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THE CONNECTED VERTEX MONOPHONIC NUMBER OF

A GRAPH

P. TITUS AND K. IYAPPAN

Abstract. For a connected graph G of order p ≥ 2 and a vertex x of
G, a set S ⊆ V (G) is an x-monophonic set of G if each vertex v ∈ V (G)
lies on an x− y monophonic path for some element y in S. The minimum
cardinality of an x-monophonic set of G is defined as the x-monophonic

number of G, denoted by mx(G). A connected x-monophonic set of G is an
x-monophonic set S such that the subgraphG[S] induced by S is connected.
The minimum cardinality of a connected x-monophonic set of G is defined
as the connected x-monophonic number of G and is denoted by cmx(G).
We determine bounds for it and find the same for some special classes of
graphs. If p, a and b are positive integers such that 2 ≤ a ≤ b ≤ p− 1, then
there exists a connected graph G of order p, mx(G) = a and cmx(G) = b

for some vertex x in G. Also, if p, dm and n are positive integers such that
2 ≤ dm ≤ p − 2 and 1 ≤ n ≤ p, then there exists a connected graph G of
order p, monophonic diameter dm and cmx(G) = n for some vertex x in G.

1. Introduction

By a graph G = (V,E) we mean a finite undirected connected graph without
loops or multiple edges of order at least 2. The order and size of G are denoted
by p and q respectively. For basic graph theoretic terminology we refer to [1, 4].
For vertices x and y in a connected graph G, the distance d(x, y) is the length
of a shortest x − y path in G. An x − y path of length d(x, y) is called an
x − y geodesic. It is known that d is a metric on the vertex set V of G.
The neighbourhood of a vertex v is the set N(v) consisting of all vertices u
which are adjacent with v. The closed neighbourhood of a vertex v is the set
N [v] = N(v)

⋃

{v}. A vertex v is a simplicial vertex if the subgraph induced
by its neighbors is complete. The closed interval I[x, y] consists of all vertices
lying on some x− y geodesic of G, while for S ⊆ V, I[S] =

⋃

x,y∈S

I[x, y]. A set

S of vertices is a geodetic set if I[S] = V , and the minimum cardinality of a
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geodetic set is the geodetic number g(G). A geodetic set of cardinality g(G)
is called a g-set. The geodetic number of a graph was introduced in [1, 5] and
further studied in [2, 3].
The concept of vertex geodomination number was introduced in [6] and

further studied in [8]. Let x be a vertex of a connected graph G. A set S of
vertices of G is an x-geodominating set of G if each vertex v of G lies on an
x− y geodesic in G for some element y in S. The minimum cardinality of an
x-geodominating set of G is defined as the x-geodomination number of G and
is denoted by gx(G). An x-geodominating set of cardinality gx(G) is called a
gx-set.
A chord of a path P is an edge joining two non-adjacent vertices of P . A

path P is called a monophonic path if it is a chordless path. The closed in-
terval Im[x, y] consists of all vertices lying on some x− y monophonic path of
G. For any two vertices u and v in a connected graph G, the monophonic
distance dm(u, v) from u to v is defined as the length of a longest u − v
monophoic path in G. The monophonic eccentricity em(v) of a vertex v in
G is em(v) = max {dm(v, u) : u ∈ V (G)}. The monophonic radius, radm(G)
of G is radm(G) = min {em(v) : v ∈ V (G)} and the monophonic diameter,
diamm(G) of G is diamm(G) = max {em(v) : v ∈ V (G)}. For any vertex x in
G, a vertex y in G is said to be an x-monophonic superior vertex if for any
vertex z with dm(x, y) < dm(x, z), z lies on an x − y monophonic path. The
monophonic distance was introduced and studied in [7].
The concept of vertex monophonic number was introduced in [9]. Let x be a

vertex of a connected graph G. A set S of vertices of G is an x-monophonic set
of G if each vertex v of G lies on an x− y monophonic path for some element
y in S. The minimum cardinality of an x-monophonic set of G is defined as
the x-monophonic number of G, denoted by mx(G).
The following theorems will be used in the sequel.

Theorem 1.1 ([4]). Let v be a vertex of a connected graph G. The following
statements are equivalent:

(i) v is a cut vertex of G.
(ii) There exists u and w distinct from v such that v is on every u−w path.
(iii) There exists a partition of the set of vertices V − {v} into subsets U

and W such that for any vertices u ∈ U and w ∈ W , the vertex v is on
every u− w path

Theorem 1.2 ([9]). For a vertex x in a graph G, mx(G) = 1 if and only if
there exists an x-monophonic superior vertex y in G such that every vertex of
G is on an x− y monophonic path.

Theorem 1.3 ([9]). Let x be a vertex of a connected graph G.

(i) Every simplicial vertex of G other than the vertex x(whether x is sim-
plicial vertex or not) belongs to every mx-set.

(ii) No cut vertex of G belongs to any mx-set.
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Figure 2.1. G

Theorem 1.4 ([9]). Let T be a tree with t end-vertices. Then mx(T ) = t− 1
or t according as x is an end-vertex or not.

Throughout this paper G denotes a connected graph with at least two ver-
tices.

2. Connected Vertex Monophonic Number

Definition 2.1. Let x be any vertex of a connected graph G. A connected
x-monophoninic set of G is an x-monophonic set S such that the subgraph
G[S] induced by S is connected. The minimum cardinality of a connected
x-monophonic set of G is the connected x-monophonic number of G and is
denoted by cmx(G). A connected x-monophonic set of cardinality cmx(G) is
called a cmx-set of G.

Example 2.2. For the graph G given in Figure 2.1, the minimum vertex mono-
phonic sets, the vertex monophonic numbers, the minimum connected vertex
monophonic sets and the connected vertex monophonic numbers are given in
Table 2.1.

We observe that in the case of connected x-monophonic sets, there can be
more than one minimum connected x-monophonic set. For the vertex v of the
graph G in Figure 2.1, {u, z, y, t, w} , {u, v, w, t, y} and {y, z, u, v, w} are three
distinct cmv-sets of G. It is observed in [9] that x is not an element of any
mx-set of G, whereas x may belong to a cmx-set of G. For the graph G given
in Figure 2.1, the vertex v is an element of a cmv-set.
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Vertex mx-sets mx(G) cmx-sets cmx(G)
x
u {w} 1 {w} 1
v {u, w, y} 3 {u, z, y, t, w}, {u, v, w, t, y}, {u, v, w, z, y} 5
w {u} 1 {u} 1
z {u, w} 2 {u, v, w} 3
y {u, w} 2 {u, v, w} 3
t {u, w} 2 {u, v, w} 3

Table 2.1

In the following theorem we establish the relationship between the vertex
monophonic number and a connected vertex monophonic number of a graph
G.

Theorem 2.3. For any vertex x in G, mx(G) ≤ cmx(G).

Proof. Since every connected x-monophonic set is also an x-monophonic set,
it follows that mx(G) ≤ cmx(G). �

Theorem 2.4. If y 6= x be a simplicial vertex, then y belongs to every con-
nected x-monophonic set of G.

Proof. Let Sx be an x-monophonic set of G. Suppose that y does not belong
to Sx. Then y is an internal vertex of an x − u monophonic path, say P , for
some u ∈ Sx. Let v and w be the neighbours of y on P . Then v and w are not
adjacent and so y is not a simplicial vertex, which is a contradiction. Thus y
belongs to every x-monophonic set of G. Since every connected x-monophonic
set is an x-monophonic set, y belongs to every connected x-monophonic set of
G. �

Theorem 2.5. (i) For the complete graph Kp, cmx(Kp) = p − 1 for any
vertex x in Kp.

(ii) For any vertex x in a cycle Cp(p ≥ 4), cmx(Cp) = 1
(iii) For the wheel Wp = K1+Cp−1(p ≥ 5), cmx(Wp) = p−1 or 1 according

as x is K1 or x is in Cp−1.

Proof. (i) For any vertex x inKp, let S = V (Kp)−{x}. Since every vertex ofKp

is a simplicial vertex, it follows from Theorem 2.4 that cmx(Kp) ≥ |S| = p−1.
It is clear that S is a connected x-monophonic set of G and so cmx(Kp) = p−1.
(ii) Let Cp be a cycle. For any vertex x in Cp, let y be a non-adjacent vertex

of x. Clearly every vertex of Cp lies on an x− y monophonic path and so {y}
is a connected x-monophonic set of Cp so that cmx(Cp) = 1.
(iii) Let x be the vertex of K1. Clearly S = V (Cp−1) is the minimum

x-monophonic set of Wp. Since the induced subgraph G[S] is connected,
cmx(Wp) = p− 1.
Let Cp−1 : u1, u2, . . . , up−1, u1 be the cycle in Wp. Let x be any vertex in

Cp−1. Let y be a non-adjacent vertex of x in Wp. Then any vertex v in Wp lies
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on an x− y monophonic path and so {y} is a connected x-monophonic set of
Wp. Thus cmx(Wp) = 1 �

Theorem 2.6. Let Km,n(2 ≤ m ≤ n) be the complete bipartite graph with
bipartition (V1, V2). Then

(i) cmx(K2,2) = 1 for any vertex x

(ii) cmx(K2,n) =

{

1, if x ∈ V1

n, if x ∈ V2 for n ≥ 3

(iii) cmx(Km,n) =

{

m, if x ∈ V1

n, if x ∈ V2 for m,n ≥ 3

Proof. (i) By Theorem 2.5(ii), cmx(K2,2) = 1 for any vertex x in K2,2.
(ii) Let x ∈ V1 be any vertex. Let y be the other vertex of V1. Then any

vertex v of V2 lies on an x−y monophonic path x,v,y and so {y} is a connected
x-monophonic set of K2,n. Thus cmx(K2,n) = 1.
Let x ∈ V2 be any vertex. Since every element of V1 is adjacent to x, no

element of V2 is an internal vertex of any monophonic path starting from x.
Thus every x-monophonic set of G contains S = V2 − {x}. Also, any vertex
v of V1 lies on an x − u monophonic path x,v,u where u ∈ S so that S is an
x-monophonic set of K2,n. Since n ≥ 3, the induced subgraph G[S] is discon-
nected so that cmx(K2,n) > n − 1. Now, the induced subgraph G[S

⋃

{w}] is
connected for any vertex w in V1 and so cmx(K2,n) = n.
(iii) The proof is similar to the second part of the proof of (ii). �

Theorem 2.7. (i) If T is any tree of order p, then cmx(T ) = p for any
cut-vertex x of T .

(ii) If T is any tree of order p which is not a path, then for an end vertex
x, cmx(T ) = p − dm(x, y), where y is the vertex of T with deg(y) ≥ 3
such that dm(x, y) is minimum.

(iii) If T is a path, then cmx(T ) = 1 for any end vertex x of T .

Proof. (i) Let x be a cut vertex of T and let S be any connected x-monophonic
set of T . By Theorem 2.4, every connected x-monophonic set of T contains
all simplicial vertices. If S 6= V (T ), there exists a cut vertex v of T such that
v /∈ S. Let u and w be two end vertices belonging to different components of
T − {v}. Since v lies on the unique path (monophonic path) joining u and
w, it follows that the subgraph G[S] induced by S is disconnected, which is a
contradiction. Hence cmx(T ) = p.
(ii) Let T be a tree which is not a path and x an end vertex of T . Let S =

(V (T )−Im[x, y])
⋃

{y}. Clearly, S is a connected x-monophonic set of T and so
cmx(T ) ≤ |S| = p−dm(x, y). We claim that cmx(T ) = p−dm(x, y). Otherwise,
there is a connected x-monophonic set M of T with |M | < p − dm(x, y). By
Theorem 2.4, every connected x-monophonic set of T contains all simplicial
vertices except possibly x and hence there exists a cut-vertex v of T such that
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v ∈ S and v /∈ M . Let B1, B2, . . . , Bm(m ≥ 3) be the components of T − {y}.
Assume that x belongs to B1.
Case 1. Suppose that v = y. Let z ∈ B2 and w ∈ B3 be two end vertices of

T . By Theorem 1.1, v lies on the unique z−w monophonic path. Since z and
w belong to M and v /∈ M , G[M ] is not connected, which is a contradiction.
Case 2. Suppose that v 6= y. Let v ∈ Bi(i 6= 1). Now, choose an end vertex

u ∈ Bi such that v lies on the y − u monophonic path. Let a ∈ Bj(j 6= i, 1)
be an end vertex of T . By Theorem 1.1, y lies on the u− a monophonic path.
Hence it follows that v lies on the u − a monophonic path. Since u and a
belong to M and v /∈ M , G[M ] is not connected, which is a contradiction.
(iii) Let T be a path. For an end vertex x in T , let y be the other end vertex

of T . Clearly every vertex of T lies on the x− y monophonic path and so {y}
is a connected x-monophonic set of T so that cmx(T ) = 1. �

Corollary 2.8. For any tree T , cmx(T ) = p if and only if x is a cut vertex of
T .

Proof. This follows from Theorem 2.7. �

Theorem 2.9. For any vertex x in a connected graph G, 1 ≤ cmx(G) ≤ p.

Proof. Since V (G) induces a connected x-monophonic set of G, it follows that
cmx(G) ≤ p. Also it is clear that cmx(G) ≥ 1 and so 1 ≤ cmx(G) ≤ p. �

Remark 2.10. The bounds for cmx(G) in Theorem 2.9 are sharp. For the cycle
Cp(p ≥ 4), cmx(Cp) = 1 for any vertex x. Also, for any non-trivial path Pn,
cmx(Pn) = 1 for any end vertex x. For any path Pn(n ≥ 3), cmx(Pn) = n for
any cut vertex x.

Theorem 2.11. Let x be any vertex of a connected graph G. Then the follow-
ing are equivalent:

(i) cmx(G) = 1.
(ii) mx(G) = 1.
(iii) There exists an x-monophonic superior vertex y in G such that every

vertex of G is on an x− y monophonic path.

Proof. (i) ⇒ (ii) Let cmx(G) = 1. By Theorem 2.3, mx(G) ≤ cmx(G) = 1
and so mx(G) = 1.
(ii) ⇒ (iii) This follows from Theorem 1.2.
(iii) ⇒ (i) Let y be an x-monophonic superior vertex of x in G such that

every vertex of G is on an x − y monophonic path. Then {y} is a connected
x-monophonic set of G so that cmx(G) = 1. �

We proved (Theorem 2.3) that mx(G) ≤ cmx(G) for any vertex x in G. The
following theorem gives a realization for these parameters when 2 ≤ a ≤ b ≤
p− 1.
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Theorem 2.12. If p, a and b are positive integers such that 2 ≤ a ≤ b ≤ p−1,
then there exists a connected graph G of order p, mx(G) = a and cmx(G) = b
for some vertex x in G.

Proof. We prove this theorem by considering two cases.
Case 1. 2 ≤ a = b ≤ p − 1. Let Pp−a : u1, u2, . . . , up−a be a path of order

p− a and Ka be the complete graph of order a. Let G be the graph obtained
by joining up−a to every vertex of Ka and it is shown in Figure 2.2.
Then G is of order p and it has a + 1 simplicial vertices {u1}

⋃

V (Ka).
By Theorem 1.3(i), every mx-set of G contains V (Ka) for x = u1 and hence
mx(G) ≥ a. Now, every vertex ui(1 ≤ i ≤ p− a) lies on the x− v monophonic
path for some v ∈ V (Ka), it follows that V (Ka) is an x-monophonic set of G
and so mx(G) = a. Also, since Ka is connected, cmx(G) = a.
Case 2. 2 ≤ a < b ≤ p − 1. Let Pp−a+1 : u1, u2, . . . , up−a+1 be a path of

order p−a+1. Add a−1 new vertices v1, v2, . . . , va−1 to Pp−a+1 and join these
to up−b+1, there by producing the tree G of Figure 2.3. Then G is of order p
with a + 1 end vertices. For the vertex x = u1, mx(G) = a by Theorem 1.4
and cmx(G) = b by Theorem 2.7 (ii). �

In the following, we construct a graph of prescribed order, monophonic di-
ameter and connected vertex monophonic number under some conditions.

Theorem 2.13. If p, dm and n are positive integers such that 2 ≤ dm ≤ p− 2
and 1 ≤ n ≤ p, then there exists a connected graph G of order p, monophonic
diameter dm and cmx(G) = n for some vertex x in G.
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Proof. We prove this theorem by considering two cases.
Case 1. Let dm = 2. If n = p− 1 or p, then take G = K1,p−1. By Theorem

2.7, cmx(G) = p−1 or p according as x is an end vertex or the cut vertex. Now
we consider three subcases. First, let n = 1. Let G be the complete bipartite
graph K2,p−2 with partite sets X = {u1, u2} and Y = {w1, w2, . . . , wp−2}.
Then G has order p and monophonic diameter dm = 2. For the vertex x = u1,
cmx(G) = 1 by Theorem 2.6(ii). Let n = 2. Let {v1, v2, . . . , vp} be the vertex
set of the complete graph Kp. The graph G is obtained by removing the edges
v2v3 and v3v4 from the complete graph Kp. The graph G has order p and
monophonic diameter dm = 2 and is shown in Figure 2.4. Let S = {v2, v3, v4}
be the set of all simplicial vertices of G. Then by Theorem 2.4, every connected
x-monophonic set of G contains S−{v3} for the vertex x = v3. It is clear that
S is a connected x-monophonic set of G and so cmx(G) = 2.
Now, let 3 ≤ n ≤ p− 2. Let K1,n be a star with end vertices u1, u2, . . . , un

and cut vertex y. Let G be the graph obtained from K1,n by adding p− n− 1
new vertices w1, w2, . . . , wp−n−1 and joining each wi(1 ≤ i ≤ p−n−1) to both
u1, u2 and y. The graph G has order p and monophonic diameter dm = 2 and
is shown in Figure 2.5.
Let S = {u3, u4, . . . , un} be the set of all simplicial vertices of G. Then by

Theorem 2.4, every connected x-monophonic set of G contains S for the vertex
x = u1. It is clear that S and S

⋃

{z}, where z ∈ V (G)−S, are not connected
x-monophonic sets of G and so cmx(G) > n− 1. Clearly S ′ = S

⋃

{u2, y} is a
minimum connected x-monophonic set of G and so cmx(G) = n.
Case 2. Let 3 ≤ dm ≤ p− 2. Let Pdm+1 : u0, u1, . . . , udm be a path of length

dm.
Subcase 1. Let n = 1. Add p− dm − 1 new vertices w1, w2, . . . , wp−dm−1 to

Pdm+1 and join these to both u0 and u2, there by producing the graph G of
Figure 2.6. Then G has order p and monophonic diameter dm. For the vertex
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x = u0, clearly {udm} is the minimum connected x-monophonic set of G so
that cmx(G) = 1.
Subcase 2. Let n = 2. Add p − dm − 1 new vertices w1, w2, . . . , wp−dm−2, v

to Pdm+1 and join each wi(1 ≤ i ≤ p − dm − 2) to both u0 and u2 and join v
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to both udm−1 and udm , there by producing the graph G of Figure 2.7. Then
G has order p and monophonic diameter dm. For the vertex x = u0, clearly
{udm, v} is the cmx-set so that cmx(G) = 2.
Subcase 3. Let 3 ≤ n ≤ p−1. We consider two cases. If n ≤ p−dm, then add

p−dm−1 new vertices w1, w2, . . . , wp−dm−n+1, v1, v2, . . . , vn−2 to Pdm+1 and join
each wi(1 ≤ i ≤ p−dm−n+1) to both u0 and u2 and join each vj(1 ≤ j ≤ n−2)
to udm−1, there by producing the graph G of Figure 2.8. Then G has order p
and monophonic diameter dm. Clearly S = {udm , v1, v2, . . . , vn−2} is the set of
all simplicial vertices of G. Let x = u0. By Theorem 2.4, cmx(G) ≥ |S| = n−1.
Since the induced subgraph G[S] is not connected, cmx(G) > |S| = n− 1. Let
S ′ = S

⋃

{udm−1}. Then S ′ is an x-monophonic set of G and G[S ′] is connected
so that cmx(G) = |S ′| = n.
If n > p− dm, then add p− dm − 1 new vertices v1, v2, . . . , vp−dm−1 to Pdm+1

and join each vi(1 ≤ i ≤ p− dm − 1) to up−n, there by producing the graph G
of Figure 2.9. Then G has order p and monophonic diameter dm. Since G is a
tree, by Theorem 2.7 (ii), cmx(G) = p− (p− n) = n for the vertex x = u0.
Subcase 4. Let n = p. Let G be any tree of order p and monophonic diameter

dm. Then for any cut vertex x in G, cmx(G) = p, by Theorem 2.7(i). �

For every connected graph G, radm(G) ≤ diamm(G). It is shown in [7] that
every two positive integers a and b with a ≤ b are realizable as the monophonic
radius and monophonic diameter, respectively, of some connected graph. This
theorem can be extended so that the connected vertex monophonic number
can also be prescribed.

Theorem 2.14. For positive integers a, b and n ≥ 3 with a ≤ b, there exists
a connected graph G with radm(G) = a, diamm(G) = b and cmx(G) = n for
some vertex x in G.
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Proof. We prove this theorem by considering four cases.
Case 1. a = b = 1. Let G = Kn+1. Then by Theorem 2.5 (i), cmx(G) = n

for any vertex x in G.
Case 2. a = b ≥ 2. Let Ca+2 : v1, v2, . . . , va+2, v1 be a cycle of order

a + 2. Let G be the graph obtained from Ca+2 by adding n − 2 new vertices
u1, u2, . . . , un−2 and joining each vertex ui(1 ≤ i ≤ n − 2) to both v1 and v3.
The graph G is shown in Figure 2.10.
It is easily verified that the monophonic eccentricity of each vertex of G is

a and so radm(G) = diamm(G) = a. Also, for the vertex x = v2, it is clear
that S = {va+2, u1, u2, . . . , un−2} is a minimum x-monophonic set of G and
so mx(G) = n − 1. Since the induced subgraph G[S] is disconnected and no
n − 1 point subset of V (G) is a connected x-monophonic set of G, we have
cmx(G) > n − 1. Let S ′ = S

⋃

{v1}. Then S ′ is a connected x-monophonic
set of G so that cmx(G) = n.
Case 3. 1 ≤ a < b. Let Cb+1 : v1, v2, . . . , vb+1, v1 be a cycle of order b+1 and

Kn+2 be the complete graph of order n+2. Let G be the graph obtained from
the cycle Cb+1 and the complete graph Kn+2 by identifying the edge v1vb+1

of Cb+1 with an edge of Kn+2 and joining each vertex vi(a + 2 ≤ i ≤ b) to
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Figure 2.11. G

the vertex v1. The graph G is shown in Figure 2.11. It is easily verified that
em(v1) = a, em(v2) = b and a ≤ em(x) ≤ b for any vertex x in G. Then
radm(G) = a and diamm(G) = b.
Subcase 1. Let a = 1. Then S = (V (Kn+2) − {v1, vb+1})

⋃

{v2}) is the
set of all simplicial vertices of G. Then by Theorem 2.4, every connected x-
monophonic set of G contains S − {v2} for the vertex x = v2. Also, since
S − {v2} is a connected x-monophonic set of G, cmx(G) = |S − {v2} | = n.
Subcase 2. Let a ≥ 2. Then S = V (Kn+2) − {v1, vb+1} is the set of all

simplicial vertices of G. Then by Theorem 2.4, every connected x-monophonic
set of G contains S for the vertex x = v2. Also, since S is a connected x-
monophonic set of G, cmx(G) = |S| = n. �
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