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ESTIMATING THE ERROR OF THE NUMERICAL SOLUTION
OF LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT

COEFFICIENTS VIA WALSH POLYNOMIALS

GYÖRGY GÁT AND RODOLFO TOLEDO

Abstract. Our aim is to deal with the numerical solution of differential equa-
tions by Walsh polynomials approach. In this paper we simplify the procedure
of C. F. Chen and C. H. Hsiao for one linear differential equation with con-
stant coefficients in order to do a thorough analysis of errors. In this regard
we introduce a faster method to obtain the values of the numerical solution.

The basic idea of using Fourier series for solving differential equations is to
assume that the unknown solution can be approximated by the linear combination
of basis functions and then this series is substituted into the equation. The point
is to choose the coefficients of the series such that the residuum is minimized.
However, the substitution is only possible if the basis functions are derivable and
it is not true in case of locally constant orthonormal systems like systems formed
by Walsh functions.
One approach to avoid the differentiation of basis functions is to consider the

integral equation which is equivalent to the original differential equation. Thus,
the substitution of the series in the integral equation reduces the problem to solve
a linear system to obtain the coefficients. In 1975 C. F. Chen and C. H. Hsiao [1]
used this idea to establish a procedure for the solution of state equations by Walsh
polynomials approach. With this procedure we can obtain a numerical solution
of the Cauchy problem of ordinary linear systems of differential equations with
constant coefficients.
However, Chen and Hsiao did not deal with the analysis of the proposed nu-

merical solution. We refer to determine if the linear system from which we obtain
the coefficients of the Walsh polynomials is solvable or not and also to the esti-
mation of errors. The aim of this paper is to deal with the questions above, but
in case of only one equation, namely we study the numerical method based on
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Walsh polynomials approach of the Cauchy problem

(1)
y′ + ay = q(x)

y(0) = η

where a ∈ R and q : [0, 1[→ R is a continuous function which is integrable on the
interval [0, 1].
The Cauchy problem (1) is equivalent to the following integral equation

y(x) = η +

∫ x

0

q(t)− ay(t) dt (0 ≤ x < 1).

We propose to approach the solution of integral equation above by the Walsh
polynomials

yn(x) =
2n−1∑
k=0

ckωk(x),

satisfying the discretized integral equation

(2) yn(x) = η + S2n

(∫ .

0

S2nq(t)− ayn(t) dt

)
(x)

where 0 ≤ x < 1, ωk is the kth Walsh-Paley function and operators S2nf are
the 2n-th partial sums of Walsh-Fourier series of an integrable function f on the
interval [0, 1[. We would point out that the expression

S2n

(∫ .

0

S2nq(t)− ayn(t) dt

)
(x)

denotes the 2n-th partial sums of Walsh-Fourier series of the integral function∫ x

0

S2nq(t)− ayn(t) dt

at the point x.
After the analysis of the above numerical method we obtain the following main

result.

Theorem 1. Let n be a non-negative integer such that 2n+1 6= −a. Then there ex-
ists an unique Walsh polynomial yn which satisfies the discretized integral equation
(2). Moreover, yn(x) converges uniformly to the solution of the Cauchy problem
(1) on the interval [0, 1[.

In the next three sections we introduce the basic notations and statements
that we use throughout this paper. Section 4 describes the method of Chen and
Hsiao and proves the first part of Theorem 1. In Section 5 we propose a faster
method to obtain directly the values of the numerical solution without needing
to generate Walsh functions or solve the linear system (10).
Section 6 deals with the estimation of errors estimating the absolute difference

between the solution the Cauchy problem (1) and the numerical solution. In this
section we complete the proof of Theorem 1. In the last section we illustrate the
established method through some examples.
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1. The Walsh-Paley system

Every n ∈ N can be uniquely expressed as

n =
∞∑
k=0

nk2
k,

where nk = 0 or nk = 1 for all k ∈ N. This allows us to say that the se-
quence (n0, n1, . . . ) is the dyadic expansion of n. Similarly, the dyadic expansion
(x0, x1, . . . ) of a real number x ∈ [0, 1[ is given by the sum

x =
∞∑
k=0

xk

2k+1
,

where xk = 0 or xk = 1 for all k ∈ N. This expansion is not unique if x is a
dyadic rational, i.e. x is a number of the form i

2k
, where i, k ∈ N and 0 ≤ i < 2k.

When this situation occurs we choose the expansion terminates in zeros.
The Walsh-Paley function ωn is obtained by the finite product of Rademacher

functions
rk(x) := (−1)xk (x ∈ [0, 1[, k ∈ N),

namely

ωn(x) :=
∞∏
k=0

rnk
k (x) (x ∈ [0, 1[, n ∈ N).

The Walsh-Paley system is an orthonormal and complete system on L1([0, 1[).

Figure 1. The Walsh-Paley function ω10

For an integrable function f on the interval [0, 1[ we define the Fourier coeffi-
cients and partial sums of Fourier series by

f̂k :=

∫ 1

0

f(x)ωk(x) dx (k ∈ N),

Snf(x) :=
n−1∑
k=0

f̂kωk(x) (n ∈ N, x ∈ [0, 1[).
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It is important to note that the partial sums S2nf can be written as

S2nf(x) = 2n
∫
In(x)

f(y) dy

where the sets

Ik(i) :=

[
i− 1

2k
,
i

2k

[
(i = 1, . . . , 2k)

are called dyadic intervals and In(x) is the dyadic interval which contains the
value of x. For this reason, the operator S2n is the conditional expectation with
respect to the σ-algebra generated by the sets In(x), x ∈ [0, 1[. Thus, by the
martingale convergence theorem we obtain that S2nf converge to f in Lp-norm
and a.e. for all functions f ∈ Lp([0, 1[), p ≥ 1 (see [4] p. 29).

2. The dyadic modulus of continuity

The topology generated by the collection of dyadic intervals on [0, 1[ is called
dyadic topology. Define the dyadic sum of two numbers x, y ∈ [0, 1[ with expan-
sion (x0, x1, . . . ) and (y0, y1, . . . ) respectively by

xu y :=
∞∑
k=0

|xk − yk|2−(k+1).

Then ρ(x, y) := xu y is a metric on [0, 1[ which generates the dyadic topology.
Let CW be the set of real-valued functions on the interval [0, 1[ which are

continuous at every dyadic irrational, continuous from the right on [0, 1[ and
have a finite limit from the left on ]0, 1], all this on the usual topology. It is not
hard to see that every continuous function f : [0, 1[→ R on the usual topology
belongs to CW if f has a finite limit from the left of 1. Moreover, every function in
CW is continuous on the dyadic topology. On the other hand, every continuous
function f : [0, 1[→ R on the usual topology is also continuous on the dyadic
topology (see [4] p. 11), but it is necessary to have a finite limit from the left of
1 in order to be in CW .
A function belongs to the Walsh-Paley system is called Walsh function. The

finite linear combinations of Walsh functions

f(x) =
n∑

k=0

akωk(x)

are called Walsh polynomials. Every Walsh polynomial is a dyadic step function
and vice versa. Every continuous function on the interval [0, 1[ can be approxi-
mated by Walsh polynomials at every point, but this can be done uniformly only
for functions belongs to CW .
Define the dyadic modulus of continuity of an f ∈ CW by

ωnf := sup{|f(xu h)− f(x)| : x ∈ [0, 1[, 0 ≤ h < 2−n}
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and the local modulus of continuity on the dyadic interval In(i) of a continuous
function f on the dyadic topology by

ωn,if := sup{|f(xu h)− f(x)| : x ∈ In(i), 0 ≤ h < 2−n}.

for all i = 1, 2, . . . , 2n. Not every f : [0, 1[→ R continuous function on the usual
topology has a finite modulus of continuity, it is also necessary the existence of
the limit of f from the left of 1.
The dyadic modulus of continuity can be written as follows

(3) ωnf = sup{|f(x1)− f(x2)| : x1, x2 ∈ In(i), i = 1, 2, . . . , 2n}.

and similarly,

(4) ωn,if = sup{|f(x1)− f(x2)| : x1, x2 ∈ In(i)}.

for all i = 1, 2, . . . , 2n. Obviously,

ωnf = max{ωn,if : i = 1, 2, . . . , 2n}.

Since every function f ∈ CW is uniformly continuous on the interval [0, 1[ with
respect to the dyadic topology, we have ωnf ↘ 0. If we have the sequence of
dyadic intervals Ik(ik) ⊇ Ik+1(ik+1) ⊇ . . . and f is a continuous function on [0, 1[
such that ωk,ikf is finite then ωn,inf ↘ 0.
For every f ∈ CW and x ∈ [0, 1[ we have (see [4])

(5)
1

2
ωnf ≤ |f(x)− S2nf(x)| ≤ ωnf.

The inequalities above imply the fact that for all function f belongs to the space
CW , especially if f is continuous on the usual topology, the partial sums S2nf con-
verges uniformly to the function f . Moreover, the dyadic modulus of continuity
indicates the rate of convergence. Similarly, if x ∈ In(i) we have

(6)
1

2
ωn,if ≤ |f(x)− S2nf(x)| ≤ ωn,if.

It is also important to note that if the function f satisfies the Lipschitz condi-
tion, i.e. there is a constant L such that

|f(x1)− f(x2)| ≤ L|x1 − x2|

for all x1, x2 ∈ [0, 1[, then ωnf ≤ L
2n
. Similar statement is also true for the local

moduli of continuity.

3. The triangular functions

Triangular functions are the set of integral functions of the Walsh-Paley system.
We denote them by

Jk(x) :=

∫ x

0

ωk(t) dt (k ∈ N, 0 ≤ x < 1).
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Figure 2. The triangular function J10

Let us consider the Walsh-Fourier series of the triangular functions Jk, denoting

the Fourier coefficients by Ĵk,j, and hence

Jk(x) =
∞∑
j=0

Ĵk,jωj(x).

Coefficients Ĵk,j often take the value 0, in particular they have the following
properties.

Lemma 1. For every n ∈ N we have

Ĵ0,0 =
1

2
,

Ĵk,j =
1

2n+1
if 0 ≤ j < 2n−1 ≤ k < 2n, k = 2n−1 + j,

Ĵk,j = 0 if 0 ≤ j < 2n−1 ≤ k < 2n, k 6= 2n−1 + j,

Ĵk,j = − 1

2n+1
if 0 ≤ k < 2n−1 ≤ j < 2n, k = j − 2n−1,

Ĵk,j = 0 if 0 ≤ k < 2n−1 ≤ j < 2n, k 6= j − 2n−1,

Ĵk,j = 0 if 2n−1 ≤ k, j < 2n.

Proof. The values of coefficients Ĵk,j can be obtained directly by the Fine’s for-
mulae (see [3])

J0(x) =
1

2
− 1

4

∞∑
i=0

1

2i
ω2i(x)

and

(7) Jk(x) =
1

2n+1

(
ωl(x)−

∞∑
i=1

1

2i
ω2n−1+i+k(x)

)
where k = 2n−1 + l, 0 ≤ l < 2n−1.
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Indeed, if 2n−1 ≤ k < 2n then 2n−1+i + k ≥ 2n for all i ≥ 1, so in (7) only the
coefficient with index l = 2n−1 − k is not zero if we only consider indexes less

than 2n. Hence, Ĵk,j 6= 0 only if j = l, that is k = 2n−1 + j and Ĵk,j =
1

2n+1 .

On the other hand, if k < 2n−1 and k = 2n
′
+ l, where 0 ≤ l < 2n

′
, then

2n−1 ≤ 2n
′+i + k < 2n only for i = n− 1− n′. For this reason, the Walsh series

Jk(x) =
1

2n′+1

(
ωl(x)−

∞∑
i=1

1

2i
ω2n

′+i+k(x)

)
.

only have one non-zero coefficient with index j such that 2n−1 ≤ j < 2n. In this

case, j = 2n
′+(n−1−n′) + k = 2n−1 + k and Ĵk,j =

1
2n

′+1 · −1
2n−1−n′ = − 1

2n+1 .
This completes the proof of the lemma. �

Denote by Ĵ (n) the matrix of size 2n with entries Ĵk,j, where k, j = 0, 1, . . . , 2n−
1. The properties of Ĵk,j allow us to construct the matrices Ĵ (n) in an easier way
as follows: 

1
2

. . .

. . . . . .

− 1
2n
I2n−2

1
2n
I2n−2 02n−2

− 1
2n+1I2n−1

1
2n+1I2n−1 02n−1


where Ij and 0j are the identity and null matrix of size j.
For example

Ĵ (3) =



1
2
−1

4
−1

8
0 − 1

16
0 0 0

1
4

0 0 −1
8

0 − 1
16

0 0

1
8

0 0 0 0 0 − 1
16

0

0 1
8

0 0 0 0 0 − 1
16

1
16

0 0 0 0 0 0 0

0 1
16

0 0 0 0 0 0

0 0 1
16

0 0 0 0 0

0 0 0 1
16

0 0 0 0



.
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Note that the matrices Ĵ (n) can be also constructed by the iteration

Ĵ (0) =

(
1

2

)
, Ĵ (n) =

 Ĵ (n−1) − 1
2n+1I2n−1

1
2n+1I2n−1 02n−1

 .

The following lemma is the key to determine the solvability of the discretized
integral equation (2).

Lemma 2. Let a, b ∈ R. Then

det(bI2n + aĴ (n)>) =
(
b+

a

2n+1

)2n
.

Proof. We prove the statement of the lemma by induction.

Ĵ (1)> =

 1
2

1
4

−1
4
0

 , bI2 + aĴ (1)> =

b+ a
2

a
4

−a
4

b

 ,

and

det(bI2 + aĴ (1)>) = b2 +
1

2
ab+

a2

16
=
(
b+

a

22

)2
,

so the statement of the lemma holds for n = 1. Moreover,

Ĵ (n+1)> =

 Ĵ (n)> 1
2n+2I2n

− 1
2n+2I2n 02n

 ,

and hence

bI2n+1 + aĴ (n+1)> =

 bI2n + aĴ (n)> a
2n+2I2n

− a
2n+2I2n bI2n

 .

The determinant of matrices partitioned in four blocks with the same size satisfies
Schur’s formula

det

A B

C D

 = det(AD −BC)

whenever the matrices A, B, C and D commute pairwise. It is clear that the

matrices in bI2n+1 +aĴ (n+1)> satisfy the condition above, so from Schur’s formula
we have

det(bI2n+1 + aĴ (n+1)>) = det((bI2n + aĴ (n)>)bI2n − (− a

2n+2
I2n)(

a

2n+2
I2n))

= det

((
b2 +

( a

2n+2

)2)
I2n + abĴ (n)>

)
.

Under the assumption that the statement of the lemma holds for n, we obtain

det(bI2n+1 + aĴ (n+1)>) =

(
b2 +

( a

2n+2

)2
+

ab

2n+1

)2n
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=

((
b+

a

2n+2

)2)2n

=
(
b+

a

2n+2

)2n+1

,

which implies that the statement of the lemma also holds for n+1. This completes
the proof of the lemma. �

4. The numerical solution of the integral equation

Our aims is to approach the solution of the integral equation

(8) y(x) = η +

∫ x

0

q(t)− ay(t) dt (0 ≤ x < 1)

by Walsh polynomials, where 0 ≤ x < 1, a ∈ R, q is a continuous function on
the interval [0, 1[ such that ∫ 1

0

q(t) dt < ∞.

In this regard, consider the Walsh polynomials

(9) yn(x) =
2n−1∑
k=0

ckωk(x)

satisfying the discretized integral equation (2), that is

yn(x) = η + S2n

(∫ .

0

S2nq(t)− ayn(t) dt

)
(x)

where ωk is the kth Walsh-Paley function and operators S2nf are the 2n-th partial
sums of Walsh-Fourier series of an integrable function f on the interval [0, 1[.
In order to find the coefficients of the Walsh polynomial yn for a fixed natural

number n we introduce the following column vectors:

c> := (c0, c1, . . . , c2n−1),

q̂> := (q̂0, q̂1, . . . , q̂2n−1),

ω(x)> := (ω0(x), ω1(x), . . . , ω2n−1(x)),

e0
> := (1, 0, . . . , 0) with size 2n

and the matrix

Ĵ := (Ĵk,j)
2n−1
k,j=0.

With these matrix notations the discretized integral equation (2) can be written
as follows

ω(x)>c = η + S2n

(∫ .

0

ω(t)>q̂− aω(t)>c dt

)
(x)

= ω(x)>ηe0 + S2n

(∫ .

0

ω(t)> dt

)
(x) · (q̂− ac)
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= ω(x)>ηe0 + ω(x)>Ĵ>(q̂− ac)

= ω(x)>(ηe0 + Ĵ>(q̂− ac)).

at every point of [0, 1[. Thus, the equation above also holds for the coefficients of
the Walsh polynomials from which we obtain the linear system

c = ηe0 + Ĵ>(q̂− ac)

involving the variables c0, c1, . . . , c2n−1 and it can be written as follows

(10) (I + aĴ>)c = ηe0 + Ĵ>q̂,

where I is the identity matrix of size 2n.
The solvability of the linear system (10) only depend on whether the value of

det(I + aĴ>) is zero or not. By Lemma 2 for b = 1 we obtain

det(I + aĴ>) =
(
1 +

a

2n+1

)2n
from which we obtain that if 2n+1 6= −a, then the linear system (10) has an
unique solution given by the formula

(11) c = (I + aĴ>)−1(ηe0 + Ĵ>q̂).

This completes the proof of the first part of Theorem 1.

5. A multistep method to obtain the numerical solution

Summarizing the last section, the method of C. F. Chen and C. H. Hsiao is
based on discretizing the integral equation (8) to obtain the linear system (10).
After solving it, we have to generate all of Walsh functions with indices up to
2n − 1 and take their linear combination with the solution of the linear system,
according with

yn(x) =
2n−1∑
k=0

ckωk(x).

We propose a faster method to obtain directly the values of yn without needing
to generate Walsh functions or solve the linear system (10). The method is based
on the fact that yn is constant on the dyadic intervals In(i), so the sequence
yn(

i−1
2n

) (i = 1, 2, . . . , 2n) contains all values of yn. The point is to calculate the

value of yn(
i−1
2n

) directly from the values yn(
k
2n
) (k = 0, 1, . . . , i− 2) starting from

the value of yn(0).
Let χIn(k) be the characteristic function of the interval In(k), where k =

1, 2, . . . , 2n. It is not hard to see that

(12) S2n

(∫ .

0

χIn(k)(t) dt

)
(x) =


0 if 0 ≤ x < k−1

2n
,

1
2n+1 if k−1

2n
≤ x < k

2n
,

1
2n

if k
2n

≤ x < 1.
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In order to simplify the notations denote by q̃n := S2nq the 2n-th partial sums
of the Walsh series of the function q. Thus,

q̃n(x) = 2n
∫ i

2n

i−1
2n

q(t) dt

for all x ∈ In(i), specially if x = i−1
2n

.
The function q̃n(x)− ayn(x) is also constant on the dyadic intervals In(i). For

this reason

q̃n(x)− ayn(x) =
2n∑
k=1

(
q̃n(

k − 1

2n
)− ayn(

k − 1

2n
)

)
χIn(k)(x).

Suppose x ∈ In(i) for some i = 1, 2, . . . , 2n. Then by (2) we have

yn(x) = η + S2n

(∫ .

0

2n∑
k=1

(
q̃n(

k − 1

2n
)− ayn(

k − 1

2n
)

)
χIn(k)(t) dt

)
(x)

= η +
2n∑
k=1

(
q̃n(

k − 1

2n
)− ayn(

k − 1

2n
)

)
S2n

(∫ .

0

χIn(k)(t) dt

)
(x)

= η +
1

2n

i−1∑
k=1

(
q̃n(

k − 1

2n
)− ayn(

k − 1

2n
)

)
+

1

2n+1

(
q̃n(

i− 1

2n
)− ayn(

i− 1

2n
)

)
.

Thus,

(13) yn(
i− 1

2n
)

=
1

1 + a
2n+1

(
η +

1

2n

i−1∑
k=1

(
q̃n(

k − 1

2n
)− ayn(

k − 1

2n
)

)
+

1

2n+1
q̃n(

i− 1

2n
)

)
,

which is easy to obtain by a recursive algorithm starting from the value

yn(0) =
1

1 + a
2n+1

(
η +

1

2n+1
q̃n(0)

)
.

6. Estimation of errors

The aim of this section is to find an upper estimation of the difference

|y(x)− yn(x)|
at every point x ∈ [0, 1[, where yn is the Walsh polynomial which satisfies the
discretized integral equation (2) and y is at the same time the unique solution of
the Cauchy problem (1), i.e.

y′ + ay = q(x)

y(0) = η

and the equivalent integral equation (8), where q is a continuous function on the
interval [0, 1[ and integrable on the interval [0, 1].
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The estimate will be established by using the values of a and η, as well as the

2n-th partial sums of the Walsh series of the function |q|, denoted by |̃q|n. Since
|q| is integrable on the interval [0, 1], the function |̃q|n is constant on the dyadic
intervals In(i) and every values

|̃q|n(
i− 1

2n
) = 2n

∫ i
2n

i−1
2n

|q(t)| dt (i = 1, 2, . . . , 2n)

are finite.
The conditions assumed for the function q do not ensure that the dyadic mod-

ulus of continuity of q is finite. For this to happen, the limit of the function
from the left of 1 needs to be finite. Nevertheless, the solution y always has a
finite dyadic modulus of continuity. Indeed, it is a very well known fact that the
solution of the Cauchy problem (1) is given by the formula

(14) y(x) = e−ax

(
η +

∫ x

0

q(t)eat dt

)
(0 ≤ x < 1).

Thus, the limit

lim
x→1−

y(x) = e−a

(
η +

∫ 1

0

q(t)eat dt

)
is finite since q is integrable on the interval [0, 1]. The fact above allows us to
establish the estimation in two steps as follows

(15) |y(x)− yn(x)| ≤ |y(x)− S2ny(x)|+ |S2ny(x)− yn(x)|

for all x ∈ [0, 1[.
We start first with the estimation of the first part. Note that this part does

not depend on the numerical solution yn. Suppose that x is in the dyadic interval
In(i) for some i = 1, 2, . . . , 2n. Then by (6) we obtain

|y(x)− S2ny(x)| ≤ ωn,iy.

So we will estimate the value of ωn,iy and in this regard we study the supremum
of |y(x2)− y(x1)|, where x1, x2 ∈ In(i) and x1 < x2, according with (4). By (14)
we have

y(x2)− y(x1) = e−ax2

(
η +

∫ x2

0

q(t)eat dt

)
− e−ax1

(
η +

∫ x1

0

q(t)eat dt

)
.

The expression above can be written in two different forms as follows

(16)

y(x2)− y(x1) =(e−ax2 − e−ax1)

(
η +

∫ x1

0

q(t)eat dt

)
+ e−ax2

∫ x2

x1

q(t)eat dt

=(e−a(x2−x1) − 1)

(
e−ax1η + e−ax1

∫ x1

0

q(t)eat dt

)
+ e−ax2

∫ x2

x1

q(t)eat dt
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or

(17)

y(x2)− y(x1) =(e−ax2 − e−ax1)

(
η +

∫ x2

0

q(t)eat dt

)
+ e−ax1

∫ x2

x1

q(t)eat dt

=(1− ea(x2−x1))

(
e−ax2η + e−ax2

∫ x2

0

q(t)eat dt

)
+ e−ax1

∫ x2

x1

q(t)eat dt.

Let us suppose that a ≥ 0. In this case eax is a positive and monotone increasing
function. By the fact that

1− e−x < x (x > 0),

from (16) we obtain the following estimation.

|y(x2)− y(x1)| ≤(1− e−a(x2−x1))

(
e−ax1 |η|+ e−ax1

∫ x1

0

|q(t)|eat dt
)

+ e−ax2

∫ x2

x1

|q(t)|eat dt

≤a(x2 − x1)

(
e−ax1|η|+ e−ax1

∫ x1

0

|q(t)|eax1 dt

)
+ e−ax2

∫ x2

x1

|q(t)|eax2 dt

=a(x2 − x1)

(
e−ax1|η|+

∫ x1

0

|q(t)| dt
)
+

∫ x2

x1

|q(t)| dt

≤ a

2n

(
e−a i−1

2n |η|+
∫ i

2n

0

|q(t)| dt

)
+

∫ i
2n

i−1
2n

|q(t)| dt

=
a

2n

(
e−a i−1

2n |η|+
∫ i

2n

0

|q(t)| dt

)
+

1

2n
|̃q|n(

i− 1

2n
).

Similarly, if a < 0 then eax is a positive and monotone decreasing function, hence
from (17) we obtain the following estimation.

|y(x2)− y(x1)| ≤(1− ea(x2−x1))

(
e−ax2 |η|+ e−ax2

∫ x2

0

|q(t)|eat dt
)

+ e−ax1

∫ x2

x1

|q(t)|eat dt

≤− a(x2 − x1)

(
e−ax2 |η|+ e−ax2

∫ x2

0

|q(t)| dt
)

+ e−ax1

∫ x2

x1

|q(t)|eax1 dt
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=− a(x2 − x1)e
−ax2

(
|η|+

∫ x2

0

|q(t)| dt
)
+

∫ x2

x1

|q(t)| dt

≤− a

2n
e−a i

2n

(
|η|+

∫ i
2n

0

|q(t)| dt

)
+

∫ i
2n

i−1
2n

|q(t)| dt

=− a

2n
e−a i

2n

(
|η|+

∫ i
2n

0

|q(t)| dt

)
+

1

2n
|̃q|n(

i− 1

2n
).

In summary, by the notation

(18) E
(n)
1 (x) :=


a
2n

(
e−a i−1

2n |η|+
∫ i

2n

0
|q(t)| dt

)
+ 1

2n
|̃q|n(

i−1
2n

) if a ≥ 0,

−ae
−a i

2n

2n

(
|η|+

∫ i
2n

0
|q(t)| dt

)
+ 1

2n
|̃q|n(

i−1
2n

) if a < 0.

if x ∈ In(i) we obtain

(19) |y(x)− S2ny(x)| ≤ E
(n)
1 (x).

We shall now continue with the estimation of the second part of (15). For this
purpose, we introduce the function

zn(x) := yn(x)− S2ny(x) (x ∈ [0, 1[).

Thus, by (2) and (8) we obtain

zn(x) = η + S2n

(∫ .

0
S2nq(t)− ayn(t) dt

)
(x)− S2n

(
η +

∫ .

0
q(t)− ay(t) dt

)
(x)

= S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(x) + aS2n

(∫ .

0
y(t)− yn(t) dt

)
(x)

= S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(x) + aS2n

(∫ .

0
y(t)− S2ny(t) dt

)
(x)

− aS2n

(∫ .

0
zn(t) dt

)
(x).

Since zn is constant on the dyadic intervals, it can be written as

zn(x) =

2n∑
k=1

zn(
k − 1

2n
)χIn(k)(x) (x ∈ [0, 1[).

Suppose that x is in the dyadic interval In(i) for some i = 1, 2, . . . , 2n. Then, by (12)
we obtain (see the method applied in Section 5)

S2n

(∫ .

0
zn(t) dt

)
(x) =

1

2n

i−1∑
k=1

zn(
k − 1

2n
) +

1

2n+1
zn(

i− 1

2n
).

Thus,

zn(x) = zn(
i− 1

2n
) =S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(
i− 1

2n
)
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+ aS2n

(∫ .

0
y(t)− S2ny(t) dt

)
(
i− 1

2n
)

− a

2n

i−1∑
k=1

zn(
k − 1

2n
)− a

2n+1
zn(

i− 1

2n
),

from which we obtain

(20)

(
1 +

a

2n+1

)
zn(

i− 1

2n
) =S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(
i− 1

2n
)

+ aS2n

(∫ .

0
y(t)− S2ny(t) dt

)
(
i− 1

2n
)

− a

2n

i−1∑
k=1

zn(
k − 1

2n
).

If a < 0 and 2n+1 = −a then the value of the expression 1 + a
2n+1 can be 0. In this

case, we can not calculate the value of zn(
i−1
2n ) from (20). From this point forward, we

suppose that n is large enough to satisfy the condition 2n+1 ≥ −3a.
Now we introduce the following notations:

Mn,i :=
1

1 + a
2n+1

∣∣∣∣S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(
i− 1

2n
)

+aS2n

(∫ .

0
y(t)− S2ny(t) dt

)
(
i− 1

2n
)

∣∣∣∣ ,
z∗n := |zn| and bn :=

|a|
2n

1 + a
2n+1

=
|a|

2n + a
2

.

With the new notations from (20) we obtain

z∗n(
i− 1

2n
) ≤ Mn,i + bn

i−1∑
k=1

z∗n(
k − 1

2n
)

for all i = 1, 2, . . . , 2n, from which by induction we can prove that

z∗n(
i− 1

2n
) ≤ max

j≤i
{Mn,j}(1 + bn)

i−1.

Since x ∈ In(i), for which i− 1 ≤ x2n holds, we obtain

(21) z∗n(
i− 1

2n
) ≤ max

j≤i
{Mn,j}(1 + bn)

x2n .

First we estimate the expression (1 + bn)
x2n . If a ≥ 0 then

(1 + bn)
x2n =

(
1 +

a

2n + a
2

)x2n

≤
(
1 +

a

2n

)x2n
< eax.

If a < 0 then

(1 + bn)
x2n =

(
1 +

|a|
2n − |a|

2

)x2n

=

(
1 +

|a|
2n − |a|

2

)x2n− |a|x
2
(
1 +

|a|
2n − |a|

2

) |a|x
2
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≤

(
1 +

|a|
2n − |a|

2

)x2n− |a|x
2 (

1 +
|a|
|a|

) |a|x
2

< e|a|x2
|a|x
2 = (

√
2e)|a|x,

since 2n − |a|
2 ≥ |a| according with the assumption 2n+1 ≥ −3a.

With respect to the estimation of Mn,i note that for all integrable function f we have∫ j−1
2n

0
S2nf(t)− f(t) dt = 0 (j = 1, 2, . . . , 2n),

hence

(22)

S2n

(∫ .

0
S2nf(t)− f(t) dt

)
(
i− 1

2n
) = 2n

∫ i
2n

i−1
2n

∫ x

0
S2nf(t)− f(t) dt dx

= 2n
∫ i

2n

i−1
2n

∫ x

i−1
2n

S2nf(t)− f(t) dt dx.

We use the formula above in case of f = y and f = q to estimate the value of Mn,i.
First, note that the solution y has a finite dyadic modulus of continuity. Thus, by (22)
we have

(23)

∣∣∣∣S2n

(∫ .

0
S2ny(t)− y(t) dt

)
(
i− 1

2n
)

∣∣∣∣ ≤ 2n
∫ i

2n

i−1
2n

∫ x

i−1
2n

|S2ny(t)− y(t)| dt dx

≤ 2n
∫ i

2n

i−1
2n

∫ i
2n

i−1
2n

ωn,iy dt dx

≤ 1

2n
ωn,iy ≤ 1

2n
E

(n)
1 (x).

However, the dyadic modulus of continuity of the function q may not be finite, so we
estimate this part in a different way. By (22) we have

S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(
i− 1

2n
) = 2n

∫ i
2n

i−1
2n

∫ x

i−1
2n

S2nq(t)− q(t) dt dx

= 2n
∫ i

2n

i−1
2n

∫ x

i−1
2n

S2nq(t) dt dx− 2n
∫ i

2n

i−1
2n

∫ x

i−1
2n

q(t) dt dx.

S2nq is constant on the interval In(i), hence for the first integral we have

2n
∫ i

2n

i−1
2n

∫ x

i−1
2n

S2nq(t) dt dx = 2nS2nq(
i− 1

2n
)

∫ i
2n

i−1
2n

∫ x

i−1
2n

1 dt dx

= 2nS2nq(
i− 1

2n
)

∫ i
2n

i−1
2n

x− i− 1

2n
dx

= 2nS2nq(
i− 1

2n
)

∫ 1
2n

0
x dx

=
1

2n+1
S2nq(

i− 1

2n
)
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= 2n
∫ i

2n

i−1
2n

1

2n+1
q(t) dt.

For the second integral we obtain

2n
∫ i

2n

i−1
2n

∫ x

i−1
2n

q(t) dt dx = 2n
∫ i

2n

i−1
2n

∫ i
2n

t
q(t) dx dt = 2n

∫ i
2n

i−1
2n

q(t)(
i

2n
− t) dt.

By subtracting the two integrals we obtain

S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(
i− 1

2n
) = 2n

∫ i
2n

i−1
2n

1

2n+1
q(t) dt− 2n

∫ i
2n

i−1
2n

q(t)(
i

2n
− t) dt

= 2n
∫ i

2n

i−1
2n

(
1

2n+1
− i

2n
+ t

)
q(t) dt.

Thus,

(24)

∣∣∣∣S2n

(∫ .

0
S2nq(t)− q(t) dt

)
(
i− 1

2n
)

∣∣∣∣ ≤ 2n
∫ i

2n

i−1
2n

∣∣∣∣ 1

2n+1
− i

2n
+ t

∣∣∣∣ |q(t)| dt
≤ 2n

∫ i
2n

i−1
2n

1

2n+1
|q(t)| dt

=
1

2n+1
|̃q|n(

i− 1

2n
),

since

− 1

2n+1
≤ 1

2n+1
− i

2n
+ t ≤ 1

2n+1

for all t ∈ In(i).
By the results of (23) and (24) we obtain

Mn,i ≤
1

1 + a
2n+1

(
1

2n+1
|̃q|n(

i− 1

2n
) +

|a|
2n

E
(n)
1 (x)

)
=

1

2n+1 + a

(
|̃q|n(

i− 1

2n
) + 2|a|E(n)

1 (x)

)
.

In summary, by the notation
(25)

E
(n)
2 (x) :=


1

2n+1+a

(
maxj≤i{|̃q|n(

j−1
2n )}+ 2|a| supt≤x{E

(n)
1 (t)}

)
eax if a ≥ 0,

1
2n+1+a

(
maxj≤i{|̃q|n(

j−1
2n )}+ 2|a| supt≤x{E

(n)
1 (t)}

)
(
√
2e)−ax if a < 0,

if x ∈ In(i) we obtain from (21) the fact that

(26) |S2ny(x)− yn(x)| ≤ E
(n)
2 (x)

if 2n+1 ≥ −3a.
From (18) and (25) we can estimate of errors uniformly on [0, 1[. Indeed, by the

notation

(27) E
(n)
1 :=


a
2n

(
e−a|η|+

∫ 1
0 |q(t)| dt

)
+ 1

2n maxi

{
|̃q|n(

i−1
2n )
}

if a ≥ 0,

−ae−a

2n

(
|η|+

∫ 1
0 |q(t)| dt

)
+ 1

2n maxi

{
|̃q|n(

i−1
2n )
}

if a < 0.
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and

(28) E
(n)
2 :=


1

2n+1+a

(
maxi{|̃q|n(

i−1
2n )}+ 2aE

(n)
1

)
ea if a ≥ 0,

1
2n+1+a

(
maxi{|̃q|n(

i−1
2n )} − 2aE

(n)
1

)
(
√
2e)−a if a < 0,

we obtain that

|y(x)− S2ny(x)| ≤ E
(n)
1 , |S2ny(x)− yn(x)| ≤ E

(n)
2 if 2n+1 ≥ −3a

for all x ∈ [0, 1[. The fact that E
(n)
1 and E

(n)
2 tend to 0 completes the second part of

Theorem 1.

7. Examples

In this section we test the effectiveness of the developed method. First we consider
the following Cauchy problem.

(29)
y′ + y = (x+ 1)2,

y(0) = 1.

The solution of the Cauchy problem is y(x) = x2 + 1. The function q(x) = (x+ 1)2 is
continuous on the close interval [0, 1] and the value of the coefficient a is 1.

Figure 3 shows the approximation of yn to the solution y in case of n = 5.

Figure 3. Approximation to the solution of the Cauchy problem (29)
for n = 5.

Table 1 contains the supremum of the error of the approximation on the interval
[0, 1[, furthermore showing the two steps of the approximation and their respective
estimates E1 and E2 for n from 3 to 10.

We observe that the error in first step halves and the error in second step is reduced
to quarter with the increment of n.

The second example is the Cauchy problem

(30)
y′ − 10y = −10x+ 11

(x+ 1)2
,

y(0) = 1.
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Table 1. Errors related to the Cauchy problem (29).

n |y − yn| |y − S2ny| E
(n)
1 |yn − S2ny| E

(n)
2

3 0.11877111 0.11979166 0.80705263 0.00245098 0.85854750

4 0.06095076 0.06119791 0.41109467 0.00063131 0.38702496

5 0.03086365 0.03092447 0.20746994 0.00016025 0.18203143

6 0.01552853 0.01554361 0.10421943 0.00004037 0.08802323

7 0.00778839 0.00779215 0.05223131 0.00001013 0.04324773

8 0.00390022 0.00390116 0.02614611 0.00000253 0.02143089

9 0.00195161 0.00195185 0.01308067 0.00000063 0.01066695

10 0.00097618 0.00097624 0.00654224 0.00000015 0.00532132

The solution of the Cauchy problem is y(x) =
1

x+ 1
. The function q(x) = −10x+ 11

(x+ 1)2

is continuous on the close interval [0, 1] and a = −10.
Figure 4 shows the approximation of yn to the solution y in case of n = 6.

Figure 4. Approximation to the solution of the Cauchy problem (30)
for n = 6.

We can see that the approximation does not seem to be as effective for values close
to 1. This may be a consequence of the fact that the value of a is negative and in this
case the expression 2n+1 + a is not sufficiently large. Despite this problem, Table 2
shows that the approximation is uniform on the interval [0, 1[.
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Table 2. Errors related to the Cauchy problem (30).

n |y − yn| |y − S2ny| E
(n)
1 |yn − S2ny| E

(n)
2

4 12.04297028 0.03000606 1.160728 · 105 12.03496554 7.437634 · 1010

5 2.63427763 0.01530692 5.803643 · 104 2.63037763 1.515080 · 1010

6 0.66505331 0.00773206 2.901822 · 104 0.66308995 3.466743 · 109

7 0.17039122 0.00388602 1.450911 · 104 0.16941211 8.314705 · 108

8 0.04349030 0.00194805 7.254555 · 103 0.04300138 2.037345 · 108

9 0.01108835 0.00097529 3.627277 · 103 0.01084405 5.043516 · 107

10 0.00284565 0.00048796 1.813638 · 103 0.00272354 1.254882 · 107

The estimates E
(n)
1 and E

(n)
2 are very large with respect to the real errors in both

steps. This is mainly due to the factor e−a which appears in the formulae (27) and
(28).

The last example is the Cauchy problem

(31)
y′ + 10y =

1√
1− x

,

y(0) = 2.

The solution of the Cauchy problem can be determined only numerically. The function

q(x) =
1√
1− x

has not finite limit from the left of 1, but it is integrable on the

close interval [0, 1]. Figure 5 and Table 3 shows that the developed method also works
properly in this case, but the errors do not tends as fast to zero as the another examples
in this section.
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Figure 5. Approximation to the solution of the Cauchy problem (31)
for n = 5.

Table 3. Errors related to the Cauchy problem (31).

n |y − yn| |y − S2ny| E
(n)
1 |yn − S2ny| E

(n)
2

3 0.72948575 0.81445644 3.20722028 0.08497069 5.913365 · 104

4 0.45199682 0.48690734 1.75005675 0.05448919 2.255150 · 104

5 0.25664949 0.26815629 0.97858176 0.04630729 9.193175 · 103

6 0.13765262 0.14097948 0.56251418 0.03648475 4.349474 · 103

7 0.07171151 0.09913818 0.33303378 0.02742667 2.425237 · 103

8 0.05349971 0.07355717 0.20312854 0.02005746 1.521706 · 103

9 0.03943617 0.05387821 0.12745262 0.01444204 1.018327 · 103

10 0.02877332 0.03908371 0.08203213 0.01031039 7.025419 · 102
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4400 Nýıregyháza, Sóstói út 31/b
Hungary
E-mail address: toledo@nyf.hu


