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ITERATIVE ALGORITHMS FOR DETERMINING
MULTIPLICATIVE INVERSES IN BANACH ALGEBRAS

CHIAPO R. SAM

Abstract. By using Banach’s fixed point theorem and properties of strong
derivatives of nonlinear mappings, we prove some convergence theorems
and error estimations of a family of iterative methods of arbitrary order for
determining the inverse elements in a unital Bananch algebra.

1. Introduction

Finding the inverse of an element occurs quite often when solving mathe-
matical problems. In most cases it is not possible to find an exact value of the
inverse so numerical methods have to be used. The iterative method intro-
duced by Schulz in 1963 to find the inverse of a non-singular matrix is defined
as follows.

Let A be a non-singular square matrix and B0 be the initial approximation
of A−1. (B0 can be obtained by Gauss- Jordan method or any other direct
method for inverting matrices). One forms C0 = I − AB0 with ‖C0‖ ≤ 1 (for
some matrix norm) and then

B1 = B0(I + C0), C1 = I − AB1

B2 = B1(I + C1), C2 = I − AB2

...
...

Bn = Bn−1(I + Cn−1), Cn = I − ABn

...
...

One can prove that ‖Cn‖ ≤ ‖C0‖n, and

lim
n→∞

Bn = A−1.
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Researchers have since extended this method to ones which converge faster
(see [4]). Szabó [5] in 1985 extended this method to one of finding the multi-
plicative inverse of a non singular element of a Banach algebra and the methods
were of order 2 and 3. In this study we generalize the iterative methods in [5]
to iterative methods of any integer order p ≥ 2. The concept of order of con-
vergence p(≥ 1) of a convergent (one-point and stationary) iterative method

(1) xn+1 = F (xn), n = 0, 1, 2, . . .

with lim
n→∞

xn = x is well known: if the non zero and finite limit

lim
n→∞

‖xn+1 − x‖
‖xn − x‖p

= C

exists, then the method (1) is said to be of order p [2]. Here C is called
asymptotic error constant and, in a sufficiently small neighbourhood of x, the
higher the value of p is the faster our method (1) converges to x [3].

If ‖xn+1−x‖ ≤ K ·‖xn−x‖p, for sufficiently high values of n (say for n ≥ n0)
and for some constant K ≥ 0, then the order of convergence is at least p.

2. Methods of order 2 and order 3

Szabó in [5] investigated the generalizations and extensions of Hotelling-
Schulz method (mentioned above):

starting with a “good”(in some sense, to be described later) approximation
x0 ∈ X of the inverse a−1 of a non-singular element a ∈ X, the following
iteration was formed

c0 = e− a · x0, x1 = x0 · (e+ c0)(2)

c1 = e− a · x1, x2 = x1 · (e+ c1)

...
...

cn = e− a · xn, xn+1 = xn · (e+ cn), (n = 0, 1, 2, . . .)

This method proved to be quadratic (p = 2) and , with the help of the iteration
function.

(3) F (x) = x · (2e− a · x),

it could be re-written in the form (1), since cn = e − a · xn and xn+1 =
xn · (e+ cn) = xn · (2e− a · xn) [5].

The following method was described and analysed in [5] and found to be of
order 3:
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c0 = e− a · x0, x1 = x0 · (e+ c0 + c20)(4)

c1 = e− a · x1, x2 = x1 · (e+ c1 + c21)

...
...

cn = e− a · xn, xn+1 = xn · (e+ cn + c2n) (n = 0, 1, 2, . . .)

The corresponding iteration function has the for

(5) F (x) = x · (3e− 3a · x+ (a · x)2),
since

xn+1 = xn · (e+ cn + c2n) = xn · [e+ (e− a · xn) + (e− a · xn)
2]

= xn · [3e− 3a · xn + a · xn · a · xn].

Similarly, the method of order 4 is

x0 ≈ a−1, c0 = e− a · x0

cn = e− a · xn, xn+1 = xn · [e+ cn + c2n + c3n], for n = 0, 1, 2, . . .

and the corresponding iteration function has the form

(6) F (x) = x · [4e− 6a · x+ 4(a · x)2 − (a · x)3].
Here the terms in braces have the (alternating) coefficients of Pascal’s triangle
(except its first column).

Now, we consider the general method of order p ∈ [2,∞)
⋂

N:
x0 ≈ a−1(7)

c0 = e− a · x0, x1 = x0 · [e+ c0 + c20 + · · ·+ cp−1
0 ]

...
...

cn = e− a · xn, xn+1 = xn · [e+ cn + c2n + · · ·+ cp−1
n ]

for n = 0, 1, 2, . . .. The corresponding iteration function is

(8) F (x) = x · [e+ (e− a · x) + (e− a · x)2 + · · ·+ (e− a · x)p−1].

Notation 1: The p-sum e+(e− v)+ (e− v)2 + · · ·+(e− v)p−1 will be denoted

by S
(p)
v . Thus (8) has the form

(9) F (x) = x · S(p)
a·x.

3. Main results

In order to re-write the form of F and use the contraction principle we need
the following lemmas.

Lemma 3.1. In any real or complex algebra X with identity e, we have

a · (e− x · a)j = (e− a · x)j · a, for j ∈ N.
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Proof. We prove by induction on j. For j = 1 we have

a · (e− x · a) = a− a · x · a = (e− a · x) · a
We assume the claim holds for j = k that is a · (e − x · a)k = (e − a · x)k · a.
For j = k + 1 we have

a · (e− x · a)k+1 = a · (e− x · a)k · (e− x · a)
= (e− a · x)k · a · (e− x · a) by the hypothesis

= (e− a · x)k · (a− a · x · a) = (e− a · x)k · (e− a · x) · a
= (e− a · x)k+1 · a. �

Lemma 3.2. In any real or complex algebra X with identity e, we have that

(e− v)p = e− v · S(p)
v for v ∈ X, p ∈ N.

Proof. We prove by induction on p. The claim evidently holds for p = 1 since

S
(1)
v = e. Assume the claim holds for p = k, that is (e− v)k = e− v · S(k)

v . For
p = k + 1, we have

(e− v)k+1 = (e− v) · (e− v)k

= (e− v) · (e− v · S(k)
v ) by the hypothesis

= (e− v)− (v − v2) · S(k)
v = (e− v)− v · (e− v) · S(k)

v

= (e− v)− v · [(e− v) + (e− v)2 + · · ·+ (e− v)k]

= e− v · [e+ (e− v) + (e− v)2 + · · ·+ (e− v)k] = e− v · S(k+1)
v .�

Lemma 3.3. Our iteration function F in (8) has the forms

F (x) = x · S(p)
a·x = S(p)

x·a · x = x ·
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (a · x)j−1

=

[
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (x · a)j−1

]
· x

= a−1 · [e− (e− a · x)p] = [e− (e− x · a)p] · a−1.

Proof. Lemma 3.2 gives v · S(p)
v = e− (e− v)p, putting v = a · x and using (8)

and (9) we obtain

a · F (x) = a · x · S(p)
a·x = e− (e− a · x)p(10)

=

(
p

1

)
· (a · x)−

(
p

2

)
· (a · x)2 +

(
p

3

)
· (a · x)3 − . . .

+ (−1)p−1 · (a · x)p

= a ·
p∑

j=1

(−1)j−1 ·
(
p

j

)
· x · (a · x)j−1
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and

F (x) = x ·
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (a · x)j−1 = a−1 · [e− (e− a · x)p],

e− a · F (x) = (e− a · x)p.
Lemma 3.1 applies to give

a · S(p)
x·a = a ·

p∑
j=1

(e− x · a)j−1 =

p∑
j=1

a · (e− x · a)j−1(11)

=

p∑
j=1

(e− a · x)j−1 · a = S(p)
x·a · a

By exchanging a and x one gets

(12) F (x) = x · S(p)
a·x = S(p)

x·a · x.
By putting v = a · x in Lemma 3.2, (9) and (11) yield

(13) (e− a · x)p = e− x · a · S(p)
x·a = e− x · S(p)

a·x · a = e− F (x) · a
and

F (x) · a = e− (e− x · a)p =
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (x · a)j

=

p∑
j=1

(−i)j−1 ·
(
p

j

)
· (x · a)j−1 · x · a.

Thus,

F (x) =

[
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (x · a)j−1

]
· x = [e− (e− x · a)p] · a−1. �

Theorem 3.4. Let X be an arbitrary real or complex Banach algebra with
identity e. Let a ∈ X be any non singular element, q ∈ [0, 1) and

G := {x ∈ X : Dx + Ex ≤ q},
where Dx := ‖e− a · x‖ and Ex := ‖e− x · a‖.

Then given p ∈ [2,∞)
⋂

N and x0 ∈ G, the sequence {xn} generated by
the method (7) and the corresponding iteration function F in (8) have the
following properties:

(1) F has exactly one fixed point in G: F (a−1) = a−1;
(2) lim

n→∞
xn = a−1, for any x0 ∈ G;

(3) the real sequence {‖xn − a−1‖} is decreasing;

(4) ‖xn−a−1‖ ≤ ‖x0‖
1− q

· qpn, for n = 0, 1, 2, . . . (“a priori” error estimate),

and the order of convergence is not less than p;
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(5) if q ≤ 1
2
, then ‖xn − a−1‖ ≤ ‖xn − xn−1‖, for n = 0, 1, 2, . . . (“a

posteriori” error estimate).

Proof. We are going to use the fixed point theorem by Banach [1].
G is non empty, since a−1 ∈ G. X is a normed algebra over R or C, so

it is also a topological algebra, and the scalar multiplication, addition and
multiplication are continuous operations. The set G ⊂ X is closed because of
continuity of the norm.

In order to show convexity of G, we choose x, y ∈ G arbitrarily. Then

Dx + Ex ≤ q and Dy + Ey ≤ q.

If t ∈ (0, 1) ⊂ R, then z := ty + (1− t)x ∈ G, since

Dz + Ez = ‖e− ta · y + (1− t)a · x‖(14)

+‖e− ty · a+ (1− t)x · a‖
= ‖te− ta · y + (1− t)e− (1− t)a · x‖

+‖te− ty · a+ (1− t)e+ (1− t)x · a‖
≤ t‖e− a · y‖+ (1− t)‖e− a · x‖

+t‖e− y · a‖+ (1− t)‖e− x · a‖
= t(Dy + Ey) + (1− t)(Dx + Ex) ≤ tq + (1− t)q = q

and G is convex.
In order to show F (G) ⊂ G, let x ∈ G i.e. Dx + Ex ≤ q.
The formulae (10) and (13) apply to give

DF (x) + EF (x) = ‖e− a · F (x)‖+ ‖e− F (x) · a‖
= ‖(e− a · x)p‖+ ‖(e− x · a)p‖ ≤ Dp

x + Ep
x

≤ (Dx + Ex)
p < qp < q

and F (x) ∈ G. In order to prove contraction property of F in G, the value of
the differential F ′(x)h as the linear term in

F (x+ h)− F (x) = (x+ h) ·
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (a · x+ a · h)j−1

−x ·
p∑

j=1

(−1)j−1 ·
(
p

j

)
· (a · x)j−1

shall first be found. This linear (in h ) term is
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F ′(x)h = h ·
p∑

j=1

(−1)j−1

(
p

j

)
(a · x)j−1

+x ·
p∑

j=1

(−1)j−1

(
p

j

) ∑
r,s≥0

r+s=j−2

(a · x)r · (a · h) · (a · x)s

=

p∑
j=1

(−1)j−1

(
p

j

)
h · (a · x)j−1

+

p∑
j=1

(−1)j−1

(
p

j

) ∑
r,s≥0

r+s=j−2

x · (a · x)r · a · h · (a · x)s

and here x · (a · x)r · a · h · (a · x)s = (x · a)r+1 · h · (a · x)s.
Thus

F ′(x)h =

p∑
j=1

(−1)j−1

(
p

j

) ∑
r,s≥0

r+s=j−1

(x · a)r · h · (a · x)s

=

p−1∑
k=0

(−1)k
(

p

k + 1

) ∑
r,s≥0
r+s=k

(x · a)r · h · (a · x)s.

Hence we obtain

‖F ′(x)‖ = sup
‖h‖=1

‖F ′(x)h‖

= sup
‖h‖=1

‖
p∑

k=0

(−1)k
(

p

k + 1

) ∑
r,s≥0
r+s=k

(x · a)r · h · (a · x)s‖

= sup
‖h‖=1

‖
p−1∑
k=0

∑
r,s≥0
r+s=k

(
p

k + 1

)
(−x · a)r · h · (−a · x)s‖

= sup
‖h‖=1

‖
∑
i,j≥0

i+j=p−1

(e− x · a)i · h · (e− a · x)j‖

≤ sup
‖h‖=1

∑
i,j≥0

i+j=p−1

‖(e− x · a)i · h · (e− a · x)j‖

≤ sup
‖h‖=1

∑
i,j≥0

i+j=p−1

‖(e− x · a‖i ‖h‖ ‖e− a · x‖j
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=
∑
i,j≥0

i+j=p−1

Di
x Ej

x

= Dp−1
x +Dp−2

x Ex +Dp−3
x E2

x + · · ·+DxE
p−1
x + Ep−1

x

≤ (Dx + Ex)
p−1 ≤ qp−1 ≤ q < 1, for x ∈ G, h ∈ X.

Let x and y be two arbitrary elements in G. By using the generalization of
Lagrange’s mean value theorem in normed spaces [1], we obtain

‖F (x)− F (y)‖ ≤ ‖F ′(v)‖‖x− y‖,

where v = x+ t(y − x), t ∈ (0, 1).
We have that v = ty + (1 − t)x ∈ G, since G is convex, and ‖F ′(v)‖ ≤ q.

Thus our map is a contraction and the above mentioned fixed point theorem
applies to give that

(1) there exist a unique u ∈ G with F (u) = u, and u = a−1, since a−1 =
F (a−1);

(2) the sequence {xn} generated by the iteration xn+1 = F (xn), n =
0, 1, 2, . . . converges to the fixed point a−1 of F in (8), for any x0 ∈ G;

(3) the sequence of absolute errors {‖xn − a−1‖}∞n=0 decreases.
First we claim the

(15) cn = cp
n

0 , for n = 0, 1, 2, . . . .

This can be proved using induction on n.

For n = 0, the statement is true since c0 = cp
0

0 = c10. Assume the

statement is true for n = k, ie ck = cp
k

0 . Then we show that the

statement is true for n = k + 1 ie ck+1 = cp
k+1

0 .

ck+1 = e− a · xk+1 = e− a · xk · [e+ ck + c2k + . . .+ cp−1
k ]

= e− (e− ck) · [e+ ck + c2k + · · ·+ cp−1
k ] = cpk = (cp

k

0 )p = cp
k+1

0 .

One can use (7) to obtain

a · xn = e− cn, xn = a−1 · (e− cn) = a−1 − a−1 · cn

and

‖xn − a−1‖ = ‖(a−1 − a−1 · cn)− a−1‖ = ‖a−1 · cn‖
≤ ‖a−1‖ ‖cn‖ ≤ ‖a−1‖ ‖cp

n

0 ‖ ≤ ‖a−1‖ ‖c0‖p
n

= ‖a−1‖ ‖e− a · x‖pn ≤ ‖a−1‖ (Dx0 + Ex0)
pn

≤ ‖a−1‖qpn , for n ∈ N.

The Sandwich theorem implies limn→∞ xn = a−1, since limn→∞ qp
n
=

0. (7) applies to give a · x0 = e− c0 and a−1 = x0 · (e− c0)
−1. Due to

Banach’s theorem on bounded inverse (see [1] pp. 61), (e− c0)
−1 exist,
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and

(16) ‖(e− c0)
−1‖ ≤ 1

1− ‖c0‖
≤ 1

1− q

since

‖c0‖ = ‖e− a · x0‖ = Dx0 ≤ Dx0 + Ex0 ≤ q < 1.

Thus, ‖a−1‖ ≤ ‖x0‖‖(e− c0)
−1‖ ≤ ‖x0‖

1− q
, and ‖xn−a−1‖ ≤ ‖x0‖

1− q
· qpn ,

for n ∈ N.
The order of convergence can be read from this error estimation. Be-

yond this fact, a lower bound for the order of convergence can directly
be obtained by using Lemma 3.3:

‖xn+1 − a−1‖ = ‖F (xn)− a−1‖ = ‖[a−1 − a−1 · (e− a · xn)
p]− a−1‖

= ‖a−1 · (e− a · xn)
p‖ ≤ ‖a−1‖ · ‖(e− a · xn)

p‖
≤ ‖a−1‖ · ‖(e− a · xn)‖p ≤ ‖a−1‖ · ‖a · (a−1 − xn)‖p

≤ ‖a−1‖ · ‖a‖p · ‖xn − a−1‖p ≤ ‖x0‖ · ‖a‖p

1− q
· ‖xn − a−1‖p

= K · ‖xn − a−1‖p, for n ∈ N,

whereK =
‖x0‖ · ‖a‖p

1− q
depends neither on n nor on xn. So, our method

has an order of convergence not less than p.
(4) Let q ≤ 1

2
, we have

‖xn − a−1‖ = ‖(xn − xn+1) + (xn+1 − a−1)‖
≤ ‖xn − xn+1‖+ ‖xn+1 − a−1‖
= ‖F (xn−1)− F (xn)‖+ ‖F (xn)− F (a−1)‖
≤ ‖F ′(v)‖ · ‖xn−1 − xn‖+ ‖F ′(w)‖ · ‖xn − a−1‖,

where v = xn + t(xn+1 − xn) and w = xn + T (a−1 − xn) for some
t, T ∈ (0, 1). G is convex, so v, w ∈ G, and ‖xn − a−1‖ ≤ q‖xn −
xn−1‖+ q‖xn − a−1‖. Thus,

(1− q)‖xn − a−1‖ ≤ q‖xn − xn−1‖

and since q ≤ 1
2
, we obtain

‖xn − a−1‖ ≤ q

1− q
‖xn − xn−1‖

≤
1
2

1− 1
2

‖xn − xn−1‖ = ‖xn − xn−1‖, for n ∈ N. �

Remark 3.5. The functions in (3), (5) and (6) are the first three examples of
F , for p = 2, 3 and 4, respectively.
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Remark 3.6. Roughly speaking, the theorem claims that for any p ∈ N− {1},
our iteration method (7), starting from any element x0 ∈ G, monotonically
converges to the uniquely determined inverse of the non singular element a ∈
X. The order of convergence is p, and this fact is reflected in the ”a priori”
error estimation.

Remark 3.7. Our result is not surprising since for every x ∈ G, we have ‖e−
a · x‖ ≤ q < 1 and

x · [e+ (e− a · x) + (e− a · x)2 + . . .] = x ·
∞∑
n=0

(e− a · x)n

= x[e− (e− a · x)]−1

= x(a · x)−1 = a−1.

It means that the members of the collection of our iteration functions of the
form (8) and the corresponding iterative methods for p = 2, 3, 4, . . . are the pth

partial sums of the geometric series
∞∑
n=0

x · (e − a · x)n of the inverse a−1 of a

non singular element a ∈ X.

Remark 3.8. Any element x0 ∈ G has an inverse, and x−1
0 = (a · x0)

−1 · a.

Proof. Due to (16), (e − c0)
−1 exists, and (7) yields e − c0 = a · x0, (a · x0)

−1

exists. But a is non-singular, therefore (a · x0)
−1 · a is also invertible and

[(a · x0)
−1 · a]−1 = a−1 · (a · x0) = x0. Hence x0 has an inverse

x−1
0 = (a · x0)

−1 · a. �
Remark 3.9. For the iteration function F in Lemma 3 we have

lim
p→∞

F (x) = a−1,

since limp→∞ qp = 0, and (15) applies to give limp→∞(e − a · x)p = 0 and
limp→∞ F (x) = a−1.

Remark 3.10. In our main theorem, G can be considered as an ”immediate”
convergence neighbourhood of the attractive fixed point a−1 of the iteration
function F of order p ≥ 2.

4. Numerical results

We consider the vector space consisting of all n× n matrices equipped with
the norm

‖A‖ = max
∑

1≤j≤n

aij.

The initial element is chosen as (see [4])

A0 =
AT

‖A‖1‖A‖∞
.
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p 2 3 4 5 6 7 8 9 10 20 30
steps 12 8 6 6 5 5 5 4 4 3 3
Table 1. Number of steps till convergence.

The above technique was applied in evaluating the inverse of the matrix

A =


4 3 2 1
3 4 3 2
2 3 4 3
1 2 3 4


for different values of p. Table 1 below shows the number of steps needed to
estimate the inverse of A to within an error less than 0.0005, i.e

‖xn − A−1‖ < 0.0005.

From the table above it is clear that as p increases the method converges faster.
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