REST BOUNDED SECOND VARIATION SEQUENCES AND p-TH POWER INTEGRABILITY OF SOME FUNCTIONS RELATED TO SUMS OF FORMAL TRIGONOMETRIC SERIES

XHEVAT Z. KRASNIQI

Abstract

In this paper we have studied p-th power integrability of functions $\sin x g(x)$ and $\sin x f(x)$ with a weight, where $g(x)$ and $f(x)$ denote the formal sum functions of sine and cosine trigonometric series respectively. This study may be taken as a continuation for some recent foregoings results proven by L. Leindler [3] and S. Tikhonov [7] employing the so-called rest bounded second variation sequences.

1. Introduction

Many authors have studied the integrability of the formal series

$$
\begin{equation*}
g(x):=\sum_{n=1}^{\infty} \lambda_{n} \sin n x \tag{1.1}
\end{equation*}
$$

and

$$
\begin{equation*}
f(x):=\sum_{n=1}^{\infty} \lambda_{n} \cos n x \tag{1.2}
\end{equation*}
$$

imposing certain conditions on the coefficients λ_{n}.
Some classical results of this type are obtained by Young-Boas-Haywood (see [1], [2], [8]) which deal with above mentioned trigonometric series whose coefficients are monotone decreasing.

Theorem 1.1. Let $\lambda_{n} \downarrow 0$. If $0 \leq \alpha \leq 2$, then

$$
x^{-\alpha} g(x) \in L(0, \pi) \Longleftrightarrow \sum_{n=1}^{\infty} n^{\alpha-1} \lambda_{n}<\infty .
$$

[^0]If $0<\alpha<1$, then

$$
x^{-\alpha} f(x) \in L(0, \pi) \Longleftrightarrow \sum_{n=1}^{\infty} n^{\alpha-1} \lambda_{n}<\infty .
$$

The monotonicity condition on the sequence $\left\{\lambda_{n}\right\}$ was replaced by L. Leindler [3] to a more general ones $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S$.

A sequence $c:=\left\{c_{n}\right\}$ of positive numbers tending to zero is of rest bounded variation, or briefly $R_{0}^{+} B V S$, if it possesses the property

$$
\begin{equation*}
\sum_{n=m}^{\infty}\left|c_{n}-c_{n+1}\right| \leq K(c) c_{m} \tag{1.3}
\end{equation*}
$$

for all natural numbers m, where $K(c)$ is a constant depending only on c.
His theorems on integrability of the sum functions of the sine and the cosine trigonometric series state as follows:
Theorem 1.2. Suppose that $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S, 1<p<\infty$, and $1 / p-1<\theta<$ $1 / p$. Then

$$
x^{-p \theta}|\psi(x)|^{p} \in L(0, \pi) \Longleftrightarrow \sum_{n=1}^{\infty} n^{p \theta+p-2} \lambda_{n}^{p}<\infty,
$$

where $\psi(x)$ represents either $f(x)$ or $g(x)$.
Later on, J. Németh [4] considered weight functions more general than power one and obtained some sufficient conditions for the integrability of the sine series with such weights. Namely, he proved:

Theorem 1.3. Suppose that $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S$ and the sequence $\gamma:=\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\epsilon>0$ such that the sequence $\left\{\gamma_{n} n^{-2+\epsilon}\right\}$ is almost decreasing. Then

$$
\sum_{n=1}^{\infty} \frac{\gamma_{n}}{n} \lambda_{n}<\infty \Longrightarrow \gamma(x) g(x) \in L(0, \pi)
$$

A sequence $\gamma:=\left\{\gamma_{n}\right\}$ of positive terms will be called almost increasing (decreasing) if there exists a constant $C:=C(\gamma) \geq 1$ such that

$$
C \gamma_{n} \geq \gamma_{m} \quad\left(\gamma_{n} \leq C \gamma_{m}\right)
$$

holds for any $n \geq m$.
Here and in the sequel, a function $\gamma(x)$ is defined by the sequence γ in the following way: $\gamma\left(\frac{\pi}{n}\right):=\gamma_{n}, n \in \mathbb{N}$ and there exist positive constants C_{1} and C_{2} such that $C_{1} \gamma_{n} \leq \gamma(x) \leq C_{2} \gamma_{n+1}$ for $x \in\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right)$.

In 2005 S . Tikhonov [7] has proved two theorems providing necessary and sufficient conditions for the p-th power integrability of the sums of sine and cosine series with weight γ. His results refine the assertions of Theorems 1.21.3 which show that such conditions depend on the behavior of the sequence γ.

We present Tikhonov's results below.
Theorem 1.4. Suppose that $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S$ and $1 \leq p<\infty$.
(A) If the sequence $\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\varepsilon_{1}>0$ such that the sequence $\left\{\gamma_{n} n^{-p-1+\varepsilon_{1}}\right\}$ is almost decreasing, then the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} n^{p-2} \lambda_{n}^{p}<\infty \tag{1.4}
\end{equation*}
$$

is sufficient for the validity of the condition

$$
\begin{equation*}
\gamma(x)|g(x)|^{p} \in L(0, \pi) . \tag{1.5}
\end{equation*}
$$

(B) If the sequence $\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\varepsilon_{2}>0$ such that the sequence $\left\{\gamma_{n} n^{p-1-\varepsilon_{2}}\right\}$ is almost increasing, then the condition (1.4) is necessary for the validity of condition (1.5).

Theorem 1.5. Suppose that $\left\{\lambda_{n}\right\} \in R_{0}^{+} B V S$ and $1 \leq p<\infty$.
(A) If the sequence $\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\varepsilon_{3}>0$ such that the sequence $\left\{\gamma_{n} n^{-1+\varepsilon_{3}}\right\}$ is almost decreasing, then the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} n^{p-2} \lambda_{n}^{p}<\infty \tag{1.6}
\end{equation*}
$$

is sufficient for the validity of the inclusion

$$
\begin{equation*}
\gamma(x)|f(x)|^{p} \in L(0, \pi) \tag{1.7}
\end{equation*}
$$

(B) If the sequence $\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\varepsilon_{4}>0$ such that the sequence $\left\{\gamma_{n} n^{p-1-\varepsilon_{4}}\right\}$ is almost increasing, then the condition (1.6) is necessary for the validity of condition (1.7).

In 2009 B. Szal [6] introduced a new class of sequences as follows.
Definition 1.1. A sequence $\alpha:=\left\{c_{k}\right\}$ of nonnegative numbers tending to zero is called of Rest Bounded Second Variation sequence, or briefly $\left\{c_{k}\right\} \in$ $R B S V S$, if it has the property

$$
\sum_{k=m}^{\infty}\left|c_{k}-c_{k+2}\right| \leq K(\alpha) c_{m}
$$

for all natural numbers m, where $K(\alpha)$ is positive, depending only on sequence $\left\{c_{k}\right\}$, and we assume it to be bounded.

Before we state the purpose of this paper we give the following definition:
Definition 1.2. A sequence $\alpha:=\left\{c_{k}\right\}$ of nonnegative numbers tending to zero is called of Mean Rest Bounded Second Variation sequence, or briefly $\left\{c_{k}\right\} \in M R B S V S$, if it has the property

$$
\sum_{k=2 m}^{\infty} k\left|c_{k}-c_{k+2}\right| \leq \frac{K(\alpha)}{m} \sum_{k=m}^{2 m-1} k\left|c_{k}-c_{k+2}\right|
$$

for all natural numbers m, where $K(\alpha)$ is positive, depending only on sequence $\left\{c_{k}\right\}$, and we assume it to be bounded.

The aim of this paper is to extend Tikhonov's results (as well as Leindler's result) so that the sequence $\left\{\lambda_{n}\right\}$ belongs the class $M R B S V S$ or $R B S V S$ which is a wider one than $R B V S$ class. To achieve this goal we need some helpful statements given in next section.

Closing this section we shall assume, throughout this paper, that $\lambda_{1}=\lambda_{2}=$ 0.

2. Helpful Lemmas

We shall use the following lemmas for the proof of the main results.
Lemma 2.1 ([5]). Let $\lambda_{n}>0$ and $a_{n} \geq 0$. Then

$$
\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{\nu=1}^{n} a_{\nu}\right)^{p} \leq p^{p} \sum_{n=1}^{\infty} \lambda_{n}^{1-p} a_{n}^{p}\left(\sum_{\nu=n}^{\infty} \lambda_{\nu}\right)^{p}, \quad p \geq 1
$$

and

$$
\sum_{n=1}^{\infty} \lambda_{n}\left(\sum_{\nu=n}^{\infty} a_{\nu}\right)^{p} \leq p^{p} \sum_{n=1}^{\infty} \lambda_{n}^{1-p} a_{n}^{p}\left(\sum_{\nu=1}^{n} \lambda_{\nu}\right)^{p}, \quad p \geq 1 .
$$

Lemma 2.2. The following representations of $g(x)$ and $f(x)$ hold true:

$$
2 \sin x g(x)=-\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{k+2}\right) \cos (k+1) x
$$

and

$$
2 \sin x f(x)=\sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{k+2}\right) \sin (k+1) x
$$

where we have assumed that $\lambda_{1}=\lambda_{2}=0$.
Proof. We start from obvious equality

$$
\sum_{k=1}^{\infty} \lambda_{k} \cos k x=\frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \cos k x+\frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{k+1}\right) \cos k x
$$

or

$$
\begin{aligned}
& \frac{1}{2} \sum_{k=1}^{\infty} \lambda_{k} \cos k x \\
& \quad=\frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \cos k x-\frac{1}{2} \cos x \sum_{k=2}^{\infty} \lambda_{k} \cos k x-\frac{1}{2} \sin x \sum_{k=2}^{\infty} \lambda_{k} \sin k x .
\end{aligned}
$$

Thus we have

$$
\begin{aligned}
& \frac{1+\cos x}{2} \sum_{k=2}^{\infty} \lambda_{k} \cos k x \\
& \quad=\frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \cos k x-\frac{1}{2} \sin x \sum_{k=2}^{\infty} \lambda_{k} \sin k x-\frac{1}{2} \lambda_{1} \cos x
\end{aligned}
$$

or since $\lambda_{1}=0$ we obtain

$$
\begin{equation*}
\sum_{k=2}^{\infty} \lambda_{k} \cos k x=\frac{1}{2 \cos ^{2} \frac{x}{2}}\left\{\sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \cos k x-\sin x \sum_{k=2}^{\infty} \lambda_{k} \sin k x\right\} . \tag{2.1}
\end{equation*}
$$

Similarly as above we obtain

$$
\sum_{k=1}^{\infty} \lambda_{k} \sin k x=\frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \sin k x+\frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{k+1}\right) \sin k x,
$$

or

$$
\begin{align*}
\frac{1}{2} \sum_{k=1}^{\infty} \lambda_{k} \sin k x= & \frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \sin k x \\
& -\frac{1}{2} \cos x \sum_{k=2}^{\infty} \lambda_{k} \sin k x+\frac{1}{2} \sin x \sum_{k=2}^{\infty} \lambda_{k} \cos k x . \tag{2.2}
\end{align*}
$$

Inserting (2.1) into (2.2) we have ($\lambda_{1}=0$)

$$
\begin{aligned}
\frac{1}{2} \sum_{k=1}^{\infty} \lambda_{k} \sin k x= & \frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \sin k x-\frac{1}{2} \cos x \sum_{k=2}^{\infty} \lambda_{k} \sin k x \\
& +\frac{\sin \frac{x}{2}}{2 \cos \frac{x}{2}} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \cos k x-\frac{\sin \frac{x}{2} \sin x}{2 \cos \frac{x}{2}} \sum_{k=2}^{\infty} \lambda_{k} \sin k x \\
= & \frac{1}{2} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \sin k x+\frac{\sin \frac{x}{2}}{2 \cos \frac{x}{2}} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \cos k x \\
& -\left(\frac{\cos x}{2}+\frac{\sin \frac{x}{2} \sin x}{2 \cos \frac{x}{2}}\right) \sum_{k=2}^{\infty} \lambda_{k} \sin k x
\end{aligned}
$$

or

$$
\sum_{k=1}^{\infty} \lambda_{k} \sin k x=\frac{1}{2 \cos \frac{x}{2}} \sum_{k=1}^{\infty}\left(\lambda_{k}+\lambda_{k+1}\right) \sin \left(k+\frac{1}{2}\right) x
$$

Applying the summation by parts to above equality and taking into account that $\lambda_{1}=\lambda_{2}=0$ we obtain

$$
\sum_{k=1}^{\infty} \lambda_{k} \sin k x=\frac{1}{2 \cos \frac{x}{2}} \sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{k+2}\right) \sum_{i=0}^{k} \sin \left(i+\frac{1}{2}\right) x,
$$

or finally, noting that

$$
\sum_{i=0}^{k} 2 \sin \left(i+\frac{1}{2}\right) x \sin \frac{x}{2}=1-\cos (k+1) x
$$

we get

$$
\sum_{k=1}^{\infty} \lambda_{k} \sin k x=-\frac{1}{2 \sin x} \sum_{k=1}^{\infty}\left(\lambda_{k}-\lambda_{k+2}\right) \cos (k+1) x
$$

which clearly proves the first part of this lemma.
For the proof of the second part of this lemma, it is enough to put $n=1$ to the equality (3.10), see page 167 of [6].

3. Main Results

Our first result deals with $p-$ th power integrability of the function $\sin x f(x)$ with weight γ.

Theorem 3.1. Suppose that $1 \leq p<\infty$. Let $\left\{\lambda_{n}\right\} \in M R B S V S$. If the sequence $\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\varepsilon_{1}>0$ such that the sequence $\left\{\gamma_{n} n^{-p-1+\varepsilon_{1}}\right\}$ is almost decreasing, then the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} n^{p-2}\left|\lambda_{n}-\lambda_{n+2}\right|^{p}<\infty \tag{3.1}
\end{equation*}
$$

is sufficient for the validity of the condition

$$
\begin{equation*}
\gamma(x)|\sin x f(x)|^{p} \in L(0, \pi) . \tag{3.2}
\end{equation*}
$$

Proof. For the proof we shall use the idea of Tikhonov which he used for his results. For this, let $x \in\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right]$. Based on Lemma 2.2 and applying the summation by parts we obtain

$$
\begin{aligned}
& 2|\sin x f(x)| \leq x \sum_{k=1}^{n}(k+1)\left|\lambda_{k}-\lambda_{k+2}\right|+\left|\sum_{k=n+1}^{\infty}\left(\lambda_{k}-\lambda_{k+2}\right) \sin (k+1) x\right| \\
& \quad \ll \frac{1}{n} \sum_{k=1}^{n} k\left|\lambda_{k}-\lambda_{k+2}\right|+\sum_{k=n}^{\infty}\left|\triangle^{2} \lambda_{k}+\triangle^{2} \lambda_{k+1}\right|\left|\widetilde{D}_{k}^{*}(x)\right|+\left|\lambda_{n+1}-\lambda_{n+3}\right|\left|\widetilde{D}_{n}^{*}(x)\right|
\end{aligned}
$$

where $\widetilde{D}_{k}^{*}(x)$ are defined by

$$
\widetilde{D}_{k}^{*}(x):=\sum_{i=0}^{k} \sin (i+1) x=\frac{\cos \frac{x}{2}-\cos \left(k+\frac{3}{2}\right) x}{2 \sin \frac{x}{2}}, \quad k \in \mathbb{N},
$$

and $\triangle^{2} \lambda_{k}=\lambda_{k}-2 \lambda_{k+1}+\lambda_{k+2}$.
Taking into account that $\left|\widetilde{D}_{k}^{*}(x)\right|=O\left(\frac{1}{x}\right)$ and $\left\{\lambda_{n}\right\} \in M R B S V S$ we have that

$$
\begin{aligned}
2|\sin x f(x)| & \ll \frac{1}{n} \sum_{k=1}^{n} k\left|\lambda_{k}-\lambda_{k+2}\right|+\sum_{k=n}^{\infty} k\left|\lambda_{k}-\lambda_{k+2}\right|+n\left|\lambda_{n+1}-\lambda_{n+3}\right| \\
& \ll \frac{1}{n} \sum_{k=1}^{n} k\left|\lambda_{k}-\lambda_{k+2}\right|+\frac{1}{n} \sum_{k=\frac{n}{2}}^{n-1} k\left|\lambda_{k}-\lambda_{k+2}\right|+n\left|\lambda_{n+1}-\lambda_{n+3}\right| \\
& \ll \frac{1}{n} \sum_{k=1}^{n} k\left|\lambda_{k}-\lambda_{k+2}\right|,
\end{aligned}
$$

where we have used the fact that from $\left\{\lambda_{n}\right\} \in M R B S V S$ it follows

$$
n\left|\lambda_{n+1}-\lambda_{n+3}\right| \ll \sum_{k=n+1}^{\infty} k\left|\lambda_{k}-\lambda_{k+2}\right| \ll \frac{1}{n} \sum_{k=\frac{n}{2}}^{n-1} k\left|\lambda_{k}-\lambda_{k+2}\right| .
$$

Hence, we get

$$
\begin{aligned}
& \int_{0}^{\pi} \gamma(x)|\sin x f(x)|^{p} d x \\
& \quad \ll \sum_{n=1}^{\infty} \int_{\pi /(n+1)}^{\pi / n} \gamma(x)|\sin x f(x)|^{p} d x \ll \sum_{n=1}^{\infty} \frac{\gamma_{n}}{n^{p+2}}\left(\sum_{k=1}^{n} k\left|\lambda_{k}-\lambda_{k+2}\right|\right)^{p} .
\end{aligned}
$$

Applying Lemma 2.1 with $\lambda_{n}=\frac{\gamma_{n}}{n^{p+2}}>0$ and $a_{n}=n\left|\lambda_{n}-\lambda_{n+2}\right|$ we obtain

$$
\int_{0}^{\pi} \gamma(x)|\sin x f(x)|^{p} d x \ll \sum_{n=1}^{\infty}\left(n\left|\lambda_{n}-\lambda_{n+2}\right|\right)^{p}\left(\frac{\gamma_{n}}{n^{p+2}}\right)^{1-p}\left(\sum_{\nu=n}^{\infty} \frac{\gamma_{\nu}}{\nu^{p+2}}\right)^{p}
$$

Moreover, by the assumption on $\left\{\gamma_{n}\right\}$, we get

$$
\sum_{\nu=n}^{\infty} \frac{\gamma_{\nu}}{\nu^{p+2}} \ll \frac{\gamma_{n}}{n^{1+p-\varepsilon_{1}}} \sum_{\nu=n}^{\infty} \frac{1}{\nu^{1+\varepsilon_{1}}} \ll \frac{\gamma_{n}}{n^{1+p}},
$$

which along with above inequality we have

$$
\int_{0}^{\pi} \gamma(x)|\sin x f(x)|^{p} d x \ll \sum_{n=1}^{\infty} \gamma_{n} n^{p-2}\left|\lambda_{n}-\lambda_{n+2}\right|^{p}
$$

Theorem 3.2. Suppose that $\left\{\lambda_{n}\right\} \in M R B S V S$ and $1 \leq p<\infty$. If the sequence $\left\{\gamma_{n}\right\}$ satisfies the condition: there exists an $\varepsilon_{3}>0$ such that the sequence $\left\{\gamma_{n} n^{-1+\varepsilon_{3}}\right\}$ is almost decreasing, then the condition

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n} n^{p-2}\left|\lambda_{n}-\lambda_{n+2}\right|^{p}<\infty \tag{3.3}
\end{equation*}
$$

is sufficient for the validity of the inclusion

$$
\begin{equation*}
\gamma(x)|\sin x g(x)|^{p} \in L(0, \pi) \tag{3.4}
\end{equation*}
$$

Proof. Based on Lemma 2.2 and applying the summation by parts we obtain

$$
\begin{aligned}
& 2|\sin x g(x)| \leq \sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|+\left|\sum_{k=n+1}^{\infty}\left(\lambda_{k}-\lambda_{k+2}\right) \cos (k+1) x\right| \\
& \quad \ll \sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|+\sum_{k=n}^{\infty}\left|\triangle^{2} \lambda_{k}+\triangle^{2} \lambda_{k+1}\right|\left|D_{k}^{*}(x)\right|+\left|\lambda_{n+1}-\lambda_{n+3}\right|\left|D_{n}^{*}(x)\right|
\end{aligned}
$$

where $D_{k}^{*}(x)$ are defined by

$$
D_{k}^{*}(x):=\sum_{i=0}^{k} \cos (i+1) x=\frac{\sin \left(k+\frac{3}{2}\right) x-\sin \frac{x}{2}}{2 \sin \frac{x}{2}}, \quad k \in \mathbb{N} .
$$

Since $\left|D_{k}^{*}(x)\right|=O\left(\frac{1}{x}\right)$ and $\left\{\lambda_{n}\right\} \in M R B S V S$ then

$$
\begin{aligned}
2|\sin x g(x)| & \ll \sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|+n \sum_{k=n}^{\infty}\left|\lambda_{k}-\lambda_{k+2}\right|+n\left|\lambda_{n+1}-\lambda_{n+3}\right| \\
& \ll \sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|+\frac{1}{n} \sum_{k=\frac{n}{2}}^{n-1} k\left|\lambda_{k}-\lambda_{k+2}\right|+n\left|\lambda_{n+1}-\lambda_{n+3}\right| \\
& \ll \sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|,
\end{aligned}
$$

for $x \in\left(\frac{\pi}{n+1}, \frac{\pi}{n}\right]$, where we have used the fact that from $\left\{\lambda_{n}\right\} \in M R B S V S$ it follows
$n\left|\lambda_{n+1}-\lambda_{n+3}\right| \leq n \sum_{k=n+1}^{\infty}\left|\lambda_{k}-\lambda_{k+2}\right| \ll \frac{1}{n} \sum_{k=\frac{n}{2}}^{n-1} k\left|\lambda_{k}-\lambda_{k+2}\right| \ll \sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|$.
Therefore, applying Lemma 2.1 and based on conditions imposed on γ_{n} we have

$$
\begin{aligned}
\int_{0}^{\pi} \gamma(x)|\sin x g(x)|^{p} d x & \ll \sum_{n=1}^{\infty} \int_{\pi /(n+1)}^{\pi / n} \gamma(x)|\sin x f(x)|^{p} d x \\
& \ll \sum_{n=1}^{\infty} \frac{\gamma_{n}}{n^{2}}\left(\sum_{k=1}^{n}\left|\lambda_{k}-\lambda_{k+2}\right|\right)^{p} \\
& \ll \sum_{k=1}^{\infty}\left|\lambda_{k}-\lambda_{k+2}\right|^{p}\left(\frac{\gamma_{k}}{k^{2}}\right)^{1-p}\left(\sum_{j=n}^{\infty} \frac{\gamma_{j}}{j^{2}}\right)^{p} \\
& \ll \sum_{k=1}^{\infty} \gamma_{k} k^{p-2}\left|\lambda_{k}-\lambda_{k+2}\right|^{p}<+\infty
\end{aligned}
$$

which implies $\gamma(x)|\sin x g(x)|^{p} \in L(0, \pi)$.

References

[1] R. P. Boas, Jr. Integrability of trigonometric series. III. Quart. J. Math., Oxford Ser. (2), 3:217-221, 1952.
[2] P. Heywood. On the integrability of functions defined by trigonometric series. Quart. J. Math., Oxford Ser. (2), 5:71-76, 1954.
[3] L. Leindler. A new class of numerical sequences and its applications to sine and cosine series. Anal. Math., 28(4):279-286, 2002.
[4] J. Németh. Power-monotone sequences and integrability of trigonometric series. JIPAM. J. Inequal. Pure Appl. Math., 4(1):Article 3, 6 pp. (electronic), 2003.
[5] M. K. Potapov and M. Beriša. Moduli of smoothness and the Fourier coefficients of periodic functions of one variable. Publ. Inst. Math. (Beograd) (N.S.), 26(40):215-228, 1979.
[6] B. Szal. Generalization of a theorem on Besov-Nikol'skiĭ classes. Acta Math. Hungar., 125(1-2):161-181, 2009.
[7] S. Y. Tikhonov. On the integrability of trigonometric series. Mat. Zametki, 78(3):476480, 2005.
[8] W. H. Young. On the Fourier Series of Bounded Functions. Proc. London Math. Soc., S2-12(1):41.

Received April 13, 2013.

University of Prishtina,
Faculty of Education,
Department of Mathematics and Informatics,
Avenue Mother Theresa, 10000 Prishtina, Kosova
E-mail address: xhevat.krasniqi@uni-pr.edu

[^0]: 2010 Mathematics Subject Classification. 42A32, 46E30.
 Key words and phrases. Integrability of functions with a weight, trigonometric series, rest bounded second variation sequences.

