A CLASS OF FINSLER METRICS WITH ISOTROPIC MEAN BERWALD CURVATURE

B. NAJAFI AND A. TAYEBI

Abstract

In this paper, we find a condition on (α, β)-metrics under which the notions of isotropic S-curvature, weakly isotropic S-curvature and isotropic mean Berwald curvature are equivalent.

1. Introduction

The S-curvature is introduced by Shen for a comparison theorem on Finsler manifolds [8]. Recent studies show that the S-curvature plays a very important role in Finsler geometry [11, 12]. A Finsler metric F is said to have isotropic S-curvature if $\mathbf{S}=(n+1) c F$, where $c=c(x)$ is a scalar function on an n-dimensional manifold M.

Taking twice vertical covariant derivatives of the S-curvature gives rise the mean Berwald curvature. A Finsler metric F with vanishing mean Berwald curvature is called weakly Berwald metric. In [1], Bácsó and Yoshikawa studied some weakly Berwald metrics. Also, F is called to have isotropic mean Berwald curvature if $\mathbf{E}=\frac{n+1}{2} c F^{-1} \mathbf{h}$, for some scalar function c on M, where \mathbf{h} is the angular metric. It is easy to see that every Finsler metric of isotropic S-curvature is of isotropic mean Berwald curvature. Now, is the equation $\mathbf{S}=(n+1) c F$ equivalent to the equation $\mathbf{E}=\frac{n+1}{2} c F^{-1} \mathbf{h}$?

Recently, Cheng and Shen proved that a Randers metric $F=\alpha+\beta$ is of isotropic S-curvature if and only if it is of isotropic mean Berwald curvature [2]. Then Xiang and Cheng extended this equivalency to the Finsler metric $F=\alpha^{-m}(\alpha+\beta)^{m+1}$ for every real constant m, including Randers metric [13]. In [7] Lee and Lee proved that this notions are equivalent for the Finsler metrics in the form $F=\alpha+\alpha^{-1} \beta^{2}$.

All of above metrics are special Finsler metrics so- called (α, β)-metrics. An (α, β)-metric is a scalar function on $T M$ defined by $F:=\alpha \phi(s), s=\beta / \alpha$ where $\phi=\phi(s)$ is a C^{∞} on $\left(-b_{0}, b_{0}\right)$ with certain regularity, α is a Riemannian metric and β is a 1 -form on a manifold M. A natural question arises:

[^0]Is being of isotropic S-curvature equivalent to being of isotropic mean Berwald curvature for (α, β)-metrics?

In [6] Deng and Wang found the formula of the S-curvature of homogeneous (α, β)-metrics. Then Cheng and Shen classified (α, β)-metrics of isotropic S curvature [3].

Let $F=\alpha \phi(s)$ be an (α, β)-metric on a manifold M of dimension n, where $s=\frac{\beta}{\alpha}, \alpha=\sqrt{a_{i j} y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on M. For an (α, β)-metric, put

$$
\begin{aligned}
Q & =\frac{\phi^{\prime}}{\phi-s \phi^{\prime}} \\
\Delta & =1+s Q+\left(b^{2}-s^{2}\right) Q^{\prime}, \\
\Phi & =-\left(Q-s Q^{\prime}\right)\{n \Delta+1+s Q\}-\left(b^{2}-s^{2}\right)(1+s Q) Q^{\prime \prime}, \\
\Xi & =\frac{\left(b^{2} Q+s\right) \Phi}{\Delta^{2}} .
\end{aligned}
$$

Using the same method as in [3], we give an affirmative answer to the above question for almost all (α, β)-metrics. More precisely, we prove the following.

Theorem 1.1. Let $F=\alpha \phi(s)$ be an (α, β)-metric, where $s=\frac{\beta}{\alpha}$. Suppose that Ξ is not constant. Then F is of isotropic S-curvature if and only if it is of isotropic mean Berwald curvature.

It is remarkable that if $\Xi=0$, then F reduces to a Riemannian metric. But, in general, it is still an open problem if Theorem 1.1 is true when Ξ is a constant.

Example 1.2. The above mentioned (α, β)-metric correspond to $\phi=1+s$, $\phi=(1+s)^{m+1}$ and $\phi=1+s^{2}$, respectively. Using a Maple program shows that for all these metrics Ξ is not constant.

2. Preliminaries

Let $F=F(x, y)$ be a Finsler metric on an n-dimensional manifold M. There is a notion of distortion $\tau=\tau(x, y)$ on $T M$ associated with a volume form $d V=\sigma(x) d x$, which is defined by

$$
\tau(x, y)=\ln \frac{\sqrt{\operatorname{det}\left(g_{i j}(x, y)\right)}}{\sigma(x)}
$$

Then the S-curvature is defined by

$$
\mathbf{S}(x, y)=\left.\frac{d}{d t}[\tau(c(t), \dot{c}(t))]\right|_{t=0}
$$

where $c(t)$ is the geodesic with $c(0)=x$ and $\dot{c}(0)=y[5,10]$. From the definition, we see that the S-curvature $\mathbf{S}(x, y)$ measures the rate of change in the distortion on $\left(T_{x} M, F_{x}\right)$ in the direction $y \in T_{x} M$.

Let $\mathbf{G}=y^{i} \frac{\partial}{\partial x^{i}}-2 G^{i} \frac{\partial}{\partial y^{i}}$ denote the spray of F and $d V_{B H}=\sigma(x) d x$ be the Busemann-Hausdorff volume form on M, where the spray coefficients G^{i} are defined by

$$
G^{i}(x, y):=\frac{1}{4} g^{i l}(x, y)\left\{\frac{\partial^{2}\left[F^{2}\right]}{\partial x^{k} \partial y^{l}}(x, y) y^{k}-\frac{\partial\left[F^{2}\right]}{\partial x^{l}}(x, y)\right\}, \quad y \in T_{x} M .
$$

Then the S-curvature is given by

$$
\mathbf{S}=\frac{\partial G^{m}}{\partial y^{m}}-y^{m} \frac{\partial}{\partial x^{m}}(\ln \sigma)
$$

The mean Berwald curvature $\mathbf{E}=E_{i j} d x^{i} \otimes d x^{j}$ is given by

$$
E_{i j}=\frac{1}{2} \frac{\partial^{2} S}{\partial y^{i} \partial y^{j}}
$$

Definition 2.1. Let (M, F) be an n-dimensional Finsler manifold. Then
(a) F is of isotropic S-curvature if $\mathbf{S}=(n+1) c F$,
(b) F is of weak isotropic S-curvature if $\mathbf{S}=(n+1) c F+\eta$,
(c) F is of isotropic mean Berwald curvature if $\mathbf{E}=\frac{n+1}{2} c F^{-1} \mathbf{h}$,
where $c=c(x)$ is a scalar function on $M, \eta=\eta_{i}(x) y^{i}$ is a 1 -form on M and \mathbf{h} is the angular metric [9].

Consider the (α, β)-metric $F=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ where $\alpha=\sqrt{a_{i j}(x) y^{i} y^{j}}$ is a Riemannian metric and $\beta=b_{i}(x) y^{i}$ is a 1 -form on a manifold M. For an (α, β) metric, put

$$
\begin{gathered}
r_{i j}:=\frac{1}{2}\left(b_{i \mid j}+b_{j \mid i}\right), \quad s_{i j}:=\frac{1}{2}\left(b_{i \mid j}-b_{j \mid i}\right), \\
r_{j}:=b^{i} r_{i j}, \quad s_{j}:=b^{i} s_{i j}, r_{i 0}:=r_{i j} y^{j}, \quad s_{i 0}:=s_{i j} y^{j}, r_{0}:=r_{j} y^{j}, s_{0}:=s_{j} y^{j} .
\end{gathered}
$$

Let \bar{G}^{i} denote the spray coefficients of α. We have the following formula for the spray coefficients G^{i} of F [5]:

$$
G^{i}=\bar{G}^{i}+\alpha Q s^{i}{ }_{0}+\Theta\left\{-2 Q \alpha s_{0}+r_{00}\right\} \frac{y^{i}}{\alpha}+\Psi\left\{-2 Q \alpha s_{0}+r_{00}\right\} b^{i},
$$

where $s^{i}{ }_{j}:=a^{i h} s_{h j}, s^{i}{ }_{0}:=s^{i}{ }_{j} y^{j}$ and $r_{00}:=r_{i j} y^{i} y^{j}$. In [3], Cheng-Shen found the S-curvature as follows

$$
\begin{equation*}
\mathbf{S}=\left\{2 \Psi-\frac{f^{\prime}(b)}{b f(b)}\right\}\left(r_{0}+s_{0}\right)-\alpha^{-1} \frac{\Phi}{2 \Delta^{2}}\left(r_{00}-2 \alpha Q s_{0}\right) \tag{1}
\end{equation*}
$$

where

$$
\begin{aligned}
& Q=\frac{\phi^{\prime}}{\phi-s \phi^{\prime}}, \quad \Delta=1+s Q+\left(b^{2}-s^{2}\right) Q^{\prime}, \quad \Psi=\frac{Q^{\prime}}{2 \Delta} \\
& \Phi=-\left(Q-s Q^{\prime}\right)\{n \Delta+1+s Q\}-\left(b^{2}-s^{2}\right)(1+s Q) Q^{\prime \prime} .
\end{aligned}
$$

Recently, Cheng and Shen characterized (α, β)-metrics with isotropic S-curvature and proved the following.

Lemma 2.2 ([3]). Let $F=\alpha \phi(\beta / \alpha)$ be an (α, β)-metric on an n-manifold. Then, F is of isotropic S-curvature $\mathbf{S}=(n+1) c F$, if and only if one of the following holds
(i) β satisfies

$$
\begin{equation*}
r_{i j}=\varepsilon\left\{b^{2} a_{i j}-b_{i} b_{j}\right\}, \quad s_{j}=0 \tag{2}
\end{equation*}
$$

where $\varepsilon=\varepsilon(x)$ is a scalar function, and $\phi=\phi(s)$ satisfies

$$
\begin{equation*}
\Phi=-2(n+1) k \frac{\phi \Delta^{2}}{b^{2}-s^{2}}, \tag{3}
\end{equation*}
$$

where k is a constant. In this case, $c=k \epsilon$.
(ii) β satisfies

$$
\begin{equation*}
r_{i j}=0, \quad s_{j}=0 \tag{4}
\end{equation*}
$$

In this case, $c=0$.
It is remarkable that Cheng, Wang and Wang proved that the condition $\Phi=0$ characterizes the Riemannian metrics among (α, β)-metrics [4]. Hence, in the continue, we suppose that $\Phi \neq 0$.

3. Proof of Theorem 1.1

First, we find the formula of mean Berwald curvature of (α, β)-metrics. After a long and tedious computation, we obtain the following.
Proposition 3.1. Let $F=\alpha \phi\left(\frac{\beta}{\alpha}\right)$ be an (α, β)-metric. Put $\Omega:=\frac{\Phi}{2 \Delta^{2}}$. Then the mean Berwald curvature of F is given by the following

$$
\begin{align*}
E_{i j}= & C_{1} b_{i} b_{j}+C_{2}\left(b_{i} y_{j}+b_{j} y_{i}\right)+C_{3} y_{i} y_{j}+C_{4} a_{i j}+C_{5}\left(r_{i 0} b_{j}+r_{j 0} b_{i}\right) \tag{5}\\
& +C_{6}\left(r_{i 0} y_{j}+r_{j 0} y_{i}\right)+C_{7} r_{i j}+C_{8}\left(s_{i} b_{j}+s_{j} b_{i}\right)+C_{9}\left(s_{i} y_{j}+s_{j} y_{i}\right) \\
& +C_{10}\left(r_{i} b_{j}+r_{j} b_{i}\right)+C_{11}\left(r_{i} y_{j}+r_{j} y_{i}\right),
\end{align*}
$$

where

$$
\begin{aligned}
C_{1}:= & \frac{1}{2 \alpha^{3} \Delta^{2}}\left\{\Phi \alpha Q^{\prime \prime} s_{0}+2 \alpha \Delta^{2} \Psi^{\prime \prime} r_{0}-\Delta^{2} \Omega^{\prime \prime} r_{0}+2 \Delta^{2} \alpha \Omega^{\prime \prime} Q s_{0}\right. \\
& \left.+4 \Delta^{2} \alpha \Omega^{\prime} Q^{\prime} s_{0}+2 \alpha \Delta^{2} \Psi^{\prime \prime} s_{0}\right\}, \\
C_{2}:= & \frac{-1}{2 \alpha^{4} \Delta^{2}}\left\{2 \alpha \Delta^{2} \Psi^{\prime \prime} s_{0}-2 \Omega^{\prime} \Delta^{2} r_{0}+2 \Omega^{\prime} \Delta^{2} \alpha Q s_{0}-\Delta^{2} \Omega^{\prime \prime} s r_{0}\right. \\
& +2 \Delta^{2} \alpha \Omega^{\prime \prime} s Q s_{0}+4 \Delta^{2} \alpha \Omega^{\prime} Q^{\prime} s_{0} s+2 \alpha \Delta^{2} \Psi^{\prime} r_{0}+2 \alpha \Delta^{2} \Psi^{\prime \prime} s r_{0} \\
& \left.+2 \alpha \Delta^{2} \Psi^{\prime \prime} s s_{0}+\Phi \alpha Q^{\prime} s_{0}+\Phi \alpha Q^{\prime \prime} s_{0} s\right\}, \\
C_{3}:= & \frac{1}{4 \alpha^{5} \Delta^{2}}\left\{4 \Delta^{2} s^{2} \Omega^{\prime \prime} \alpha Q s_{0}-2 \Delta^{2} s^{2} \Omega^{\prime \prime} r_{0}+12 \alpha \Delta^{2} \Psi^{\prime} s r_{0}+12 \alpha \Delta^{2} \Psi^{\prime} s s_{0}\right. \\
& +4 \alpha \Delta^{2} \Psi^{\prime \prime} s^{2} r_{0}+4 \alpha \Delta^{2} \Psi^{\prime \prime} s^{2} s_{0}+8 \Delta^{2} s^{2} \Omega^{\prime} \alpha Q^{\prime} s_{0}+2 \Phi \alpha Q^{\prime \prime} s_{0} s^{2} \\
& \left.-10 \Omega^{\prime} \Delta^{2} s r_{0}+12 \Omega^{\prime} \Delta^{2} s \alpha Q s_{0}+6 \Phi \alpha Q^{\prime} s_{0} s-3 \Phi r_{0}\right\},
\end{aligned}
$$

$$
\begin{aligned}
C_{4}:= & \frac{-1}{4 \alpha^{3} \Delta^{2}}\left\{4 \alpha \Delta^{2} \Psi^{\prime} s s_{0}-\Phi r_{0}-2 \Omega^{\prime} \Delta^{2} s r_{0}+4 \Omega^{\prime} \Delta^{2} s \alpha Q s_{0}\right. \\
& \left.+4 \alpha \Delta^{2} \Psi^{\prime} s r_{0}+2 \Phi \alpha Q^{\prime} s_{0} s\right\}, \\
C_{5}:= & \frac{-\Omega^{\prime}}{\alpha^{2}}, \quad C_{6}:=\frac{2 \Delta^{2} s \Omega^{\prime}+\Phi}{2 \alpha^{3} \Delta^{2}}, \quad C_{7}:=\frac{-\Phi}{2 \alpha \Delta^{2}}, \\
C_{8}:= & \frac{1}{2 \alpha \Delta^{2}}\left\{2 \Omega^{\prime} \Delta^{2} Q+2 \Delta^{2} \Psi^{\prime}+\Phi Q^{\prime}\right\}, \\
C_{9}:= & \frac{-s}{\alpha} C_{8}, \quad C_{10}:=\frac{\Psi^{\prime}}{\alpha}, \quad C_{11}:=\frac{-s}{\alpha} C_{10} .
\end{aligned}
$$

The formula of mean Berwald curvature of Randers metrics and Kropina metrics computed from Proposition 3.1 coincides with the one computed in [1].

It is easy to see that F is of isotropic mean Berwald curvature if and only if F is of weak isotropic S-curvature. Hence, we consider an (α, β)-metric $F=\alpha \phi(\beta / \alpha)$ with weak isotropic S-curvature, $\mathbf{S}=(n+1) c F+\eta$, where $\eta=\eta_{i}(x) y^{i}$ is a 1 -form on underlying manifold M. Using the same method used in [3], one can obtain that the condition that F is of weak isotropic S-curvature $\mathbf{S}=(n+1) c F+\eta$ is equivalent to the following equation

$$
\begin{equation*}
\alpha^{-1} \frac{\Phi}{2 \Delta^{2}}\left(r_{00}-2 \alpha Q s_{0}\right)-2 \Psi\left(r_{0}+s_{0}\right)=-(n+1) c F+\widetilde{\theta} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
\widetilde{\theta}:=-\frac{f^{\prime}(b)}{b f(b)}\left(r_{0}+s_{0}\right)-\eta . \tag{7}
\end{equation*}
$$

To simplify the equation (6), we choose special coordinates $\psi:\left(s, u^{A}\right) \rightarrow\left(y^{i}\right)$ as follows

$$
\begin{equation*}
y^{1}=\frac{s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}, \quad y^{A}=u^{A}, \tag{8}
\end{equation*}
$$

where

$$
\bar{\alpha}=\sqrt{\sum_{A=2}^{n}\left(u^{A}\right)^{2}} .
$$

Then

$$
\begin{equation*}
\alpha=\frac{b}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}, \quad \beta=\frac{b s}{\sqrt{b^{2}-s^{2}}} \bar{\alpha} . \tag{9}
\end{equation*}
$$

Fix an arbitrary point x. Take a local coordinate system at x as in (8). We have

$$
\begin{gathered}
r_{1}=b r_{11}, \quad r_{A}=b r_{1 A}, \\
s_{1}=0, \quad s_{A}=b s_{1 A} .
\end{gathered}
$$

Let

$$
\begin{gathered}
\bar{r}_{10}:=\sum_{A=2}^{n} r_{1 A} y^{A}, \quad \bar{s}_{10}:=\sum_{A=2}^{n} s_{1 A} y^{A}, \quad \bar{r}_{00}:=\sum_{A, B=2}^{n} r_{A B} y^{A} y^{B}, \\
\bar{r}_{0}:=\sum_{A=2}^{n} r_{A} y^{A}, \quad \bar{s}_{0}:=\sum_{A=2}^{n} s_{A} y^{A} .
\end{gathered}
$$

Put

$$
\widetilde{\theta}=t_{i} y^{i}-\eta_{i} y^{i} .
$$

Then t_{i} are given by

$$
\begin{equation*}
t_{1}=-\frac{f^{\prime}(b)}{f(b)} r_{11}, \quad t_{A}=-\frac{f^{\prime}(b)}{f(b)}\left(r_{1 A}+s_{1 A}\right) \tag{10}
\end{equation*}
$$

From (8), we have

$$
\begin{equation*}
r_{0}=\frac{s b r_{11}}{\sqrt{b^{2}-s^{2}}} \bar{\alpha}+b \bar{r}_{10}, \quad s_{0}=\bar{s}_{0}=b \bar{s}_{10} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
r_{00}=\frac{s^{2} \bar{\alpha}^{2}}{b^{2}-s^{2}} r_{11}+2 \frac{s \bar{\alpha}}{\sqrt{b^{2}-s^{2}}} \bar{r}_{10}+\bar{r}_{00}, \tag{12}
\end{equation*}
$$

Substituting (11), (12) and (13) into (6) and by using (9), we find that (6) is equivalent to the following equations:

$$
\begin{gather*}
\frac{\Phi}{2 \Delta^{2}}\left(b^{2}-s^{2}\right) \bar{r}_{00}=-\left\{s\left(\frac{s \Phi}{2 \Delta^{2}}-2 \Psi b^{2}\right) r_{11}+(n+1) c b^{2} \phi-s b t_{1}\right\} \bar{\alpha}^{2} \tag{14}\\
\left(\frac{s \Phi}{\Delta^{2}}-2 \Psi b^{2}\right)\left(r_{1 A}+s_{1 A}\right)-\left(b^{2} Q+s\right) \frac{\Phi}{\Delta^{2}} s_{1 A}+b \eta_{A}-b t_{A}=0 \tag{15}\\
\eta_{1}=0 \tag{16}
\end{gather*}
$$

Let

$$
\Upsilon:=\left[\frac{s \Phi}{\Delta^{2}}-2 \Psi b^{2}\right]^{\prime}
$$

We see that $\Upsilon=0$ if and only if

$$
\frac{s \Phi}{\Delta^{2}}-2 \Psi b^{2}=b^{2} \mu
$$

where $\mu=\mu(x)$ is independent of s.
Let us suppose that $\Xi=\frac{\left(b^{2} Q+s\right) \Phi}{\Delta^{2}}$ is not constant. Now we shall divide the proof into two cases:
(i) $\Upsilon=0$ and (ii) $\Upsilon \neq 0$.
3.1. $\Upsilon=0$. First, note that $\Upsilon=0$ implies that

$$
\begin{equation*}
\frac{s \Phi}{\Delta^{2}}-2 \Psi b^{2}=b^{2} \mu \tag{17}
\end{equation*}
$$

where $\mu=\mu(x)$ is a function on M independent of s. First, we prove the following.

Lemma 3.2. Let (M, F) be an n-dimensional Finsler manifold. Suppose that $F=\alpha \phi(\beta / \alpha)$ be an (α, β)-metric and $\Upsilon=0$. If F has weak isotropic S curvature, $\mathbf{S}=(n+1) c F+\eta$, then β satisfies

$$
\begin{equation*}
r_{i j}=k a_{i j}-\varepsilon b_{i} b_{j}+\frac{1}{b^{2}}\left(r_{i} b_{j}+r_{j} b_{i}\right), \tag{18}
\end{equation*}
$$

where $k=k(x), \varepsilon=\varepsilon(x)$, and $\phi=\phi(s)$ satisfies the following ODE:

$$
\begin{equation*}
\left(k-\epsilon s^{2}\right) \frac{\Phi}{2 \Delta^{2}}=\left\{\nu+\left(k-\varepsilon b^{2}\right) \mu\right\} s-(n+1) c \phi \tag{19}
\end{equation*}
$$

where $\nu=\nu(x)$. If $s_{0} \neq 0$, then ϕ satisfies the following additional ODE:

$$
\begin{equation*}
\frac{\Phi}{\Delta^{2}}\left(Q b^{2}+s\right)=b^{2}(\mu+\lambda) \tag{20}
\end{equation*}
$$

where $\lambda=\lambda(x)$.
Proof. Since $\Phi \neq 0$ and \bar{r}_{00} and $\bar{\alpha}$ are independent of s, it follows from (14) and (15) that in a special coordinate system $\left(s, y^{a}\right)$ at a point x, the following relations hold

$$
\begin{equation*}
s\left(\frac{s \Phi}{2 \Delta^{2}}-2 \Psi b^{2}\right) r_{11}+(n+1) c b^{2} \phi+k \frac{\Phi}{2 \Delta^{2}}\left(b^{2}-s^{2}\right)=b s t_{1} \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
r_{A B}=k \delta_{A B}, \tag{21}
\end{equation*}
$$

$$
\begin{equation*}
\left(\frac{s \Phi}{\Delta^{2}}-2 \Psi b^{2}\right)\left(r_{1 A}+s_{1 A}\right)-\left(b^{2} Q+s\right) \frac{\Phi}{\Delta^{2}} s_{1 A}-b t_{A}=-b \eta_{A} \tag{23}
\end{equation*}
$$

where $k=k(x)$ is independent of s. Let

$$
r_{11}=-\left(k-\epsilon b^{2}\right) .
$$

Then (18) holds. By (17), we have

$$
\frac{s \Phi}{2 \Delta^{2}}-2 \Psi b^{2}=b^{2} \mu-\frac{s \Phi}{2 \Delta^{2}}
$$

Then (22) and (23) become

$$
\begin{align*}
& b\left(k-\varepsilon s^{2}\right) \frac{\Phi}{2 \Delta^{2}}=s t_{1}+s b \mu\left(k-b^{2} \varepsilon\right)-(n+1) c b \phi \tag{24}\\
& b^{2} \mu\left(r_{1 A}+s_{1 A}\right)-\frac{\Phi}{\Delta^{2}}\left(Q b^{2}+s\right) s_{1 A}-b t_{A}=-b \eta_{A} \tag{25}
\end{align*}
$$

Letting $t_{1}=b \nu$ in (24) we get (19). Now, suppose that $s_{0} \neq 0$. Rewrite (25) as

$$
\left\{b^{2} \mu-\frac{\Phi}{\Delta^{2}}\left(Q b^{2}+s\right)\right\} s_{1 A}=b t_{A}-b \eta_{A}-b^{2} \mu r_{1 A} .
$$

We can see that there is a function $\lambda=\lambda(x)$ on M such that

$$
\mu b^{2}-\frac{\Phi}{\Delta^{2}}\left(Q b^{2}+s\right)=-b^{2} \lambda .
$$

This gives (20).

Lemma 3.3 ([3]). Let $F=\alpha \phi(\beta / \alpha)$ be an (α, β)-metric. Assume that

$$
\phi \neq k_{1} \sqrt{1+k_{2} s^{2}}+k_{3} s
$$

for any constants $k_{1}>0, k_{2}$ and k_{3}. If $\Upsilon=0$, then $b=$ constant.
An (α, β)-metric is called Randers-type if $\phi=k_{1} \sqrt{1+k_{2} s^{2}}+k_{3} s$ for any constants $k_{1}>0, k_{2}$ and k_{3}. Now, we consider the equivalency of the notions weak isotropic S-curvature and isotropic S-curvature for a non-Randers type (α, β)-metric.

Lemma 3.4. Let $F=\alpha \phi(\beta / \alpha)$ be a non-Randers type (α, β)-metric. Suppose that Ξ is not constant and $\Upsilon=0$. Then F is of weak isotropic S-curvature if and only if F is of isotropic S-curvature.

Proof. It is sufficient to prove that if F is of weak isotropic S-curvature, then F is of isotropic S-curvature. By $d b=\left(r_{0}+s_{0}\right) / b$ and Lemma 3.3, we have

$$
r_{0}+s_{0}=0 .
$$

Then by the formula of S-curvature of an (α, β)-curvature, we get

$$
\mathbf{S}=-\alpha^{-1} \frac{\Phi}{2 \Delta^{2}}\left\{r_{00}-2 \alpha Q s_{0}\right\} .
$$

By Lemma 3.2,

$$
r_{00}=\left(k-\varepsilon s^{2}\right) \alpha^{2}+\frac{2 s}{b^{2}} r_{0} \alpha .
$$

Then

$$
\mathbf{S}=-\left(k-\varepsilon s^{2}\right) \frac{\Phi}{2 \Delta^{2}} \alpha+\frac{\Phi}{b^{2} \Delta^{2}}\left(b^{2} Q+s\right) s_{0} .
$$

By (19), we have

$$
\begin{equation*}
\mathbf{S}=-s\left\{\nu+\left(k-\varepsilon b^{2}\right) \mu\right\} \alpha+\frac{\Phi}{b^{2} \Delta^{2}}\left(b^{2} Q+s\right) s_{0}+(n+1) c \phi \alpha . \tag{26}
\end{equation*}
$$

Since $\mathbf{S}=(n+1) c F+\eta$, then by (26) we obtain the following

$$
\begin{equation*}
-s\left\{\nu+\left(k-\varepsilon b^{2}\right) \mu\right\} \alpha+\frac{\Phi}{b^{2} \Delta^{2}}\left(b^{2} Q+s\right) s_{0}=\eta . \tag{27}
\end{equation*}
$$

Letting $y^{i}=\delta b^{i}$ for a sufficiently small $\delta>0$ yields

$$
-\delta\left\{\nu+\left(k-\varepsilon b^{2}\right) \mu\right\} b^{2}=\delta \eta_{i} b^{i}
$$

It is easy to see that in the special coordinate $\eta_{i} b^{i}=0$, hence in general $\eta_{i} b^{i}=0$. We conclude that

$$
\begin{equation*}
\nu+\left(k-\varepsilon b^{2}\right) \mu=0 . \tag{28}
\end{equation*}
$$

Then (27) reduces to

$$
\begin{equation*}
\frac{\Xi}{b^{2}} s_{0}=\eta . \tag{29}
\end{equation*}
$$

If $s_{0} \neq 0$, then from the last equation, we obtain that Ξ is constant, which is excluded here. Hence, we have $s_{0}=0$. Thus by (29), we conclude that $\eta=0$ and F has isotropic S-curvature $\mathbf{S}=(n+1) c F$.
3.2. $\Upsilon \neq 0$. Here, we consider the case when $\phi=\phi(s)$ satisfies

$$
\begin{equation*}
\Upsilon \neq 0 \tag{30}
\end{equation*}
$$

We need the following two lemmas. The proofs mainly follow the proof of Lemma 6.1 and Lemma 6.2 in [3], respectively. Thus we omit the proofs.

Lemma 3.5. Let $F=\alpha \phi(s), s=\beta / \alpha$, be an (α, β)-metric on an n-dimensional manifold. Assume that $\Upsilon \neq 0$. Suppose that F has weak isotropic S-curvature, $\mathbf{S}=(n+1) c F+\eta$. Then

$$
\begin{equation*}
r_{i j}=k a_{i j}-\varepsilon b_{i} b_{j}-\lambda\left(s_{i} b_{j}+s_{j} b_{i}\right), \tag{31}
\end{equation*}
$$

where $\lambda=\lambda(x), k=k(x)$ and $\varepsilon=\varepsilon(x)$ are scalar functions of x and

$$
\begin{equation*}
-2 s\left(k-\varepsilon b^{2}\right) \Psi+\left(k-\varepsilon s^{2}\right) \frac{\Phi}{2 \Delta^{2}}+(n+1) c \phi-s \nu=0 \tag{32}
\end{equation*}
$$

where

$$
\begin{equation*}
\nu:=-\frac{f^{\prime}(b)}{b f(b)}\left(k-\varepsilon b^{2}\right) . \tag{33}
\end{equation*}
$$

If in addition $s_{0} \neq 0$, i.e., $s_{A_{o}} \neq 0$ for some A_{o}, then

$$
\begin{equation*}
-2 \Psi-\frac{Q \Phi}{\Delta^{2}}-\lambda\left(\frac{s \Phi}{\Delta^{2}}-2 \Psi b^{2}\right)=\delta, \tag{34}
\end{equation*}
$$

where

$$
\begin{equation*}
\delta:=-\frac{f^{\prime}(b)}{b f(b)}\left(1-\lambda b^{2}\right)-\frac{\eta_{A_{o}}}{s_{A_{o}}} . \tag{35}
\end{equation*}
$$

Lemma 3.6. Let $F=\alpha \phi(s), s=\beta / \alpha$, be an (α, β)-metric. Suppose that $\phi=\phi(s)$ satisfies (30) and $\phi \neq k_{1} \sqrt{1+k_{2} s^{2}}+k_{3} s$ for any constants $k_{1}>0$, k_{2} and k_{3}. If F has weak isotropic S-curvature, then

$$
r_{j}+s_{j}=0 .
$$

Proposition 3.7. Let $F=\alpha \phi(s), s=\beta / \alpha$, be an (α, β)-metric. Suppose that $\phi=\phi(s)$ satisfies (30) and $\phi \neq k_{1} \sqrt{1+k_{2} s^{2}}+k_{3}$ s for any constants $k_{1}>0, k_{2}$ and k_{3}. Suppose that Ξ is not constant. If F is of weak isotropic S-curvature, $\mathbf{S}=(n+1) c F+\eta$, then

$$
\begin{equation*}
r_{i j}=\varepsilon\left(b^{2} a_{i j}-b_{i} b_{j}\right), \quad s_{j}=0, \tag{36}
\end{equation*}
$$

where $\varepsilon=\varepsilon(x)$ is a scalar function on M and $\phi=\phi(s)$ satisfies

$$
\begin{equation*}
\varepsilon\left(b^{2}-s^{2}\right) \frac{\Phi}{2 \Delta^{2}}=-(n+1) c \phi \tag{37}
\end{equation*}
$$

Proof. Contracting (31) with b^{i} yields

$$
\begin{equation*}
r_{j}+s_{j}=\left(k-\varepsilon b^{2}\right) b_{j}+\left(1-\lambda b^{2}\right) s_{j} . \tag{38}
\end{equation*}
$$

By Lemma 3.6, $r_{j}+s_{j}=0$. It follows from (38) that

$$
\begin{equation*}
\left(1-\lambda b^{2}\right) s_{j}+\left(k-\epsilon b^{2}\right) b_{j}=0 . \tag{39}
\end{equation*}
$$

Contracting (39) with b^{j} yields

$$
\left(k-\epsilon b^{2}\right) b^{2}=0
$$

We get

$$
k=\epsilon b^{2} .
$$

Then (31) is reduced to

$$
r_{i j}=\varepsilon\left(b^{2} a_{i j}-b_{i} b_{j}\right)-\lambda\left(b_{i} s_{j}+b_{j} s_{i}\right) .
$$

By (33),

$$
\nu=0 .
$$

Then (32) is reduced to (37).
We claim that $s_{0}=0$. Suppose that $s_{0} \neq 0$. By (39), we conclude that

$$
\lambda=\frac{1}{b^{2}} .
$$

By (35),

$$
\delta=-\frac{\eta_{A_{o}}}{s_{A_{o}}} .
$$

It follows from (34) that

$$
\frac{\left(b^{2} Q+s\right) \Phi}{\Delta^{2}}=\frac{b \eta_{A_{o}}}{s_{A_{o}}}
$$

which implies that Ξ is constant. This is impossible by the assumption on non-constancy of Ξ. Therefore, $s_{j}=0$. This completes the proof.

By Proposition 3.7 and Lemma 2.2, we have the following.
Corollary 3.8. Let $F=\alpha \phi(s), s=\beta / \alpha$, be a non-Randers type (α, β)-metric. Suppose that $\Upsilon \neq 0$ and Ξ is not constant. Then F is of weak isotropic S curvature, if and only if it is of isotropic S-curvature.

References

[1] S. Bácsó and R. Yoshikawa. Weakly-Berwald spaces. Publ. Math. Debrecen, 61(1-2):219231, 2002.
[2] X. Chen and Z. Shen. Randers metrics with special curvature properties. Osaka J. Math., 40(1):87-101, 2003.
[3] X. Cheng and Z. Shen. A class of Finsler metrics with isotropic S-curvature. Israel J. Math., 169:317-340, 2009.
[4] X. Cheng, H. Wang, and M. Wang. (α, β)-metrics with relatively isotropic mean Landsberg curvature. Publ. Math. Debrecen, 72(3-4):475-485, 2008.
[5] S.-S. Chern and Z. Shen. Riemann-Finsler geometry, volume 6 of Nankai Tracts in Mathematics. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2005.
[6] S. Deng and X. Wang. The S-curvature of homogeneous (α, β)-metrics. Balkan J. Geom. Appl., 15(2):47-56, 2010.
[7] I.-Y. Lee and M.-H. Lee. On weakly-Berwald spaces of special (α, β)-metrics. Bull. Korean Math. Soc., 43(2):425-441, 2006.
[8] Z. Shen. Volume comparison and its applications in Riemann-Finsler geometry. Adv. Math., 128(2):306-328, 1997.
[9] Z. Shen. Differential geometry of spray and Finsler spaces. Kluwer Academic Publishers, Dordrecht, 2001.
[10] Z. Shen. Lectures on Finsler geometry. World Scientific Publishing Co., Singapore, 2001.
[11] Z. M. Shen and H. Xing. On Randers metrics with isotropic S-curvature. Acta Math. Sin. (Engl. Ser.), 24(5):789-796, 2008.
[12] A. Tayebi and M. Rafie-Rad. S-curvature of isotropic Berwald metrics. Sci. China Ser. A, 51(12):2198-2204, 2008.
[13] C. H. Xiang and X. Y. Cheng. On a class of weakly-Berwald (α, β)-metrics. J. Math. Res. Exposition, 29(2):227-236, 2009.

Received March 5, 2015.

Behzad Najafi (corresponding author),
Department of Mathematics and Computer Science,
Amirkabir University,
Tehran, Iran
E-mail address: behzad.najafi@aut.ac.ir
Akbar Tayebi,
Faculty of Science, Department of Mathematics, University of Qom,
Qom, Iran
E-mail address: akbar.tayebi@gmail.com

[^0]: 2010 Mathematics Subject Classification. 53B40, 53C60.
 Key words and phrases. (α, β)-metric, isotropic S-curvature, isotropic E-curvature.

