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FINSLERIAN LIE DERIVATIVE AND LANDSBERG
MANIFOLDS

D. CS. KERTÉSZ

Abstract. In this paper we take a close look at Lie derivatives on a Finsler
bundle and give a geometric meaning to the vanishing of the mixed curva-
ture of certain covariant derivatives on a Finsler bundle. As an application,
we obtain some characterizations of Landsberg manifolds.

Introduction

Geometric objects on a Finsler vector bundle can be ‘Lie differentiated’ with
respect to projectable vector fields. This Lie derivative has mostly been used
to investigate infinitesimal transformations of Finsler manifolds and their gen-
eralizations, see, e.g., [3, 5, 6, 9, 10]. In these cases, the projectable vector field
is in particular the complete lift of the vector field on the base manifold, which
represents the infinitesimal transformation. We show that the ‘Finslerian Lie
derivative’ has a natural dynamical interpretation for general projectable vec-
tor fields (Lemma 2). This Lie derivative is closely related to the Berwald
derivative induced by an Ehresmann connection: the Lie derivative along a
horizontal lift of a vector field is the same as the horizontal Berwald deriv-
ative with respect to the vector field. In fact the Berwald derivative can be
characterized with this dynamical interpretation [2].

In his paper [4], Ichijyō considered covariant derivatives on a Finsler bundle,
that differs from the Berwald derivative arising from an Ehresmann connection
only in its vertical part. He called a manifold endowed with such a covariant
derivative on its Finsler bundle an (N,C)-manifold, referring with N to the
Ehresmann connection, and with C to the tensor that modifies the vertical
part of the Berwald derivative. We refer to such structures as C-Ehresmann
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manifolds. Ichijyō investigated the geometric meaning of the vanishing of their
mixed curvature. We give simple coordinate-free proofs of his results using the
Lie derivative.

In sections 2 and 3 we make some general remarks on the Lie derivative and
parallel translations. Then we can easily connect the parallelness of a geo-
metric object with respect to the Berwald derivative to their invariance under
parallel translations. We show in section 4 that the mixed curvature of a C-
Ehresmann manifold can be obtained as the Lie derivative of the vertical part
of the covariant derivative along horizontal lifts, and hence it vanishes if, and
only if, the parallel translations (with respect to the Ehresmann connection)
preserve the induced covariant derivatives on the tangent spaces (Proposi-
tion 8). These results provide some characterizations of Landsberg manifolds,
which we collect in Proposition 9.

1. Preliminaries

We follow the notations and conventions of [8], however, for the reader’s
convenience, here we briefly recall some of them.

Throughout this paper, M is a smooth manifold. We denote by C∞(M)
the real algebra of smooth functions on M . Every mapping is assumed to be
smooth unless otherwise stated. The C∞(M)-module of vector fields on M

is denoted by X(M). The tangent bundle of M is τ : TM → M , and T̊M is
the manifold of nonzero tangent vectors to M called the slit tangent manifold.
The slit Finsler bundle is π̊ : T̊M ×M TM → T̊M , where

T̊M ×M TM := {(u, v) ∈ T̊M × TM | τ(u) = τ(v)},

and π̊ is the restriction of the first projection of T̊M×TM . Sometimes we treat
mappings defined on TM as mappings defined on T̊M , without emphasizing
the restriction.

Sections of π̊ are called Finsler vector fields, we denote their C∞(T̊M)-
module by Γ(̊π). Elements of the tensor algebra of Γ(̊π) are called Finsler

tensors. The type (k, l) Finsler tensors form a C∞(T̊M)-module denoted by

Fk
l (̊π). General Finsler vector fields will be denoted by X̃, Ỹ , Z̃, Ũ . A vector

field X on M induces a Finsler vector field

X̂ : u ∈ T̊M 7→ (u,X(τ(u))) ∈ T̊M ×M TM,

called the basic lift of X. We have the canonical Finsler vector field which
acts by δ(u) := (u, u).

A Finsler vector field X̃ restricted to a single slit tangent space T̊pM gives a

vector field Xp on the manifold T̊pM , if we identify T T̊pM with T̊pM × TpM .
The same ‘restriction’ works for tensors as well. For example, from a Finsler

tensor g ∈ F0
2 (̊π) we get a tensor gp on T̊pM given by gp(Xp, Y p) := g(X̃, Ỹ ) �

T̊pM .
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We have the canonical surjection

(1) j : T T̊M → T̊M, j(w) := (τT̊M(w), τ∗(w)),

where τ∗ is the derivative (or tangent map) of τ . We also have the canonical

injection i : T̊M ×M TM → T T̊M , where i(u, v) is the velocity of the curve

t ∈ R 7→ u+ tv ∈ TM

at 0. These form the exact sequence

0 −→ T̊M ×M TM
i−→ T T̊M

j−→ T̊M ×M TM −→ 0.

The vertical subbundle of T T̊M is V T̊M := Ker(τ∗) = Im(i) = Ker(j).

A bundle map H : T̊M ×M TM → T T̊M is called an Ehresmann connection
in T̊M , if

(2) j ◦ H(u, v) = (u, v) for all (u, v) ∈ T̊M ×M TM.

Then the horizontal subbundle HT̊M := Im(H) is complementary to V T̊M .

We have the projections h and v on T T̊M with Im(h) = HT̊M , Ker(h) =

V T̊M , Im(v) = V T̊M , Ker(v) = HT̊M . These can be given explicitly as
h = H◦ j and v = 1−h. Finally, we have the vertical map V := i−1 ◦v, which
is a left inverse for i.

Whenever it is convenient, we treat the mappings above as module homo-
morphisms. For example, H and i can be regarded as module homomorphisms
from Γ(̊π) to X(T̊M) in a natural manner.

We speak of a horizontal or vertical vector field on T̊M , if it takes values
only inHT̊M or V T̊M , respectively. A vector fieldX ∈ X(M) has a horizontal

lift Xh := HX̂ and a vertical lift Xv := iX̂.
Let D be a covariant derivative on π̊ and H an Ehresmann connection in

T̊M . The horizontal and vertical parts of D are given by

Dh
X̃
Ỹ = DHX̃ Ỹ , Dv

X̃
Ỹ = DiX̃ Ỹ .

Of course the horizontal and vertical parts determine D by the formula

DξỸ = DhξỸ +DvξỸ = Dh
jξỸ +Dv

VξỸ .

The vertical part Dv of a covariant derivative can be interpreted naturally
as a family (Dp)p∈M , where Dp is a covariant derivative on T̊pM . If we identify

T T̊pM with T̊pM × TpM , we can define Dp conveniently as

Dp
XpY p = (Dv

X̃
Ỹ )p.

An Ehresmann connection H in T̊M induces the Berwald derivative ∇ on
π̊ such that ∇h

X̃
Ỹ := V [HX̃, iỸ ] and ∇v

X̃
Ỹ := j[iX̃,HỸ ] for all X̃, Ỹ ∈ Γ(̊π).

For details see, e.g., [8, section 7.10].
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Let (U , (ui)ni=1) be a chart of M with induced chart (τ−1(U), (xi)ni=1, (y
i)ni=1)

on TM . The horizontal and vertical parts of ∇ are just

∇h
∂̂

∂uj

Ỹ =

((
∂

∂uj

)h

Y i + Y k
∂N i

j

∂yk

)
∂̂

∂ui
, ∇v

∂̂

∂uj

Ỹ =
∂Y i

∂yj
∂̂

∂ui
,

where Ỹ = Y i ∂̂
∂ui and the functions N i

j ∈ C∞(T̊M) are the Christoffel symbols
of H given by

H ∂̂

∂uj
= N i

j

∂

∂yi
.

We note that these local formulae hold only on τ−1(U) ∩ T̊M .

2. Lie derivatives on a Finsler bundle

If ϕ : W ⊂ R × M → M is the flow of a vector field on M , we use the
notation ϕs(p) := ϕ(s, p).

Recall that given a smooth mapping Φ: M → N between manifolds M
and N , two vector fields X ∈ X(M) and Y ∈ X(N) are called Φ-related, if
Φ∗ ◦X = Y ◦Φ. Then we also write X ∼Φ Y . Equivalently, if ϕX and ϕY are
the flows of X and Y , then X ∼Φ Y if, and only if, ϕY

t ◦ Φ = Φ ◦ ϕX
t .

A vector field ξ ∈ X(TM) is called projectable if it is τ -related to a vector
field on M . In the next lemma we collect some useful characterizations of
projectable vector fields.

Lemma 1. Let ξ ∈ X(TM) and let ϕξ : W ⊂ R × TM → TM be the flow of
ξ. The following are equivalent:

(i) ξ is projectable;
(ii) ϕξ preserves the fibres of TM ;

(iii) ϕξ
t ∗ maps vertical vectors into vertical ones;

(iv) in any induced chart (τ−1(U), (x, y)) on TM , ξ takes the form

ξ =
(U)

(X i ◦ τ) ∂

∂xi
+ ξn+i ∂

∂yi
,

where X i ∈ C∞(U), ξn+i ∈ C∞(τ−1(U));
(v) [ξ, η] is vertical for every vertical vector field η;

Proof. Notice that a vector field on TM is vertical exactly if it is τ -related to
the zero vector field o ∈ X(M).

(i)⇒(ii) If ξ is τ -related to a vector field X on M , then ϕX
t ◦ τ = τ ◦ ϕξ

t

wherever both sides are defined, thus ϕξ
t indeed preserves fibres.

(ii)⇒(iii) We show that for any fibre-preserving map φ on TM , φ∗ ◦ i(u, v)
((u, v) ∈ T̊M ×M TM) is vertical. Indeed, i(u, v) = α̇(0) where α(t) = u+ tv.
Since φ preserves fibres, τ ◦ φ ◦ α is constant, thus

0 = (τ ◦ φ ◦ α)̇(0) = τ∗ ◦ φ∗ ◦ α̇(0) = τ∗ ◦ φ∗ ◦ i(u, v).



FINSLERIAN LIE DERIVATIVE AND LANDSBERG MANIFOLDS 301

(iii)⇒(v) Using the dynamical interpretation of the Lie bracket, for a vertical
vector field η on TM we have

[ξ, η](u) = lim
s→0

1

s

(
ϕξ
−s∗ ◦ η ◦ ϕξ

s(u)− η(u)
)
, u ∈ TM.

Each term in the parenthesis on the right-hand side are vertical by (iii), hence
so is the limit.

(v)⇒(iv): Let (U , (ui)ni=1) be a chart on M , (τ−1(U), (xi)ni=1, (y
i)ni=1) its

induced chart. We can set ξ = ξi ∂
∂xi + ξn+i ∂

∂yi
, η = ηi ∂

∂yi
, where ξi, ξn+i, ηi ∈

C∞(TM). Then

[ξ, η] =
(U)

ξ(ηi)
∂

∂yi
− η(ξi)

∂

∂xi
− η(ξn+i)

∂

∂yi
.

Thus, if [ξ, η] is vertical, the functions η(ξi) need to be zero for any vertical
vector field η. Hence ξi are fibrewise constant, i.e., there are functions X i ∈
C∞(U) such that ξi = X i ◦ τ .

(iv)⇒(i) Let Y be an arbitrary vector field on M and set X := τ∗ ◦ ξ ◦ Y . If
ξ is of the form given in (iv), then since ∂

∂yi
is vertical and ∂

∂xi ∼τ
∂

∂ui , we have

X =
(U)

τ∗ ◦
(
(X i ◦ τ) ∂

∂xi

)
◦ Y = (X i ∂

∂ui

)
◦ τ ◦ Y = X i ∂

∂ui
.

Thus X is independent of the choice of Y , and ξ ∼τ X. �

Property (v) enables us to define the Lie derivative of a Finsler vector field Ỹ

along a projectable vector field ξ on TM as L̃ξỸ := i−1[ξ, iỸ ]. We can extend

the Lie derivative L̃ξ to Finsler tensors on π̊. For example, if A ∈ F1
2 (̊π),

(3) L̃ξA(X̃, Ỹ ) = L̃ξ(A(X̃, Ỹ ))− A(L̃ξX̃, Ỹ )− A(X̃, L̃ξỸ ).

Similarly, the vertical (or horizontal) part of a covariant derivative D on π̊ can
be Lie differentiated along ξ:

(L̃ξD
v)X̃ Ỹ = L̃ξ(D

v
X̃
Ỹ )−Dv

L̃ξX̃
Ỹ −Dv

X̃
L̃ξỸ .

Now we turn to the dynamical interpretation of the Lie derivative. Let
φ : T̊M → T̊M be a fibre preserving diffeomorphism. As we have seen in the
proof of Lemma 1, the derivative of φ maps vertical vectors into vertical ones,

so we can define the push-forward of a Finsler vector field Ỹ by

φ#Ỹ := i−1 ◦ φ∗ ◦ iỸ ◦ φ−1.

Similarly, we can pull back a covariant Finsler tensor along φ. For example, if
g ∈ F0

2 (̊π), then

φ∗g(X̃, Ỹ )(u) = g(i−1 ◦ φ∗ ◦ iX̃, i−1 ◦ φ∗ ◦ iỸ )(u).
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Lemma 2. Let ξ be a projectable vector field on T̊M and ϕ its flow. Let

Ỹ ∈ Γ(̊π), A ∈ F1
2 (̊π), g ∈ F0

2 (̊π) and D a covariant derivative on π̊. Then

L̃ξỸ (u) = lim
s→0

1

s

(
ϕ−s#Ỹ (u)− Ỹ (u)

)
;
)

(4)

L̃ξỸ (u) = lim
s→0

1

s

(
Ỹ ◦ ϕs(u)− i−1 ◦ ϕs∗ ◦ iỸ (u)

)
;(5)

(L̃ξA)(X̃, Ỹ )(u) = lim
s→0

1

s

(
ϕ−s#A(ϕs#X̃, ϕs#Ỹ )(u)− A(X̃, Ỹ )(u)

)
;(6)

(L̃ξD
v)X̃ Ỹ (u) = lim

s→0

1

s

(
ϕ−s#D

v
ϕs#X̃

ϕs#Ỹ (u)−Dv
X̃
Ỹ (u)

)
;(7)

(L̃ξg)(X̃, Ỹ )(u) = lim
s→0

1

s

(
ϕ∗
sg(X̃, Ỹ )(u)− g(X̃, Ỹ )(u)

)
;(8)

for all u ∈ T̊M .

Proof. From the dynamical interpretation of the usual Lie bracket,

[ξ, iỸ ](u) = lim
s→0

1

s

(
ϕ−s∗ ◦ iỸ ◦ ϕs(u)− iỸ (u)

)
.

Since ϕ−s∗ maps vertical vectors into vertical ones by Lemma 1(iii), we can act
on both sides by i−1, and we obtain (4). Then (5) follows from the continuity
of the mapping (s, v) 7→ ϕs∗(v).

The expression in the parenthesis in the right-hand side of (6) can be de-
composed as

ϕ−s#A(ϕs#X̃, ϕs#Ỹ )− ϕ−s#A(X̃, ϕs#Ỹ )

+ ϕ−s#A(X̃, ϕs#Ỹ )− ϕ−s#A(X̃, Ỹ ) + ϕ−s#A(X̃, Ỹ )− A(X̃, Ỹ ).

Then from the R-bilinearity of A, from the continuity of ϕ and (s, v) 7→ ϕs∗(v),
and from (4) it follows that the limit in (6) is the right-hand side of (3) at u.
Since Dv is also R-bilinear, the proof of (7) is analogous. Formula (8) can be
proved through similar decomposition and by applying (5). �

Remark 3. The vanishing of the Lie derivative of a ‘geometric object’ (Finsler

vector field, tensor, covariant derivative) on T̊M along ξ means that the ‘geo-
metric object’ is invariant under the flow of ξ. This is clear if we consider the
parentheses in the right side of (4), (6), (7), (8) as Tτ(u)M or R-valued curves
with parameter s. Thus we have the following:

L̃ξỸ = 0 ⇔ ϕs#Ỹ = Ỹ ;

L̃ξg = 0 ⇔ ϕ∗
sg = g;

L̃ξA = 0 ⇔ A(ϕs#X̃, ϕs#Ỹ ) = ϕs#A(X̃, Ỹ );

L̃ξD
v = 0 ⇔ Dv

ϕs#X̃
ϕs#Ỹ = ϕs#D

v
X̃
Ỹ .
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Notice that a horizontal lift Xh is projectable by (1) and (2), and the Lie

derivative along it is the horizontal Berwald derivative with respect to X̂:

(9) L̃XhỸ = i−1[Xh, iỸ ] = V [HX̂, iỸ ] = ∇h
X̂
Ỹ .

3. Parallel translation

Let H be a Ehresmann connection in T̊M . We assume that H is homoge-
neous: [Xh, C] = i∇h

X̂
δ = 0 for all X ∈ X(M), where C := iδ is the Liouville

vector field.
Let I be an open interval and let γ : I → M be a curve. A vector field X

along γ is said to be parallel if

(10) Ẋ(t) = H(X(t), γ̇(t)) for all t ∈ I.

Such a vector field uniquely exists for all t ∈ I, v ∈ T̊γ(t)M (see [8, p. 390]),
and we denote it by γh

v . The parallel translation along γ (w.r.t. H) from γ(t)
to γ(s) is the mapping

P t
s(γ) : π̊γ(s)M −→ π̊γ(t)M, v 7−→ P t

s(γ)(v) := γh
v (t).

For piecewise smooth curves, the parallel translation can be defined by com-
posing the parallel translations along the smooth segments of the curve.

If γ : I → M is an integral curve of a vector field X ∈ X(M), then γh
v is an

integral curve of Xh, because (γh
v )̇ = H◦ (γh

v , γ̇) = H◦ (γh
v , X ◦γ) = Xh ◦γh

v . As
a result, the flow of Xh determines the parallel translations along the integral
curves of X:

Lemma 4. If γ : I → M is the integral curve of a vector field X ∈ X(M),
then the parallel translation along γ with respect to a homogeneous Ehresmann
connection H on π̊ acts by the rule

(11) P t
s(γ) = ϕh

t−s � T̊γ(s)M, s, t ∈ I,

where ϕh : W ⊂ R× T̊M → T̊M is the flow of Xh.

Remark 5. Later, we will need the derivative of P t
s(γ) expressed with the

flow of Xh, thus we need to differentiate (11).
Consider the canonical embedding ip : TpM → TM and, for a fixed u ∈ TpM ,

the canonical isomorphism from TpM to TuTpM , given by

ιu : v ∈ TpM 7→ α̇(0) ∈ TuTpM, where α : t ∈ R 7→ u+ tv ∈ TpM.

Then
i(u, v) = (ip ◦ α)̇(0) = (ip)∗ ◦ α̇(0) = (ip)∗ιu(v).

We agreed to identify T̊pM × TpM with T T̊pM , thus we omit ιu, and we
may consider i(u, v) as (ip)∗(u, v). Then we can write (11) as iγ(t) ◦ P t

s(γ) =
ϕh
t−s ◦ iγ(s). Taking the derivative of both sides, we get

(12) i ◦ P t
s(γ)∗ = ϕh

t−s∗ ◦ i.
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Remark 6. Since locally every curve is an integral curve of a vector field, the
parallel translation along an arbitrary curve can be obtained by composing
flows of horizontal lifts. More precisely, if γ : I → M is a curve, then for
all s, t ∈ I, s < t there exists a partition s = τ0 < · · · < τk = t such that
γ̇ � [τi−1, τi] = Xi ◦ γ � [τi−1, τi] for some vector fields X1, . . . , Xk, and

P t
s(γ) = φk ◦ · · · ◦ φ1,

where φi := (ϕi)
h
τi−τi−1

� T̊γ(τi−1)M .

4. The vanishing of the mixed curvature

Let D be a covariant derivative on π̊ and H an Ehresmann connection in
T̊M . Then the mixed curvature of D is the Finsler tensor P ∈ F1

3 (̊π) given by

P(X̃, Ỹ )Z̃ := RD(iX̃,HỸ )Z̃ = DiX̃DHỸ Z̃ −DHỸDiX̃Z̃ −D[iX̃,HỸ ]Z̃,

= Dv
X̃
Dh

Ỹ
Z̃ −Dh

Ỹ
Dv

X̃
Z̃ −D[iX̃,HỸ ]Z̃,

where RD is the ‘classical curvature tensor’ of D. In case of the Berwald
derivative ∇ determined by H, the mixed curvature is called the Berwald
tensor, and is denoted by B.

By a C-Ehresmann manifold we mean a manifold endowed with an Ehres-
mann connection H and a covariant derivative D such that Dh = ∇h and
C ∈ F1

2 (̊π) is the difference tensor given by C(X̃, Ỹ ) = Dv
X̃
Ỹ −∇v

X̃
Ỹ .

Lemma 7. In a C-Ehresmann manifold, for all X ∈ X(M), Ỹ , Z̃ ∈ Γ(̊π), we
have

(LXhDv)Ỹ Z̃ = −P(Ỹ , X̂, Z̃).

Proof. An immediate calculation shows that

(LXhDv)Ỹ Z̃
(9)
= ∇h

X̂
Dv

Ỹ
Z̃ −Dv

∇h
X̂
Ỹ
Z̃ −Dv

Ỹ
∇h

X̂
Z̃

= ∇h
X̂
Dv

Ỹ
Z̃ −Dv

V[Xh,iỸ ]
Z̃ −Dv

Ỹ
∇h

X̂
Z̃

(∗)
= ∇h

X̂
Dv

Ỹ
Z̃ −D[Xh,iỸ ]Z̃ −Dv

Ỹ
∇h

X̂
Z̃

= −Dv
Ỹ
∇h

X̂
Z̃ +∇h

X̂
Dv

Ỹ
Z̃ +D[iỸ ,Xh]Z̃

= −P(Ỹ , X̂, Z̃).

In step (∗) we used that [Xh, iỸ ] is vertical, and hence

v[Xh, iỸ ] = [Xh, iỸ ]. �
Proposition 8. For a C-Ehresmann manifold, the following are equivalent:

(i) The mixed curvature of D vanishes;
(ii) LXhDv = 0 for all X ∈ X(M);
(iii) B = ∇hC;
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(iv) The flow ϕh of the horizontal lift Xh of any vector field X ∈ X(M)
satisfies

ϕh
s#D

v
Ỹ
Z̃(u) = Dϕh

s#Ỹ ϕ
h
s#Z̃(u)

for all u ∈ T̊M and parameter s such that both sides are defined;
(v) If Φ: T̊pM → T̊qM is the parallel translation along a piecewise smooth

curve connecting p and q, then it is an automorphism between the affinely
connected manifolds (T̊pM,Dp) and (T̊qM,Dq), that is

Dq
Φ#YΦ#Z = Φ#D

p
YZ, Y, Z ∈ X(T̊pM).

(Here Φ# is the usual push-forward given by Φ#Y := Φ∗ ◦ Y ◦ Φ−1.)

Proof. Since basic lifts locally generate Γ(̊π), Lemma 7 proves (i)⇔(ii). Apply-

ing Lemma 7 to the Berwald derivative, we get (LXh∇v)Ỹ Z̃ = −B(Ỹ , X̂, Z̃).
As a result,

−P(Ỹ , X̂, Z̃) = (LXhDv)Ỹ Z̃ = (LXh∇v)Ỹ Z̃ + (LXhC)(Ỹ , Z̃)

= −B(Ỹ , X̂, Z̃) +∇hC(X̂, Ỹ , Z̃),

and we have (i)⇔(iii).
In Remark 3 we have explained (ii)⇔(iv). Finally (v) implies (iv) by the

relations (11) and (12) we established between parallel translations and flows
of horizontal lifts. The converse holds because any curve consists of segments
that are integral curves, see Remark 6. �

5. Landsberg manifolds

Let (M,F ) be a Finsler manifold and let H be the canonical Ehresmann
connection (see [8, Th. 9.3.5] or [7, Ch.3/D]). We have the fundamental tensor
g := 1

2
∇v∇vF 2, the Cartan tensor C[ = ∇vg and the vector-valued Cartan

tensor given by g(C(X̃, Ỹ ), Z̃) = C[(X̃, Ỹ , Z̃). These have the following prop-
erties:

(13) (a) C[(δ, X̃, Ỹ ) = 0, (b) ∇hg(δ, X̃, Ỹ ) = 0, (c) ∇h
δC[ = −∇hg,

see Def. and Lemma 9.2.25, Cor. 9.3.16, and Prop. 9.3.17 in [8], or formula
(53), Cor. 6.4 and Prop. 6.5 in [1]. We have the mixed Ricci formula

(14) ∇v∇hg(X̃, Ỹ , Z̃, Ũ)−∇h∇vg(Ỹ , X̃, Z̃, Ũ) =

− g(B(X̃, Ỹ , Z̃), Ũ)− g(Z̃,B(X̃, Ỹ , Ũ))

(see [8, Lemma 7.13.10] or [1, Lemma 3.7]), and the relation

(15) g(∇hC(X̃, Ỹ , Z̃), Ũ) = ∇hC[(X̃, Ỹ , Z̃, Ũ)−∇hg(X̃, C(Ỹ , Z̃), Ũ),

which can be checked by a simple calculation. The Berwald tensor is com-

pletely symmetric and satisfies B(δ, Ỹ , Z̃) = 0.
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Proposition 9. Let (M,F ) be a Finsler manifold, ∇ the Berwald derivative
induced by the canonical Ehresmann connection H, and C the vector-valued
Cartan tensor. Let D be the Hashiguchi derivative on π̊ given by Dh = ∇h,
Dv = ∇v + 1

2
C. Then the following are equivalent:

(i) ∇hg = 0, i.e., (M,F ) is a Landsberg manifold;
(ii) ∇hC[ is completely symmetric;
(iii) B = 1

2
∇hC;

(iv) The mixed curvature of D vanishes;
(v) LXhDv = 0 for all X ∈ X(M);
(vi) The flow ϕh of the horizontal lift Xh of any vector field X ∈ X(M)

satisfies

ϕh
s#D

v
Ỹ
Z̃(u) = Dv

ϕh
s#Ỹ

ϕh
s#Z̃(u)

for all u ∈ T̊M and parameter s such that both sides are defined;
(vii) With the same notation, ϕh

s
∗g = g.

(viii) If Φ: T̊pM → T̊qM is the parallel translation along a piecewise smooth
curve connecting p and q, then it is an automorphism between the affinely
connected manifolds (T̊pM,Dp) and (T̊qM,Dq), that is

Dq
Φ#YΦ#Z = Φ#D

p
YZ, Y, Z ∈ X(T̊pM).

(ix) With the notation of (viii), Φ is an isometry between the Riemannian

manifolds (T̊pM, gp) and (T̊qM, gq).

Proof. The equivalence of (iii)–(vi) and (viii) is immediate from Proposition 8
applied to the 1

2
C-Ehresmann manifold.

We prove that (i),(ii) and (iii) are also equivalent. If we suppose (i), we have

∇hC[(X̃, Ỹ , Z̃, Ũ) := ∇h∇vg(X̃, Ỹ , Z̃, Ũ)(∗)
(14),(i)
= g(B(X̃, Ỹ , Z̃), Ũ) + g(Z̃,B(X̃, Ỹ , Ũ)).

Since g and B are both symmetric, so is ∇hC[, and we get (ii). Conversely, if
∇hC[ is symmetric, then

−∇hg(X̃, Ỹ , Z̃)
(13)(c)
= ∇hC[(δ, X̃, Ỹ , Z̃) = ∇hC[(X̃, δ, Ỹ , Z̃)

(13)(a)
= C[(∇h

X̃
δ, Ỹ , Z̃).

Since H is homogeneous, ∇hδ = 0, and we obtain (i).
Next we show that (iii) is a consequence of (i) and (ii). First, we have

g(∇hC(X̃, Ỹ , Z̃), Ũ)
(15)
= ∇hC[(X̃, Ỹ , Z̃, Ũ)−∇hg(X̃, C(Ỹ , Z̃), Ũ)

(i)
= ∇hC[(X̃, Ỹ , Z̃, Ũ).

Applying Christoffel’s trick on Ỹ , Z̃, Ũ and using the symmetry of ∇hC[, B
and g, we obtain
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g(∇hC(X̃, Ỹ , Z̃), Ũ) = ∇hC[(X̃, Ỹ , Z̃, Ũ)

= ∇hC[(X̃, Ỹ , Z̃, Ũ) +∇hC[(X̃, Z̃, Ũ , Ỹ )−∇hC[(X̃, Ũ , Ỹ , Z̃)

(∗)
= g(B(X̃, Ỹ , Z̃), Ũ) + g(Z̃,B(X̃, Ỹ , Ũ))

+ g(B(X̃, Z̃, Ũ), Ỹ ) + g(Ũ ,B(X̃, Z̃, Ỹ ))

− g(B(X̃, Ũ , Ỹ ), Z̃)− g(Ỹ ,B(X̃, Ũ , Z̃))

= 2g(B(X̃, Ỹ , Z̃), Ũ),

as desired. Finally, we prove (iii)⇒(i) by calculation:

−∇hg(Ỹ , Z̃, Ũ)
(13)(c)
= ∇hC[(δ, Ỹ , Z̃, Ũ)

(15)
= g(∇hC(δ, Ỹ , Z̃), Ũ) +∇hg(δ, C(Ỹ , Z̃), Ũ)

(13)(b), (iii)
= g(2B(δ, Ỹ , Z̃), Ũ) = 0.

Since L̃Xhg
(9)
= ∇h

X̂
g, Remark 3 implies (i)⇔(vii). Finally, the equivalence of

(vii) and (ix) can be justified the same way as we proved (iv)⇔(v) in Propo-
sition 8. �

It is easy to show that Dvg = 0, and hence the covariant derivative Dp in
(viii) is the Levi-Civita derivative of the Riemannian metric gp in (ix). This
explains why we needed Christoffel’s trick to justify that ∇h

X̂
g = 0 implies

L̃XhDv = 0, because this step is in essence depends on the uniqueness of the
Levi-Civita derivative.
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[9] J. Szilasi and A. Tóth. Conformal vector fields on Finsler manifolds. Commun. Math.,
19(2):149–168, 2011.
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