
Acta Mathematica Academiae Paedagogicae Nýıregyháziensis
32 (2016), 23–31
www.emis.de/journals

ISSN 1786-0091

A NOTE OF THREE PRIME REPRESENTATION
PROBLEMS

SHICHUN YANG AND ALAIN TOGBÉ

Abstract. In this note, we consider a three prime representation problem
asked by Sárközy. We give a negative answer to the upper density case of
the problem and obtain a conclusion that the Three Primes Theorem still
holds for a general thin subset of primes.

1. Introduction

Let P be the sets of all primes. In 1937, I. M. Vinogradov [28] proved the
famous three primes theorem. It states that there exists an absolute constant
N0 > 0, such that every odd integer larger than N0 is the sum of three primes.
In 1956, Borodzkin [4] showed that N0 < 33

15 ≈ 107000000. Since then, this
bound has been significantly improved. Most recently, Chen and Wang [5]
have established a bound of 1043000. In [6], Deshouillers, Effinger, Te Riele and
Zinoviev outlined a proof that if the Generalized Riemann Hypothesis holds,
then every odd number above 5 is a sum of three prime numbers. Recently,
Helfgott [10]–[13] completely solve the problem and proved that the ternary
Goldbach conjecture is true. The Three Primes Theorem is one of the most
important results studied in analytic number theory. For example, Pan [22],
Zhan [30] and Jia [15] studied the Three Primes Theorem in short intervals.

Many authors have been looking for thin subsets of primes for which the
Three Primes Theorem still holds. In 1986, Wirsing [29] showed that there
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exists such a set S with the property that∑
p<x,p∈S

1 � (x log x)
1
3 .

It is also interesting to find more familiar thin sets of primes which serve this
purpose. An example is the set of Piatetski-Shapiro primes of type γ which are

of the form bn
1
γ c, where bxc is the greatest integer not exceeding x. Denote

this set by Pγ. Piatetski-Shapiro [23] showed that for 11
12

< γ < 1,

Pγ(x) =
∑

p<x,p=bn
1
γ c

1 =
(
1 + o(1)

) xγ

log x
.

Heath-Brown [9] improved Piatetski-Shapiro’s result by extending the range
to 662

755
< γ < 1. Further improvements were made by Kolesnik [19], Liu and

Rivat [21], Balog and Friedlander [2], Jia [17], [16], [18], et. al.
On the other hand, in 2001, P. Sárközy asked the following problem (see

Problem 67 in [25]):

Problem A. Is it true that if Q = {q1, q2, · · · } is an infinite set of primes such
that

lim
x→∞

inf
log x

x

∣∣{qi : qi ≤ x, qi ∈ Q}
∣∣ > 1

2
,(1)

then every large odd integer 2n+ 1 can be represented in the form

q1 + q2 + q3 = 2n+ 1,

with q1, q2, q3 ∈ Q?

Let π(x) denote the number of primes p < x. From the prime number
theorem, we have π(x) ∼ x

log x
. So Problem A is another type of problem of

thin subsets of primes related to the three primes theorem. For two non-empty
setsX and A of positive integers, we define the upper density and lower density
of A relative to X by

dX(A) = lim
x→+∞

sup
|A ∩X ∩ [1, x] |
|X ∩ [1, x] |

,

and

dX(A) = lim
x→+∞

inf
|A ∩X ∩ [1, x] |
|X ∩ [1, x] |

.

Thus, Problem A is equivalent to the following problem:
If Q ⊂ P is a subset of primes with dP(Q) > 1

2
, could every large odd integer

be represented as the sum of three positive integers, each integer composed of
primes belonging to Q?

In [8], Green obtained a Roth-type generalization of van der Corput’s result.
Green showed that if P0 is a subset of P with dP(P0) > 0 then P0 contains
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infinitely many non-trivial 3-term arithmetic progressions. In [20], Li and Pan
used Green’s idea to extend Vinogradov’s theorem as follows.

Theorem 1.1. Suppose that P1, P2, P3 are three subsets of P with

d P(P1) + d P(P2) + d P(P3) > 2.

Then for every sufficiently large odd integer n, there exist p1 ∈ P1, p2 ∈ P2

and p3 ∈ P3 such that p1 + p2 + p3 = n.

By Theorem 1.1, we can derive that if Q ⊂ P is a subset of primes such that
dP(Q) > 2

3
, then every large odd integer can be represented as the sum of three

primes belonging to Q. Recently, Shao [26] obtained that 2
3
can be improved

to 5
8
. And he pointed out that the constant 5

8
cannot be improved. In fact,

we may take Q = {p ∈ P, p ≡ 1, 2, 4, 7, 13 (mod 15)}, then dP(Q) = 5
8
. It is

not hard to see that if N ≡ 14 (mod 15) then N cannot be written as sum of
three elements of Q. Therefore, the answer to Problem A is negative.

In this note, we consider Problem A. First, we give a negative answer to
the upper density case of Problem A. Second, we obtain a conclusion that the
Three Primes Theorem still holds for a general thin subset of primes.

The organization of this paper is as follows. In Section 2, we give a proof of
Theorem 2.1 which is the negative answer to Problem A and we remark that
the Problem 68 in [25] has a similar conclusion. In Section 3, we use Vino-
gradov’s Three Primes Theorem and a theorem of Bombieri and Davenport [3]
(who showed that a large even number is the sum of two primes), we obtain
Theorem 3.2 which states that the Three Primes Theorem still holds for a thin
subset of primes. We ask an interesting research question in the last section.

2. The upper density case of problem A

About Problem A, we have the following result.

Theorem 2.1. For any small positive constant ε, there exists an infinite set
of primes Q = {q1, q2, . . .} such that

(2) dP(Q) = 1− ε,

and there are infinitely many odd integers n that cannot be represented in the
form q1 + q2 + q3 = n, with q1, q2, q3 ∈ Q.

Proof. Let pi be the i-th prime and s, t two large numbers. We construct an
infinite set Q of primes by

Q = {p1, p2, . . . , ps, p 3s, p3s+1, . . . , p 3ts, p 9ts, p 9ts+1, . . . , p 9t2s, . . . ,

p tr−13rs, p tr−13rs+1, . . . , p tr3rs, p tr3r+1s, p tr3r+1s+1, . . . , p tr+13r+1s, . . .}.
If x > 355991, then from the prime number theorem (See Theorem 1.10 in

[7]), we have

x

log x

(
1 +

1

log x
+

1.8

log2 x

)
≤ π(x) ≤ x

log x

(
1 +

1

log x
+

2.51

log2 x

)
.(3)
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Hence, we have

lim
x→∞

sup
log x

x

∣∣{qi : qi ≤ x, qi ∈ Q}
∣∣

= lim
x→∞

(
(t− 1) tr · 3r+1 + 1

)
+
(
(t− 1) tr−1 · 3r + 1

)
+ · · ·

tr+1 · 3r+1

= lim
x→∞

t− 1

t

(
1 +

1

3t
+

1

32t2
+ · · ·

)
.

If t → ∞, then

t− 1

t

(
1 +

1

3t
+

1

32t2
+ · · ·

)
=

3(t− 1)

3t− 1
= 1− ε,

where ε is a small positive constant. So formula (2) holds.
For k > 2, we have (see page 11 of [7])

k(log k + log log k − 1) < p k < k(log k + log log k).(4)

We can take an odd integer n such that

3p tr·3rs < n < p tr·3r+1s.(5)

If n has the form q1 + q2 + q3 = n with q1, q2, q3 ∈ Q, then

p1 ≤ q1, q2, q3 ≤ p tr·3rs,

and then
q1 + q2 + q3 ≤ 3 · p tr·3rs < n.

This is impossible. So the integer n cannot have the form q1 + q2 + q3 = n.
Therefore, from (4) we obtain

p tr·3r+1s − 3 p tr·3rs(6)

> tr · 3r+1s
(
log(tr · 3r+1s) + log log(tr · 3r+1s)− 1

)
− 3 · tr · 3rs

(
log(tr · 3rs) + log log(tr · 3rs)

)
= tr · 3r+1s

(
log 3− log

( log(tr · 3r+1s)

log(tr · 3rs)

)
− 1

)
.

If r > 10, s > 10, and t > 2, then we have log(tr·3r+1s)
log(tr·3rs) < 1.01. So inequality (6)

implies

p2r·3r+1s − 3p2r·3rs > tr · 3r+1s
(
log 3− log 1.01− 1

)
> 0.088 · tr · 3r+1s.

Thus, there are infinitely many odd integers n that cannot have the form
q1+q2+q3 = n with q1, q2, q3 ∈ Q. This completes the proof of Theorem 2.1. �

In [25], Sárközy set the following similar problem (see Problem 68 in [25]).

Problem B. Is it true that if Q is an infinite set of primes such that

lim
x→∞

inf
1

log log x

∑
q∈Q,q≤x

1

q
>

1

2
,(7)
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then every large odd integer can be represented as the sum of three positive
integers each composed of primes belonging to Q?

From [26], the answer to Question B is negative also, and 1
2
must be replaced

by 5
8
. Similarly, using the same method, according to Mertens formula (see

page 34 of [14]): ∏
p≤x

1

p
= log log x+ β +O

( 1

log x

)
,

where β is a constant, we get the following Theorem.

Theorem 2.2. For any small positive constant ε, there exists an infinite set
of primes Q = {q1, q2, . . .} such that

lim
x→∞

sup
1

log log x

∑
q∈Q,q≤x

1

q
= 1− ε(8)

and there are infinitely many odd integers n that cannot be represented in the
form q1 + q2 + q3 = n with q1, q2, q3 ∈ Q.

Remark 2.3. The set of primes Q = {q1, q2, · · · } in Theorem 2.1 satisfy

dP(Q) =
1

3
, dP(Q) = 1− ε.(9)

A natural question is: Does there exist a set of primes Q such that dP(Q) = 5
8
,

dP(Q) = 1− ε and that there are infinitely many odd integers n which cannot
be represented in the form q1 + q2 + q3 = n, with q1, q2, q3 ∈ Q?

3. The main conclusion

In this section, we will proved our main result. First, we state Vinogradov’s
Three Primes Theorem.

Lemma 3.1. For every sufficiently large odd integer N , let r(N) denote the
number of the solutions of the equation

N = p1 + p2 + p3,

where p1 < p2 < p3 are primes. Then

r(N) =
1

2

(
1 + o(1)

)
C(N)

N2

log3 N
,(10)

with

C(N) =
∏
p|N

(
1− 1

(p− 1)2

)∏
p-N

(
1 +

1

(p− 1)3

)
.

Proof. See [28] or [27]. �
Now we will prove the following result.
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Theorem 3.2. Let Q = {q1, q2, . . .} be an infinite set of primes such that∣∣{qi : qi ≤ x, qi ∈ Q}
∣∣ > x

log x

(
1− 1

3
√
log x

)
,(11)

and r1(n) denote the number of the solutions of the equation n = q1 + q2 + q3
with q1, q2, q3 ∈ Q. Then

r1(n) >
0.067n2

log3 n
.(12)

Proof. Let P = Q ∪ S and Q ∩ S = ∅. Assume that x is a large integer. We
write

Sx = {qi : qi ≤ x, qi ∈ S}.
According to the Prime Number Theorem, to calculate the maximum number
of elements in the set Sx, we have

|Sx| ≤
x

log x

(
1 +

1

log x
+

2.51

log2 x

)
− x

log x

(
1− 1

3
√
log x

)
<

1.001x

3 log1.5 x
.(13)

On the other hand, a lager odd integer n can be represented by

n = q′1 + q′2 + q′3, q
′
1, q

′
2, q

′
3 ∈ P.

From Lemma 3.1, we see that the number of solutions of the above equation
is

r(n) >
0.999

2
C(n)

n2

log3 n
.(14)

As

C(n) =
∏
p|n

(
1− 1

(p− 1)2

)∏
p-n

(
1 +

1

(p− 1)3

)
>

3

4
· 15
16

∏
n≥6

(
1− 1

n2

)
> 0.585,

then

r(n) >
0.292n2

log3 n
.(15)

If q′1, q
′
2, q

′
3 ∈ S and as q′1, q

′
2, q

′
3 < n, then using inequalities (3) and (13), one

can determine the possible number of the values of q′1. This is at most 1.001n
3 log1.5 n

.

Similarly, the possible number of the values of q′2 is also at most 1.001n
3 log1.5 n

. Since

q′3 = n− q′1 − q′2, then the number of equations n = q′1 + q′2 + q′3 is at most

1.001n

3 log1.5 n
· 1.001n

3 log1.5 n
<

1.003n2

9 log3 n
<

0.112n2

log3 n
.

If q′1, q
′
2 ∈ S, q′3 ∈ Q, using the same method, one can see that the number

of equations n = q1 + q2 + q3 is at most 0.112n2

log3 n
.
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If q′1 ∈ S, and q′2, q
′
3 ∈ Q, then q′2 + q′3 is even. According to Bombieri and

Davenport theorem [3] (a large even number is the sum of two primes), if p1, p2
are two primes such that p1 < p2 and N is even, we have

θ(N) =
∑

p1+p2=N

1 < 8D(N)
N

log2N
,(16)

where

D(N) =
∏
p>2

(
1− 1

(p− 1)2

) ∏
p |N, p>2

p− 2

p− 1
< 1.

Then, we get ∑
q′2+q′3=n−q′1

1 <
8(n− q′1)

log2(n− q′1)
<

8n

log2 n
.(17)

Since the possible number of the values of q1 is at most 1.001n
3 log1.5 n

, then the

number of equations n = q1 + q2 + q3 is at most

8n

log2 n
· 1.001n

3 log1.5 n
=

8.008n2

3 log3.5 n
<

0.001n2

log3 n
.

So from (15) we obtain

r1(n) >
0.292n2

log3 n
− 0.112n2

log3 n
− 0.112n2

log3 n
− 0.001n2

log3 n
=

0.067n2

log3 n
.(18)

Therefore, there are infinitely many odd integers n that can be represented
into the form q1 + q2 + q3 = n with q1, q2, q3 ∈ Q. This completes the proof of
Theorem 3.2. �

4. A question

A natural question is the following.

Problem C. Let r1(n) denote the number of the solutions of n = q1 + q2 + q3
with q1, q2, q3 ∈ Q. Determine the minimum value of µ such that if Q is an
infinite set of primes and∣∣{q : q ≤ x, q ∈ Q}

∣∣ > x

log x

(
1− 1

logµ x

)
,(19)

then r1(n) � n2

log3 n
.

Obviously, Theorem 3.2 shows that µ ≤ 1
2
. We conjecture that

µ → 0.

We also conjecture that when Q is an infinite set of primes such that∣∣{q : q ≤ x, q ∈ Q}
∣∣ > x

log x

(
1− 1

log log x

)
,

then Vinogradov’s Three Primes Theorem holds and r1(n) � n2

log3 n
.
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