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REST BOUNDED SECOND VARIATION SEQUENCES AND
p-TH POWER INTEGRABILITY OF SOME FUNCTIONS
RELATED TO SUMS OF FORMAL TRIGONOMETRIC

SERIES

XHEVAT Z. KRASNIQI

Abstract. In this paper we have studied p-th power integrability of func-
tions sinxg(x) and sinxf(x) with a weight, where g(x) and f(x) denote the
formal sum functions of sine and cosine trigonometric series respectively.
This study may be taken as a continuation for some recent foregoings re-
sults proven by L. Leindler [3] and S. Tikhonov [7] employing the so-called
rest bounded second variation sequences.

1. Introduction

Many authors have studied the integrability of the formal series

(1.1) g(x) :=
∞∑
n=1

λn sinnx

and

(1.2) f(x) :=
∞∑
n=1

λn cosnx

imposing certain conditions on the coefficients λn.
Some classical results of this type are obtained by Young-Boas-Haywood

(see [1], [2], [8]) which deal with above mentioned trigonometric series whose
coefficients are monotone decreasing.

Theorem 1.1. Let λn ↓ 0. If 0 ≤ α ≤ 2, then

x−αg(x) ∈ L(0, π) ⇐⇒
∞∑
n=1

nα−1λn <∞.
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If 0 < α < 1, then

x−αf(x) ∈ L(0, π) ⇐⇒
∞∑
n=1

nα−1λn <∞.

The monotonicity condition on the sequence {λn} was replaced by
L. Leindler [3] to a more general ones {λn} ∈ R+

0 BV S.
A sequence c := {cn} of positive numbers tending to zero is of rest bounded

variation, or briefly R+
0 BV S, if it possesses the property

(1.3)
∞∑

n=m

|cn − cn+1| ≤ K(c)cm

for all natural numbers m, where K(c) is a constant depending only on c.
His theorems on integrability of the sum functions of the sine and the cosine

trigonometric series state as follows:

Theorem 1.2. Suppose that {λn} ∈ R+
0 BV S, 1 < p <∞, and 1/p− 1 < θ <

1/p. Then

x−pθ|ψ(x)|p ∈ L(0, π) ⇐⇒
∞∑
n=1

npθ+p−2λpn <∞,

where ψ(x) represents either f(x) or g(x).

Later on, J. Németh [4] considered weight functions more general than power
one and obtained some sufficient conditions for the integrability of the sine
series with such weights. Namely, he proved:

Theorem 1.3. Suppose that {λn} ∈ R+
0 BV S and the sequence γ := {γn}

satisfies the condition: there exists an ε > 0 such that the sequence {γnn−2+ε}
is almost decreasing. Then

∞∑
n=1

γn
n
λn <∞ =⇒ γ(x)g(x) ∈ L(0, π).

A sequence γ := {γn} of positive terms will be called almost increasing
(decreasing) if there exists a constant C := C(γ) ≥ 1 such that

Cγn ≥ γm (γn ≤ Cγm)

holds for any n ≥ m.
Here and in the sequel, a function γ(x) is defined by the sequence γ in the

following way: γ
(
π
n

)
:= γn, n ∈ N and there exist positive constants C1 and

C2 such that C1γn ≤ γ(x) ≤ C2γn+1 for x ∈
(

π
n+1

, π
n

)
.

In 2005 S. Tikhonov [7] has proved two theorems providing necessary and
sufficient conditions for the p−th power integrability of the sums of sine and
cosine series with weight γ. His results refine the assertions of Theorems 1.2-
1.3 which show that such conditions depend on the behavior of the sequence
γ.
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We present Tikhonov’s results below.

Theorem 1.4. Suppose that {λn} ∈ R+
0 BV S and 1 ≤ p <∞.

(A) If the sequence {γn} satisfies the condition: there exists an ε1 > 0 such
that the sequence {γnn−p−1+ε1} is almost decreasing, then the condition

(1.4)
∞∑
n=1

γnn
p−2λpn <∞

is sufficient for the validity of the condition

(1.5) γ(x)|g(x)|p ∈ L(0, π).

(B) If the sequence {γn} satisfies the condition: there exists an ε2 > 0 such
that the sequence {γnnp−1−ε2} is almost increasing, then the condition
(1.4) is necessary for the validity of condition (1.5).

Theorem 1.5. Suppose that {λn} ∈ R+
0 BV S and 1 ≤ p <∞.

(A) If the sequence {γn} satisfies the condition: there exists an ε3 > 0 such
that the sequence {γnn−1+ε3} is almost decreasing, then the condition

(1.6)
∞∑
n=1

γnn
p−2λpn <∞

is sufficient for the validity of the inclusion

(1.7) γ(x)|f(x)|p ∈ L(0, π).

(B) If the sequence {γn} satisfies the condition: there exists an ε4 > 0 such
that the sequence {γnnp−1−ε4} is almost increasing, then the condition
(1.6) is necessary for the validity of condition (1.7).

In 2009 B. Szal [6] introduced a new class of sequences as follows.

Definition 1.1. A sequence α := {ck} of nonnegative numbers tending to
zero is called of Rest Bounded Second Variation sequence, or briefly {ck} ∈
RBSV S, if it has the property

∞∑
k=m

|ck − ck+2| ≤ K(α)cm

for all natural numbers m, where K(α) is positive, depending only on sequence
{ck}, and we assume it to be bounded.

Before we state the purpose of this paper we give the following definition:

Definition 1.2. A sequence α := {ck} of nonnegative numbers tending to
zero is called of Mean Rest Bounded Second Variation sequence, or briefly
{ck} ∈MRBSV S, if it has the property

∞∑
k=2m

k|ck − ck+2| ≤
K(α)

m

2m−1∑
k=m

k|ck − ck+2|
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for all natural numbers m, where K(α) is positive, depending only on sequence
{ck}, and we assume it to be bounded.

The aim of this paper is to extend Tikhonov’s results ( as well as Leindler’s
result) so that the sequence {λn} belongs the class MRBSV S or RBSV S
which is a wider one than RBV S class. To achieve this goal we need some
helpful statements given in next section.

Closing this section we shall assume, throughout this paper, that λ1 = λ2 =
0.

2. Helpful Lemmas

We shall use the following lemmas for the proof of the main results.

Lemma 2.1 ([5]). Let λn > 0 and an ≥ 0. Then

∞∑
n=1

λn

(
n∑

ν=1

aν

)p

≤ pp
∞∑
n=1

λ1−p
n apn

(
∞∑
ν=n

λν

)p

, p ≥ 1

and
∞∑
n=1

λn

(
∞∑
ν=n

aν

)p

≤ pp
∞∑
n=1

λ1−p
n apn

(
n∑

ν=1

λν

)p

, p ≥ 1.

Lemma 2.2. The following representations of g(x) and f(x) hold true:

2 sin xg(x) = −
∞∑
k=1

(λk − λk+2) cos(k + 1)x

and

2 sin xf(x) =
∞∑
k=1

(λk − λk+2) sin(k + 1)x,

where we have assumed that λ1 = λ2 = 0.

Proof. We start from obvious equality
∞∑
k=1

λk cos kx =
1

2

∞∑
k=1

(λk + λk+1) cos kx+
1

2

∞∑
k=1

(λk − λk+1) cos kx,

or

1

2

∞∑
k=1

λk cos kx

=
1

2

∞∑
k=1

(λk + λk+1) cos kx−
1

2
cos x

∞∑
k=2

λk cos kx−
1

2
sin x

∞∑
k=2

λk sin kx.

Thus we have

1 + cosx

2

∞∑
k=2

λk cos kx

=
1

2

∞∑
k=1

(λk + λk+1) cos kx−
1

2
sinx

∞∑
k=2

λk sin kx−
1

2
λ1 cos x
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or since λ1 = 0 we obtain

(2.1)
∞∑
k=2

λk cos kx =
1

2 cos2 x
2

{ ∞∑
k=1

(λk + λk+1) cos kx− sin x
∞∑
k=2

λk sin kx

}
.

Similarly as above we obtain
∞∑
k=1

λk sin kx =
1

2

∞∑
k=1

(λk + λk+1) sin kx+
1

2

∞∑
k=1

(λk − λk+1) sin kx,

or

1

2

∞∑
k=1

λk sin kx =
1

2

∞∑
k=1

(λk + λk+1) sin kx

−1

2
cos x

∞∑
k=2

λk sin kx+
1

2
sin x

∞∑
k=2

λk cos kx.(2.2)

Inserting (2.1) into (2.2) we have (λ1 = 0)

1

2

∞∑
k=1

λk sin kx =
1

2

∞∑
k=1

(λk + λk+1) sin kx−
1

2
cosx

∞∑
k=2

λk sin kx

+
sin x

2

2 cos x
2

∞∑
k=1

(λk + λk+1) cos kx−
sin x

2
sin x

2 cos x
2

∞∑
k=2

λk sin kx

=
1

2

∞∑
k=1

(λk + λk+1) sin kx+
sin x

2

2 cos x
2

∞∑
k=1

(λk + λk+1) cos kx

−
(
cos x

2
+

sin x
2
sin x

2 cos x
2

) ∞∑
k=2

λk sin kx

or
∞∑
k=1

λk sin kx =
1

2 cos x
2

∞∑
k=1

(λk + λk+1) sin

(
k +

1

2

)
x

Applying the summation by parts to above equality and taking into account
that λ1 = λ2 = 0 we obtain

∞∑
k=1

λk sin kx =
1

2 cos x
2

∞∑
k=1

(λk − λk+2)
k∑

i=0

sin

(
i+

1

2

)
x,

or finally, noting that

k∑
i=0

2 sin

(
i+

1

2

)
x sin

x

2
= 1− cos(k + 1)x

we get
∞∑
k=1

λk sin kx = − 1

2 sin x

∞∑
k=1

(λk − λk+2) cos(k + 1)x,
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which clearly proves the first part of this lemma.
For the proof of the second part of this lemma, it is enough to put n = 1 to

the equality (3.10), see page 167 of [6]. �

3. Main Results

Our first result deals with p−th power integrability of the function sinxf(x)
with weight γ.

Theorem 3.1. Suppose that 1 ≤ p < ∞. Let {λn} ∈ MRBSV S. If the
sequence {γn} satisfies the condition: there exists an ε1 > 0 such that the
sequence {γnn−p−1+ε1} is almost decreasing, then the condition

(3.1)
∞∑
n=1

γnn
p−2|λn − λn+2|p <∞

is sufficient for the validity of the condition

(3.2) γ(x)| sin xf(x)|p ∈ L(0, π).

Proof. For the proof we shall use the idea of Tikhonov which he used for his

results. For this, let x ∈
(

π
n+1

, π
n

]
. Based on Lemma 2.2 and applying the

summation by parts we obtain

2| sin xf(x)| ≤ x
n∑

k=1

(k + 1)|λk − λk+2|+
∣∣∣∣ ∞∑
k=n+1

(λk − λk+2) sin(k + 1)x

∣∣∣∣
� 1

n

n∑
k=1

k|λk − λk+2|+
∞∑
k=n

|42λk +42λk+1|
∣∣D̃∗

k(x)
∣∣+ |λn+1 − λn+3|

∣∣D̃∗
n(x)

∣∣
where D̃∗

k(x) are defined by

D̃∗
k(x) :=

k∑
i=0

sin(i+ 1)x =
cos x

2
− cos

(
k + 3

2

)
x

2 sin x
2

, k ∈ N,

and 42λk = λk − 2λk+1 + λk+2.

Taking into account that |D̃∗
k(x)| = O

(
1
x

)
and {λn} ∈ MRBSV S we have

that

2| sinxf(x)| � 1

n

n∑
k=1

k|λk − λk+2|+
∞∑
k=n

k|λk − λk+2|+ n|λn+1 − λn+3|

� 1

n

n∑
k=1

k|λk − λk+2|+
1

n

n−1∑
k=n

2

k|λk − λk+2|+ n|λn+1 − λn+3|

� 1

n

n∑
k=1

k|λk − λk+2|,
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where we have used the fact that from {λn} ∈MRBSV S it follows

n|λn+1 − λn+3| �
∞∑

k=n+1

k|λk − λk+2| �
1

n

n−1∑
k=n

2

k|λk − λk+2|.

Hence, we get∫ π

0

γ(x)| sin xf(x)|pdx

�
∞∑
n=1

∫ π/n

π/(n+1)

γ(x)| sinxf(x)|pdx�
∞∑
n=1

γn
np+2

(
n∑

k=1

k|λk − λk+2|

)p

.

Applying Lemma 2.1 with λn = γn
np+2 > 0 and an = n|λn − λn+2| we obtain∫ π

0

γ(x)| sin xf(x)|pdx�
∞∑
n=1

(n|λn − λn+2|)p
( γn
np+2

)1−p
(

∞∑
ν=n

γν
νp+2

)p

.

Moreover, by the assumption on {γn}, we get

∞∑
ν=n

γν
νp+2

� γn
n1+p−ε1

∞∑
ν=n

1

ν1+ε1
� γn

n1+p
,

which along with above inequality we have∫ π

0

γ(x)| sinxf(x)|pdx�
∞∑
n=1

γnn
p−2|λn − λn+2|p. �

Theorem 3.2. Suppose that {λn} ∈ MRBSV S and 1 ≤ p < ∞. If the
sequence {γn} satisfies the condition: there exists an ε3 > 0 such that the
sequence {γnn−1+ε3} is almost decreasing, then the condition

(3.3)
∞∑
n=1

γnn
p−2|λn − λn+2|p <∞

is sufficient for the validity of the inclusion

(3.4) γ(x)| sinxg(x)|p ∈ L(0, π).

Proof. Based on Lemma 2.2 and applying the summation by parts we obtain

2| sin xg(x)| ≤
n∑

k=1

|λk − λk+2|+
∣∣∣∣ ∞∑
k=n+1

(λk − λk+2) cos(k + 1)x

∣∣∣∣
�

n∑
k=1

|λk − λk+2|+
∞∑
k=n

|42λk +42λk+1|
∣∣D∗

k(x)
∣∣+ |λn+1 − λn+3|

∣∣D∗
n(x)

∣∣
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where D∗
k(x) are defined by

D∗
k(x) :=

k∑
i=0

cos(i+ 1)x =
sin
(
k + 3

2

)
x− sin x

2

2 sin x
2

, k ∈ N.

Since |D∗
k(x)| = O

(
1
x

)
and {λn} ∈MRBSV S then

2| sinxg(x)| �
n∑

k=1

|λk − λk+2|+ n

∞∑
k=n

|λk − λk+2|+ n|λn+1 − λn+3|

�
n∑

k=1

|λk − λk+2|+
1

n

n−1∑
k=n

2

k|λk − λk+2|+ n|λn+1 − λn+3|

�
n∑

k=1

|λk − λk+2|,

for x ∈
(

π
n+1

, π
n

]
, where we have used the fact that from {λn} ∈MRBSV S it

follows

n|λn+1 − λn+3| ≤ n
∞∑

k=n+1

|λk − λk+2| �
1

n

n−1∑
k=n

2

k|λk − λk+2| �
n∑

k=1

|λk − λk+2|.

Therefore, applying Lemma 2.1 and based on conditions imposed on γn we
have ∫ π

0

γ(x)| sinxg(x)|pdx�
∞∑
n=1

∫ π/n

π/(n+1)

γ(x)| sinxf(x)|pdx

�
∞∑
n=1

γn
n2

(
n∑

k=1

|λk − λk+2|

)p

�
∞∑
k=1

|λk − λk+2|p
(γk
k2

)1−p
(

∞∑
j=n

γj
j2

)p

�
∞∑
k=1

γkk
p−2|λk − λk+2|p < +∞,

which implies γ(x)| sin xg(x)|p ∈ L(0, π). �
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