∈ N) .

Specifically, we call this system the Walsh-Paley system, when m ≡ 2.
The norms (or quasi-norm) of the spaces Lp(Gm) and weak − Lp (Gm)

(0 < p <∞) are respectively defined by

‖f‖pp :=
∫
Gm

|f |p dµ, ‖f‖pweak−Lp
:= sup

λ>0
λpµ (f > λ) <∞.

The Vilenkin systems are orthonormal and complete in L2 (Gm) (see [26]).
Now we introduce analogues of the usual definitions in Fourier-analysis. If

f ∈ L1 (Gm) we can define Fourier coefficients, partial sums of the Fourier
series, Dirichlet kernels with respect to the Vilenkin systems in the usual man-
ner:

f̂ (n) :=

∫
Gm

fψndµ, Snf :=
n−1∑
k=0

f̂ (k)ψk, Dn :=
n−1∑
k=0

ψk, (n ∈ N+)

respectively.
The σ-algebra generated by the intervals {In (x) : x ∈ Gm} will be denoted

by zn (n ∈ N). Denote by f =
(
f (n), n ∈ N

)
a martingale with respect to

zn (n ∈ N). (for details see e.g. [27]).
The maximal function of a martingale f is defined by

f ∗ := sup
n∈N

∣∣f (n)
∣∣ .

For 0 < p <∞ the Hardy martingale spaces Hp (Gm) consist of all martin-
gales, for which

‖f‖Hp
:= ‖f∗‖p <∞.
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If f =
(
f (n), n ∈ N

)
is a martingale, then the Vilenkin-Fourier coefficients

must be defined in a slightly different manner:

f̂ (i) := lim
k→∞

∫
Gm

f (k)ψidµ.

Let {qn : n ≥ 0} be a sequence of non-negative numbers. The nth Nörlund
mean is defined by

tnf :=
1

Qn

n∑
k=1

qn−kSkf,

where Qn :=
∑n−1

k=0 qk.
It is well known that

tnf (x) =

∫
Gm

f (t)Fn (x− t) dt, Fn :=
1

Qn

n∑
k=1

qn−kDk.

We always assume that q0 > 0 and limn→∞Qn = ∞. In this case (see [11])
the summability method generated by {qn : n ≥ 0} is regular if and only if

lim
n→∞

qn−1

Qn

= 0.

If qn ≡ 1, then we respectively get the usual nth Fejér mean and Fejér kernel

σnf :=
1

n

n∑
k=1

Skf, Kn :=
1

n

n∑
k=1

Dk.

The (C, α)-means (Cesàro means) of the Vilenkin-Fourier series are defined
by

σα
nf :=

1

Aα
n

n∑
k=1

Aα−1
n−kSkf,

where

Aα
0 := 0, Aα

n :=
(α+ 1) . . . (α+ n)

n!
, α 6= −1,−2, . . .

We consider following maximal operators:

∼
t
∗

pf := sup
n∈N

|tnf | / (n+ 1)1/p−α−1 , σ̃p
α,∗f := sup

n∈N
|σα

nf | / (n+ 1)1/p−α−1 .

A bounded measurable function a is called a p-atom, if there exists an in-
terval I, such that∫

I

a dµ = 0, ‖a‖∞ ≤ µ (I)−1/p , supp (a) ⊂ I.
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3. Formulation of main results

Theorem 1. Let f ∈ Hp, where 0 < α < 1, 0 < p < 1/ (1 + α) and {qn : n ≥
0}, be a sequence of non-increasing numbers, satisfying conditions (3) and (4).
Then there exists an absolute constant cα, depending only on α and p, such
that ∥∥∥∼t∗pf∥∥∥

p
≤ cα,p ‖f‖Hp

.

Corollary 1 (Blahota, Tephnadze [4]). Let f ∈ Hp, where 0 < α < 1 and
0< p < 1/ (1 + α). Then there exists an absolute constant cα,p, depending
only on α and p, such that ∥∥σ̃α,∗

p f
∥∥
p
≤ cα,p ‖f‖Hp

.

Theorem 2. Let f ∈ Hp, where 0 < α < 1, 0 < p < 1/ (1 + α) and {qn : n ≥
0}, be a sequence of non-increasing numbers, satisfying condition (3) and (4).
Then there exists an absolute constant cα,p, depending only on α and p, such
that

∞∑
k=1

‖tkf‖pHp

k2−(1+α)p
≤ cα,p ‖f‖pHp

.

Corollary 2 (Blahota, Tephnadze [4]). Let f ∈ Hp, where 0 < α < 1 and
0 < p < 1/ (1 + α). Then there exists an absolute constant cα,p, depending
only on α and p, such that

∞∑
k=1

‖σα
k f‖

p
Hp

k2−(1+α)p
≤ cα,p ‖f‖pHp

.

4. Auxiliary results

Lemma 1 (Weisz[27]). A martingale f = (fn, n ∈ N) is in Hp (0 < p ≤ 1)
if and only if there exists a sequence (ak, k ∈ N) of p-atoms and a sequence
(µk, k ∈ N) of real numbers, such that for every n ∈ N

(6)
∞∑
k=0

µkSMnak = fn,

∞∑
k=0

|µk|p <∞.

Moreover, ‖f‖Hp
v inf (

∑∞
k=0 |µk|p)1/p , where the infimum is taken over all

decompositions of f of the form (6).

Lemma 2 (Weisz [29]). Suppose that an operator T is σ-linear and for some
0 < p ≤ 1 ∫

I

|Ta|p dµ ≤ cp <∞,
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for every p-atom a, where I denotes the support of the atom. If T is bounded
from L∞ to L∞, then

‖Tf‖p ≤ cp ‖f‖Hp
.

Lemma 3 ([3]). Let 0 < α ≤ 1 and {qn : n ≥ 0} be a sequence of non-
increasing numbers, satisfying conditions (3) and (4). Then

|Fn| ≤
cα
nα


|n|∑
j=0

Mα
j

∣∣KMj

∣∣ .

Moreover, if r ≥MN , then∫
IN

|Fr (x− t)| dµ (t) ≤ cαM
α
l Mk

rαMN

, x ∈ Ik,lN ,

where k = 0, . . . , N − 2, l = k + 2, . . . , N − 1 and∫
IN

|Fr (x− t)| dµ (t) ≤ cαMk

MN

, x ∈ Ik,NN ,

where k = 0, . . . , N − 1.

5. Proofs of main results

Proof of Theorem 1. Since tn is bounded from L∞ to L∞ (the boundedness
follows from Lemma 3) according to Lemma 2 the proof of Theorem 1 will be
complete if we show that ∫

IN

∣∣∣∼t∗pa∣∣∣p dµ <∞,

for every p-atoms a. We may assume that a is an arbitrary p-atom, with
support I, µ (I) = M−1

N and I = IN . It is easy to see that tn (a) = 0, when
n ≤MN . Therefore, we can suppose that n > MN .

Let x ∈ IN . Since ‖a‖∞ ≤M
1/p
N we obtain that

|tna (x)| ≤
∫
IN

|a (t)| |Fn (x− t)| dµ (t)

≤ ‖a‖∞
∫
IN

|Fn (x− t)| dµ (t) ≤M
1/p
N

∫
IN

|Fn (x− t)| dµ (t) .

Let x ∈ Ik,lN , 0 ≤ k < l < N . Then from Lemma 3 we get that

(7) |tna (x)| ≤
cα,pM

1/p−1
N Mα

l Mk

nα
.

Let x ∈ Ik,NN , 0 ≤ k < N . Then from Lemma 3 we have that

(8) |tna (x)| ≤ cα,pM
1/p−1
N Mk.
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Since n > MN , if we apply (5), (7) and (8) we obtain that∫
IN

sup
n∈N

∣∣∣∣ tna

n1/p−1−α

∣∣∣∣p dµ
=

N−2∑
k=0

N−1∑
l=k+1

mj−1∑
xj=0,j∈{l+1,...,N−1}

∫
Ik,lN

sup
n>MN

∣∣∣∣ tna

n1/p−1−α

∣∣∣∣p dµ
+

N−1∑
k=0

∫
Ik,NN

sup
n>MN

∣∣∣∣ tna

n1/p−1−α

∣∣∣∣p dµ
≤ 1

M
1−(1+α)p
N

N−2∑
k=0

N−1∑
l=k+1

1∑
xj=0,j∈{l+1,...,N−1}

∫
Ik,lN

sup
n>MN

|tna|p dµ

+
1

M
1−(1+α)p
N

M−1∑
k=0

∫
Ik,NN

sup
n>MN

|tna|p dµ

≤ cα,p

M
1−(1+α)p
N

N−2∑
k=0

N−1∑
l=k+1

1

Ml

M1−p
N Mαp

l Mp
k

Mαp
N

+
cα,p

M
1−(1+α)p
N

1

MN

N−1∑
k=0

M1−p
N Mp

k

≤cα,p
N−2∑
k=0

Mp
k

N−1∑
l=k+1

1

M1−αp
l

+
cα,p

M
1−(1+α)p
N

N−1∑
k=0

Mp
k

Mp
N

≤ cα,p <∞. �

Proof of Theorem 2. By Lemma 1 the proof of Theorem 2 will be complete, if
we show that

∞∑
k=1

‖tka‖pp
k2−(1+α)p

≤ cα,p <∞,

for every p-atom a. Analogously to the proof of Theorem 1 we may assume
that a be an arbitrary p-atom with support I, µ (I) = M−1

N and I = IN and
n > MN .

Let x ∈ IN . Since tm is bounded from L∞ to L∞ (the boundedness follows

from Lemma 3) and ‖a‖∞ ≤M
1/p
N , we obtain∫

IN

|tna (x)|p dµ ≤ ‖a (x)‖p∞M−1
N ≤ cα,p <∞.

Hence

∞∑
k=MN

∫
IN

|tka (x)|1/(1+α) dµ

k2−(1+α)p
≤

∞∑
k=1

1

k2−(1+α)p
≤ cα,p <∞.
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By combining (5) and (7)-(8) we can conclude that

∞∑
k=MN+1

∫
IN

|tka (x)|p dµ (x)
k2−(1+α)p

=
N−2∑
k=0

N−1∑
l=k+1

mj−1∑
xj=0,j∈{l+1,...,N−1}

∫
Ik,lN

|tka (x)|p dµ (x)
k2−(1+α)p

+
n∑

k=MN+1

N−1∑
k=0

∫
Ik,NN

|tka (x)|p dµ (x)
k2−(1+α)p

≤cα,p
∞∑

k=MN+1

(
M1−p

N

k2−p

N−2∑
k=0

N−1∑
l=k+1

Mpα
l Mp

k

Ml

+
M1−p

N

k2−(1+α)p

N−1∑
k=0

Mp
k

MN

)

<cα,pM
1−p
N

∞∑
k=MN+1

1

k2−p
+ cα,p

∞∑
k=MN+1

1

k2−(1+α)p
≤ cα,p <∞.

which complete the proof of Theorem 2. �
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Walsh-Fourier series. J. Approx. Theory, 115(1):9–20, 2002.

[9] U. Goginava. The maximal operator of Marcinkiewicz-Fejér means of the d-dimensional
Walsh-Fourier series. East J. Approx., 12(3):295–302, 2006.

[10] U. Goginava. The maximal operator of the (C,α) means of the Walsh-Fourier series.
Ann. Univ. Sci. Budapest. Sect. Comput., 26:127–135, 2006.

[11] C. N. Moore. Summable series and convergence factors. Dover Publications, Inc., New
York, 1966.
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Giorgi Tephnadze,
Department of Mathematics,
Faculty of Exact and Natural Sciences,
Tbilisi State University,
Chavchavadze str. 1, Tbilisi 0128,
Georgia
and
Department of Engineering Sciences and Mathematics,
Lule̊a University of Technology,
SE-971 87 Lule̊a,
Sweden.
E-mail address: giorgitephnadze@gmail.com


