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ON SOME PROPERTIES OF TSALLIS ENTROPY ON
MAJORIZATION LATTICE

P. K. BHATIA, SURENDER SINGH, AND VINOD KUMAR

Abstract. In this communication, order preserving property of Tsallis
measure of entropy is proved. Further, subdditivity and submodularity of
Tsallis measure of entropy on a majorization are established. Additionally,
Shannon’s [11] little-recognized legacy, an interesting concepts of informa-
tion elements and information lattices is studied.

1. Introduction and preliminaries

In the seminal paper on Mathematical theory of communications [6], Shan-
non defined ‘information’ in context with communication system. The word
‘information’ has been given different meanings by various writers in the field
of information theory. Many of these interpretations acquired the attention of
researchers from other fields and significant literature is developed in last 50
years on the interdisciplinary applications. It is likely that study of informa-
tion measures will prove sufficiently useful in certain applications to deserve
further study. To address this issue the connection of information measures
with different mathematical concepts and their characterization is essential. In
this communication, effort is made to study a generalized information measure
in light of combinatorics structures.

Shiva et al. [12] proved order preserving property of Rényi’s measure [9] of
information of order α. Zografos et al. [16] , Quesada and Taneja [8] studied
the order preserving property of two parametric information measures. Here,
we study the order preserving property of Tsallis entropy. Supermodularity
and submodularity play an important role in fields which are at the cross-
roads of Information Theory and Combinatorics. More to the point, Fujishige
[3] proved that the entropy is submodular on the Boolean lattice of a finite
set of random variables, ordered according to subset inclusion, and used this
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property of the entropy to derive in a unified way several results in Informa-
tion Theory. Guardia et al. [5] established new connections among matroids,
classical information theory and error-correcting codes. Cicalese and Vaccaro
[1] proved that the Shannon entropy is supermodular and subadditive on the
majorization lattice. The main result of our communication is to show a kind
of generalization to Cicalese and Vaccaro’s result on the majorization lattice
for Tsallis entropy. In this section, some preliminary concepts required in the
proof of main results are presented briefly.

1.1. Shannon Entropy. The measure of information was defined
Claude. E. Shannon [10] in his treatise paper in 1948.

H(P ) =
n∑

i=1

pi log pi (1)

where

Γn =

{
P = (p1, p2, p3 . . . pn) | pi ≥ 0,

n∑
i=1

pi = 1, n ≥ 2

}
is the set of all complete finite discrete probability distributions.

1.2. Order preserving property. If the information content of a complete
finite probability scheme (c.f.p.s.) P is greater than, or equal to or less than
that of a c.f.p.s. Q in one measure which is accepted as a standard, as e.g., the
Shannon measure, then this order should be preserved in any other measure
of information i.e

H(P ) ≤ H(Q) ⇒ Hα(P ) ≤ Hα(Q) (2)

Where α lies in some interval.

1.3. Majorization theory. In this section, we recall the basic notions of
majorization theory [7] which are relevant to our context.

Majorization. Given two probability distributions P = (p1, p2, p3 . . . pn) and
Q = (q1, q2, q3 . . . qn) with p1 ≥ p2 ≥ p3 ≥ · · · ≥ pn and q1 ≥ q2 ≥ q3 ≥ · · · ≥
qn. We say that P is majorized by Q, in symbols P @ Q, if and only if

k∑
i=1

pi ≤
k∑

i=1

qi, k = 1, 2, . . . , n.

The main link between the concept of majorization and the theory of inequal-
ities is established by the notion of Schur-convex functions.
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Schur-convex functions. A real-valued function φ defined on the set of n-
dimensional probability vectors is said to be Schur-convex if it is order pre-
serving with respect to the partial order @, that is , if

P @ Q ⇒ φ(P ) ≤ φ(Q)

Lemma 1.1 ([7]). If φ is invariant with respect to any permutation of its
inputs and convex then φ is Schur-convex.

By this lemma, we get that entropy function H(P) as defined in Eq.(1) is a
Schur-convex function.

Majorization lattice. We first recall [7] that a lattice is a quadruple (L,@,∨,∧)
where L is a set, @ is partial ordering on L , and for all a, b ∈ L there is a
unique greatest lower bound (g.l.b.) a ∧ b and a unique least upper bound
(l.u.b.) a ∨ b. More precisely,

a ∧ b @ a, a ∧ b @ b and a ∨ b A a, a ∨ b A b.

Now for n ≥ 2, let

4n = {P = (p1, p2, p3 . . . pn); pi ∈ [0, 1];
n∑

i=1

pi = 1; pi ≥ pi+1}

be the set of all n-dimensional probability distributions , with components in
non decreasing order. Then,(4n,@,∨,∧) is a partially ordered set such that

(
1

n
,
1

n
, . . . ,

1

n
) @ (

1

n− 1
,

1

n− 1
, . . . , 0) @ . . . (

1

2
,
1

2
, . . . , 0) @ (1, 0, . . . , 0)

i.e.

(
1

n
,
1

n
, . . . ,

1

n
) @ P @ (1, 0, . . . , 0).

Infimum and supremum in majorization lattice. Let P,Q ∈ 4n and α(P,Q) =
(a1, a2, . . . , an) with

ai = min{
i∑

j=1

pj,

i∑
j=1

qj} −
i−1∑
j=1

aj

= min{
i∑

j=1

pj,
i∑

j=1

qj} −min{
i−1∑
j=1

pj,
i−1∑
j=1

qj}.

Then α(P,Q) = P ∧Q.
Now let P,Q ∈ 4n and β(P,Q) = (b1, b2, . . . , bn) with

bi = max{
i∑

j=1

pj,
i∑

j=1

qj} −
i−1∑
j=1

bj

= max{
i∑

j=1

pj,

i∑
j=1

qj} −max{
i−1∑
j=1

pj,

i−1∑
j=1

qj}.
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Note that the components of β(P,Q) might not be in non increasing order i.e.
it is not true in general that β(P,Q) ∈ 4n.

Now on rearranging the components of β(P,Q) in non increasing order we
have

β
′
(P,Q) = (b

′

1, b
′

2, . . . , b
′

n)

Clearly, β
′
(P,Q) is an upper bound of P and Q in 4n.

Lemma 1.2 ([1]). Let P = (p1, p2, p3 . . . pn) be the given probability distribu-
tion and j be the smallest integer in {2, 3, . . . , n} such that pj > pj−1. More-
over, let i be the greatest integer in {1, 2, . . . , j − 1} such that

pi−1 ≥
∑j

r=1 pr
j − i+ 1

= a.

Let the distribution Q = (q1, q2, q3 . . . qn) be defined as

qr =

{
a, r=i, i+1, . . . , j;
pr, otherwise.

Then for probability distribution Q we have that qr−1 ≥ qr for all r = 2, . . . , j

and
∑k

s=1 qs ≥
∑k

s=1 ps for k = 1, 2, . . . , n.

Moreover, for all t = (t1, t2, t3 . . . tn) ∈ 4n such that
k∑

s=1

ts ≥
k∑

s=1

ps and

k∑
s=1

ts ≥
k∑

s=1

qs for k = 1, 2, . . . , n.

Now the vector β(P,Q) = (b1, b2, . . . , bn), by iteratively applying the trans-
formation in lemma 1.2, actually with no more (n-1) iterations, we eventually
obtain a vector r = (r1, r2, . . . , rn) = P ∨ Q, the least upper bound of P and
Q in 4n.

Supermodularity on majorization lattice. A real valued function defined on
a lattice L is supermodular if and only if for any a, b ∈ L we have that,
f(a ∧ b) + f(a ∨ b) ≥ f(a) + f(b).

Note that f is submodular if and only if −f is supermodular.

2. Tsallis entropy

Tsallis entropy introduced by Tsallis [13] is defined as

Sq(P ) = k
1−

∑n
i=1 p

q
i

q − 1

For a given probability distribution P = (p1, p2, p3 . . . pn) , where k is a posi-
tive constant and q ∈ R+. Tsallis entropy is one parameter generalization of
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Shannon entropy in the sense that

lim
q→1

Sq = S1 = −k

n∑
i=1

pi log pi

The characteristic property of Tsallis entropy is pseudoadditivity. Introduction
of Tsallis entropy opened a new research area in statistical physics, providing
an advantageous generalization of traditional Boltzmann Gibbs statistical me-
chanics. The generalization enables us to find a consistent treatment of dy-
namics in many non extensive physical systems such as long-range interactions,
long-time memories, and multifractal structures, which cannot be coherently
explained within the conventional Boltzmann Gibbs statistics [14]. In partic-
ular, the successful applications of Tsallis entropy can be often observed in
dynamical chaotic systems. For example, the results derived from the general-
ized Kolmogorov Sinai entropy using Tsallis entropy have the perfect matching
with nonlinear dynamical behavior such as the sensitivity to the initial condi-
tions in chaos. On the other hand, the usual Kolmogorov Sinai entropy using
Shannon entropy does not have these convenient properties; see [15], [6], [2]
for further details. Thus, Tsallis entropy inspires many physicists to estab-
lish a generalized Boltzmann Gibbs statistical mechanics leading to numerous
applications [14].

3. Properties of Tsallis entropy on majorization lattice

Some information theoretic properties have been proved by Furuichi [4]. In
this section, we prove some properties of Tsallis entropy on a majorization
lattice.

Theorem 3.1. Tsallis entropy is order preserving.

Proof. If H(P ) ≤ H(Q) for any P,Q ∈ Γn then it can obviously seen that
Sq(P ) ≤ Sq(Q) for all q ∈ R+. �

Theorem 3.2. The Tsallis entropy Sq(P ) is submodular on majorization lat-
tice (4n,@,∨,∧), i.e for all P,Q ∈ Γn

Sq(P ∧Q) + Sq(P ∨Q) ≤ Sq(P ) + Sq(Q).

Proof. We shall prove slightly stronger result:

Sq(P ∧Q) + Sq(β(P,Q)) ≤ Sq(P ) + Sq(Q)

Recalling the definition of (b
′
1, b

′
2, . . . , b

′
n) as re-ordered version of β(P,Q); we

have

P ∨Q ≤ (b
′

1, b
′

2, . . . , b
′

n)

and by order preserving property we have,

Sq(P ∨Q) ≤ Sq(b
′

1, b
′

2, . . . , b
′

n).
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Also,

Sq(β(P ∨Q)) ≤ Sq(b
′

1, b
′

2, . . . , b
′

n).

Therefore,
Sq(P ∨Q) ≤ Sq(β(P ∨Q)).

Obviously, Sq(P ∧ Q) ≤ Sq(P ) and Sq(P ∧ Q) ≤ Sq(Q). Here, we will also
assume that P is not majorized by Q and,Q is not majorized by P otherwise
there is obvious equality.

Let index i ∈ {2, 3, . . . , n} be an inversion point of P and Q if either

i−1∑
t=1

pt <

i−1∑
t=1

qt and
i∑

t=1

pt >

i∑
t=1

qt;

vice-versa, if
i−1∑
t=1

pt >

i−1∑
t=1

qt and
i∑

t=1

pt <

i∑
t=1

qt.

Let 2 ≤ i1 < i2 < · · · < ik ≤ n be all the inversion points of for P and Q.
Moreover, let

L = (l1, l2, . . . , ln) = P ∧Q

and
S = (s1, s2, . . . , sn) = β(P,Q).

We assume that i0 = 0 and ik+1 = n+ 1 for sake of definiteness. We establish
two claims.

Claim 1. For each inversion point ir, r = 0, 1, . . . , k, we have

ir+1∑
t=ir+1

(pqt + qqt ) =

ir+1∑
t=ir+1

(sqt + lqt )

To prove this claim, Without loss of generality, we assume that

ir∑
t=1

pt >

ir∑
t=1

qt

Then
ir∑
t=1

st =
ir∑
t=1

pt

and for all d = ir + 1, . . . , ir − 1, we have

sd =
d∑

t=1

pt −
d−1∑
t=1

st = pd.

Accordingly, we have
ir∑
t=1

lt =
ir∑
t=1

qt
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and for all d = ir + 1, . . . , ir+1 − 1, we have

td =
d∑

t=1

qt −
d−1∑
t=1

lt = qd

Consequently, we have

ir+1∑
t=ir+1

(pqt + qqt − sqt − lqt ) = 0.

Claim 2. For each inversion point ir, r = 0, 1, . . . , k, we have

pqir + qqir − sqir − lqir < 0

Let us write p, q, s, l instead of pir , qir , sir , lir respectively. Without loss of
generality let us assume that for the inversion point ir, it holds that

ir−1∑
t=1

pt >
ir−1∑
t=1

qt and
ir∑
t=1

pt <
ir∑
t=1

qt.

It follows that l, s > p and q > l, s. Moreover, it is not hard to see that
s+ l = p+ q.

Let s > l, then write s = q − δ, and l = p+ δ. Then we have

sq + lq − pq − qq = (q − δ)q + (p+ δ)q − pq − qq

= qq(1− δ

q
)q + pq

(
1− δ

p
)q − pq − qq

= q
δ

q
− q

δ

p
< 0,

neglecting the higher powers. Consequently,

sq + lq − pq − qq < 0

The remaining case s < l, is completely symmetric, provided that we set
s = p+ δ, and l = q − δ. This concludes the proof of claim 2.

Now we have

Sq(S) + Sq(L)− SP (S)− Sq(Q) =
n∑

t=1

(sqt + lqt − pqt − qqt )

=
k∑

r=1

(sqir + lqir − pqir − qqir)

+
ir−1∑

t=ir−1+1

(sqt + lqt − pqt − qqt )

+
n∑

t=ik+1

(sqt + lqt − pqt − qqt )
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=
k∑

r=1

(sqir + lqir − pqir − qqir) < 0,

by claim 1 and 2. That is,

Sq(S) + Sq(L)− SP (S)− Sq(Q) < 0

Sq(S) + Sq(L) < SP (S) + Sq(Q).

Consequently,

Sq(P ∧Q) + Sq(β(P,Q)) < SP (S) + Sq(Q).

Thus the submodularity of Tsallis entropy follows. �

Theorem 3.3. The Tsallis entropy Sq(P ), (q > 1) is subadditive on majoriza-
tion lattice (4n,@,∨,∧), i.e for all P,Q ∈ Γn

Sq(P ∧Q) ≤ Sq(P ) + Sq(Q).

Proof. Let L = (l1, l2, . . . , ln) = P ∧Q and S = (s1, s2, . . . , sn) = β(P,Q).
If P @ Q, by definition of g.l.b P ∧Q = P and the result is obvious, similar

is the case for Q @ P .
Now, we assume, P is not majorized by Q and Q is not majorized by P .

This also implies that n ≥ 2.
For each i = 2, 3, 4, . . . , n, it holds that

pqi + qqi − lqi ≥ 0

By definition of L, we have

min{pqi , q
q
i } ≤ lqi ≤ max{pqi , q

q
i }

Now, we have
n∑

i=1

pqi +
n∑

i=1

qqi −
n∑

i=1

lqi ≥ 0

It gives,

(
∑n

i=1 p
q
i − 1)

1− q
+

(
∑n

i=1 q
q
i − 1)

1− q
− (

∑n
i=1 l

q
i − 1)

1− q
≥ −1

1− q

Therefore, for q > 1,

Sq(P ∧Q) ≤ Sq(P ) + Sq(Q)

Hence, Tsallis entropy is subadditive on majorization lattice 4n when param-
eter q > 1. �
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4. Some open problems

For a random variable X, let H(X) is Shannon’s entropy. Shannon [11] con-
sidered a random variable as an information element and for two information
elements X and Y defined a relation ‘≤’ as follows: ‘X ≥ Y if and only if
H(Y |X) = 0’ i.e. this essentially requires that Y can be obtained by suitable
finite state operation (or limit of such operations) on X. If X ≥ Y the Y is
called ’abstraction’ of X. Let = be the set of all information elements then
it is observed that (=,≥) is a partially ordered set. Further, if X + Y = the
total information of X and Y=l.u.b{X,Y}; X ∗Y = common information of X
and Y=g.l.b{X,Y}. Then (=,≥,+, ∗) is a lattice and is called an information
lattice.

The notions of information elements and information lattices seems to have
some interdisciplinary applications. This little exploited legacy of Shannon [11]
needs further investigations. In the present context some open problems arise:

• Possibility of existence of an isomorphism between information lattice
and majorization lattice.

• The information lattice as defined by Shannon [11] is neither distribu-
tive nor modular but can be made relatively complimented. Informa-
tion lattice needs a parallel characterization as that of conventional
lattice, and their is possibility of development of Information lattice
theory.

• Exploration of applications of information lattice theory.

5. Concluding remarks

Along with proposal of some open problems in section 4, we have proved
that the Tsallis entropy is order preserving, submodular and subadditive on
the majorization lattice. Likewise to the classical case, one could use the sub-
additivity property as a basis to define a new information-theoretical calculus
in 4n. In such a calculus, the entropy Sq(P ∧ Q) plays analogous role of
Sq(P ∗ Q) the classical joint entropy of two random variables with marginal
probability distributions P and Q, respectively. Proceeding with the analogy,
one could define a conditional Tsallis entropy

Sq(P |Q) = Sq(P ∧Q)− Sq(Q)

and, because of Theorem 3.3, one would get that Sq(P |Q) ≤ Sq(Q) for all
P,Q ∈ 4n.
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