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31 (2015), 233–248
www.emis.de/journals

ISSN 1786-0091

OSCILLATORY AND ASYMPTOTIC BEHAVIOUR OF
HIGHER ORDER NEUTRAL DIFFERENCE EQUATIONS

RADHANATH RATH, CHITTA RANJAN BEHERA AND AJIT KUMAR BHUYAN

Abstract. In this paper, sufficient conditions are obtained so that every
solution of neutral functional difference equation

∆m(yn − pnyτ(n)) + vnG(yσ(n))− unH(yα(n)) = fn,

oscillates or tends to zero or ±∞ as n → ∞, where different symbols have
their usual meaning. In particular, we extend the results of [14] Rath et
al. (2010) to the case when G has sublinear growth at ∞. Our results also
apply to the neutral equation

∆m(yn − pnyτ(n)) + qnG(yσ(n)) = fn,

where qn has sign changes. This paper expands some recent results.

1. Introduction

This article concerns the oscillation of solutions to the neutral functional
difference equation

(1.1) ∆m(yn − pnyτ(n)) + vnG(yσ(n))− unH(yα(n)) = fn,

where ∆ is the forward difference operator given by ∆xn = xn+1−xn, pn, vn, un

and fn are infinite sequences of real numbers with vn > 0, un ≥ 0, G,H ∈
C(R,R). Further, we assume {τ(n)}, {σ(n)}, and {α(n)} are monotonic in-
creasing and unbounded sequences such that τ(n) ≤ n, σ(n) ≤ n and α(n) ≤ n
for every n. Different ranges of {pn} are considered. The positive integer
m ≥ 2, can take both odd and even values.

Let N1 be a fixed non-negative integer. Let N0 = min{τ(N1), σ(N1), α(N1)}.
By a solution of (1.1) we mean a real sequence {yn} which is defined for all
positive integer n ≥ N0 and satisfies (1.1) for n ≥ N1. Clearly, if the initial
condition

(1.2) yn = an for N0 ≤ n ≤ N1 +m− 1,
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is given then the equation (1.1) has a unique solution satisfying the given initial
condition (1.2). A solution {yn} of (1.1) is said to be oscillatory if for every
positive integer n0 ≥ N1, there exists n ≥ n0 such that ynyn+1 ≤ 0, otherwise
{yn} is said to be non-oscillatory.

In this work we assume the existence of solutions and study only their qual-
itative behaviour. For existence and uniqueness of solutions, we refer the
reader to [2, 5]. The function G is said to have linear growth (or to be lin-
ear) at infinity, if limx→∞ |G(x)|/x is a positive constant. G is super-linear if
limx→∞ |G(x)|/x = ∞, and G is sub-linear if limx→∞ |G(x)|/x = 0.

In the sequel, unless otherwise specified, when we write a functional inequal-
ity, it will be assumed to hold for all n sufficiently large. Our results will use
the following hypothesis:

(H0) For any sequence {xn}, if lim infn→∞ |xn| > 0 then lim infn→∞ |G(xn)| >
0.

(H1) xG(x) > 0 for x 6= 0.
(H2) H is bounded.
(H3)

∑∞
n=n0

vn = ∞.

(H4)
∑∞

n=n0
nm−1un < ∞.

(H5) There exists a bounded sequence {Fn} such that ∆mFn = fn.
(H6) The sequence {Fn} satisfies limn→∞ Fn = 0.

We observe that there are only few publications [12, 15, 13, 14, 16, 18] on
the oscillatory behaviour of higher order (m ≥ 2) neutral difference equations
(1.1) with positive and negative coefficients. The article [16] study (1.1) for
m = 1 with restrictions G(u) = u and f ≡ 0. In a recent publication [14],
Rath et al. obtained some results assuming the conditions

(1.3) lim inf
|u|→∞

G(u)/u > 0,

and

(1.4) G is non-decreasing,

in order to study the oscillatory behaviour of solutions of the neutral equation
(1.1). The motivation for this work is derived from the following example.

Example 1.1.

(1.5) ∆m(yn −
1

8
yn−1) +

1

29α
yαn−3 = 2−3nα,

where m is any integer ≥ 1, α is the quotient of any two odd integers. If
α < 1 then here, in this example, we find G(u) = uα, does not satisfy (1.3)
and clearly yn = 2−3n is a solution of (1.5), which tends to zero as n → ∞.

It is clear from the above example that, the study in [14] has left out a class
of neutral equations because of the assumption (1.3).

Since the conditions (1.3) or (1.4) are incompatible to the condition that G
is bounded, we relaxed these conditions and thus, could generalize, improve
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the work in [14] and apply it to study

(1.6) ∆m(yn − pnyτ(n)) + qnG(yσ(n)) = fn,

where qn is allowed to change sign. There is almost no result for (1.6)(m > 2)
with oscillatory qn. As majority of the existing publications concerned with
(1.6) (see [8, 7, 9, 11, 10, 17, 18]) have results for positive qn, this article
generalizes these results.

2. Neutral equations with positive and negative coefficients

To begin with, we state some lemmas which would be useful for our work.

Lemma 2.1. [1] Let {fn}, {qn} and {pn} be sequences of real numbers defined
for n ≥ N0 > 0 such that

fn = qn − pnqτ(n), n ≥ N1 ≥ N0,

where {τ(n)} is an increasing unbounded sequence such that τ(n) ≤ n. Suppose
that pn satisfies one of the following three conditions

−1 < −b1 ≤ pn ≤ 0, −b2 ≤ pn ≤ −b3 < −1, and 0 ≤ pn ≤ b4 < ∞,

∀n, where b1, b2, b3 and b4 are constants. If qn > 0 for n ≥ N0, lim infn→∞ qn =
0 and limn→∞ fn = L exists then L = 0.

Lemma 2.2. [6] If
∑

un and
∑

vn are two positive term series such that

limn→∞

(
un

vn

)
= l, where l is a non-zero finite number, then the two series

converge or diverge together. If l = 0 then
∑

vn is convergent implies the
convergence of

∑
un. If l = ∞ then

∑
vn is divergent implies the divergence

of
∑

un.

Lemma 2.3. [1, 11] Let zn be a real valued function defined for n ∈ N(n0) =
{n0, n0 + 1, . . .}, n0 ≥ 0 and zn > 0 with ∆mzn of constant sign on N(n0) and
not identically zero.Then there exists an integer p, 0 ≤ p ≤ m− 1, with m+ p
odd for ∆mzn ≤ 0 and (m+ p) even for ∆mzn ≥ 0, such that

∆izn > 0 for n ≥ n0, 0 ≤ i ≤ p,

and

(−1)p+i∆izn > 0, for n ≥ n0, p+ 1 ≤ i ≤ m− 1.

Before we state and prove our next result, we need the following definition
and further discussion.

Definition 2.1. Define the factorial function(cf [5, page-20]) by

n(k) := n (n− 1) · · · (n− k + 1) ,

where k ≤ n and n ∈ Z and k ∈ N. Note that n(k) = 0, if k > n.
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Then we have

(2.1) ∆n(k) = kn(k−1),

where n ∈ Z, k ∈ N and ∆ is the forward difference operator. Next, we present
our last lemma, where Φ(∞) means limn→∞Φ(n).

Lemma 2.4. [14] Let p ∈ N and x (n) be a non oscillatory sequence which is
positive for large n. If there exists an integer p0 ∈ {0, 1, . . . , p− 1} such that
∆p0w (∞) exits (finite) and ∆iw (∞) = 0 for all i ∈ {p0 + 1, . . . , p− 1}. Then
(2.2) ∆pw (n) = −x (n) ,

implies
(2.3)

∆p0w (n) = ∆p0w (∞) +
(−1)p−p0−1

(p− p0 − 1)!

∞∑
i=n

(i+ p− p0 − 1− n)(p−p0−1) x (i) ,

for all sufficiently large n.

Now, we state our first main result.

Theorem 2.5. Suppose that (H0)–(H5) hold. Assume that there exists a pos-
itive constant b1 such that the sequence {pn} satisfies the condition

(2.4) 0 ≤ pn ≤ b1 < 1, or − 1 < −b1 ≤ pn ≤ 0.

Then every non-oscillatory solution of (1.1) is bounded.

Proof. Let y = {yn} be any non-oscillatory solution of (1.1) for n ≥ N1, where
N1 is a fixed positive integer. Then yn > 0 or yn < 0. Suppose yn > 0
eventually. There exits positive integer n0 ≥ N1 > 0 such that yn > 0, yτ(n) >
0, yσ(n) > 0 and yα(n) > 0 for n ≥ n0. For simplicity of notation, define for
n ≥ n0 ,

(2.5) zn = yn − pnyτ(n).

Further, we define for n ≥ n0

(2.6) Tn =
(−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)uiH(yα(i)).

Note that, due to the assumptions (H2) and (H4), {Tn} is a well defined
real sequence which is convergent. This implies

(2.7) lim
n→∞

Tn = 0

and

(2.8) ∆mTn = −unH(yα(n)).

Set,

(2.9) wn = yn − pnyτ(n) + Tn − Fn.
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From (1.1), (2.8), and (2.9), it follows due to (H1) that

(2.10) ∆mwn = −vnG(yσ(n)) ≤ 0.

Then there exists n1 ≥ n0 such that wn,∆wn,∆
2wn, . . . ,∆

m−1wn are mono-
tonic and of constant sign for n ≥ n1. For the sake of a contradiction assume
that yn is not bounded. Then there exists a sub sequence {ynk

} such that

nk → ∞, ynk
→ ∞ as k → ∞,

and

(2.11) y(nk) = max{yn : n1 ≤ n ≤ nk}.
Since τ(n) → ∞, σ(n) → ∞, and α(n) → ∞ as n → ∞, we may choose k
large enough so that for τ(nk) ≥ n1, σ(nk) ≥ n1 and α(nk) ≥ n1. For 0 < ε,
because of (2.7) and (H5), we can find a positive integer n2 and a constant γ
such that, for k ≥ n2 ≥ n1 implies |Tnk

| < ε and |Fnk
| < γ. If the condition

0 ≤ pn ≤ b1 < 1 holds, then using (2.9) and (2.11) we obtain

wnk
≥ ynk

(1− b1)− ε− γ,

for k ≥ n2. Similarly, if −1 < −b1 ≤ pn ≤ 0 holds, then for k ≥ n2, we have

wnk
≥ ynk

− ε− γ.

Taking k → ∞, we find limn→∞wn = ∞. Since wn,∆wn, . . . ,∆
m−1wn are

monotonic and of constant sign, it follows that wn > 0 and ∆wn > 0.
Consequently, by Lemma 2.3, wn > 0, and ∆mwn ≤ 0 imply ∆m−1wn > 0

for n ≥ n2 ≥ n1.
Next, we show that yn is bounded below by a positive constant, which will

be used for bounding the G term from below. Using that wn is positive and
increasing, and that τ(n) ≤ n, we have for sufficiently large n: for the case
0 ≤ pn ≤ b1 < 1,

wn ≤ wn + pnwτ(n)

= yn + Tn − Fn + pn[−pτ(n)yτ(τ(n)) + Tτ(n) − Fτ(n)],

and for the case −1 < −b1 ≤ pn ≤ 0,

(1− b1)wn ≤ wn − b1wτ(n)

≤ wn + pnwτ(n)

= yn + Tn − Fn + pn[−pτ(n)yτ(τ(n)) + Tτ(n) − Fτ(n)].

We may note that pn and pτ(n) have the same sign and yn > 0 in each of the
two inequalities above, and 1− b1 ≤ 1 which implies

(1− b1)wn ≤ yn + ε+ γ + b1ε+ b1γ, for n ≥ n1.

As limn→∞wn = ∞, it follows that limn→∞ yn = ∞. Then there exists n2 ≥ n1

such that for n ≥ n2: yn, yτ(n)yσ(n) and yα(n) are bounded below by a positive
constant.
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By (H0)–(H1), for i ≥ n2, G(yσ(i)) is bounded below by a positive constant
c. Summing (2.10) from n = n2 to n = k − 1, we obtain

∆m−1wk = ∆m−1wn2 −
k−1∑
n=n2

vnG(yσ(n)) ≤ ∆m−1wn2 − c

k−1∑
n=n2

vn.

Note that by (H3), the right-hand side approaches −∞, while the left-hand
side is positive. This contradiction implies that the non-oscillatory positive
solution yn of (1.1) is bounded.

If yn is an eventually negative solution of (1.1) for large n then we set
xn = −yn to obtain xn > 0 and then (1.1) reduces to

∆m
(
xn − pnxτ(n)

)
+ vnG̃(xσ(n))− unH̃(xα(n)) = f̃n,

where
f̃n = −fn, G̃(v) = −G(−v) H̃(v) = −H(−v).

Further,

F̃n = −Fn implies ∆m(F̃n) = f̃n.

In view of the above facts, it can be easily verified that G̃, H̃ and F̃ satisfy
the corresponding conditions satisfied by the functions G, H and F in the
theorem. Proceeding as in the proof for the case yn > 0, we may complete the
proof of the theorem. �

The following result follows immediately from the above theorem.

Corollary 2.6. Suppose that (H0)–(H5)and (2.4) hold. Then every unbounded
solution of (1.1), (if exists) is oscillatory.

Also note that by setting pn = 0, Theorems 2.5 can be applied to the
equation

∆m(yn) + vnG(yσ(n))− unG(yα(n)) = fn.

2.1. Results for bounded solutions. In this subsection, we study the be-
haviour of bounded solutions of (1.1) and we do not require the assumption
(H2). However, we need a condition

(2.12)
∞∑

n=n0

nm−1vn = ∞,

which is less restrictive than (H3).

Theorem 2.7. Assume (H0), (H1), (H4), (H6) and (2.12). Then every bounded
solution of (1.1) is oscillatory or tends to zero as n → ∞, for each one of the
following cases:

0 ≤ pn ≤ b1 < 1 ∀n ;(2.13)

−1 < −b1 ≤ pn ≤ 0 ∀n ;(2.14)

b2 ≤ pn ≤ b3 < −1 ∀n ;(2.15)
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1 < b4 ≤ pn ≤ b5 ∀n ;(2.16)

where b1, b2, b3, b4, b5 are constants.

Proof. Let y = yn be a bounded solution of (1.1) for n ≥ N1. If it oscillates
then there is nothing to prove. If it does not oscillate then yn > 0 or yn < 0
eventually. Suppose yn > 0 for large n. There exits positive integer n0 ≥
N1 > 0 such that yn > 0, yτ(n) > 0, and yσ(n) > 0 for n ≥ n0. Set zn, Tn

and wn as in (2.5), (2.6) and (2.9) respectively, to obtain (2.10). Tn is well
defined due to the boundedness of yn and note that it satisfies (2.7). Then
wn,∆wn,∆

2wn, . . . ,∆
m−1wn are monotonic and single sign for n ≥ n1 ≥ n0.

Boundedness of yn implies that of zn and wn. Using (2.7), (H6) and monotonic
nature of wn, we obtain limn→∞ zn = limn→∞wn = λ, which exists finitely.
Then applying Lemma 2.4 to (2.10), we obtain for n ≥ n1,

(2.17) wn = λ+
(−1)m−1

(m− 1)!

∞∑
i=n

(i− n+m− 1)(m−1)viG(yσ(i)).

As limn→∞wn exists, from (2.17) it follows that

(2.18)
∞∑
i=n

(i− n+m− 1)(m−1)viG(yσ(i)) < ∞, n ≥ n1.

Using Lemma 2.2 in (2.18), we obtain

(2.19)
∞∑
i=n

im−1viG(yσ(i)) < ∞, n ≥ n1.

From (2.19), it follows due to (2.12) that lim infn→∞G(yσ(n)) = 0. Further, as
limn→∞ σ(n) = ∞, we have lim infn→∞G(yn) = 0. This implies due to (H0)
that lim infn→∞ yn = 0. Then using Lemma 2.1, we may obtain limn→∞ zn = 0.
If (2.13) holds then

0 = lim
n→∞

zn = lim sup
n→∞

(yn − pnyτ(n))

≥ lim sup
n→∞

yn + lim inf
n→∞

(−pnyτ(n))

≥ (1− b1) lim sup
n→∞

yn.

This implies lim supn→∞ yn = 0 and consequently yn → 0 as n → ∞. If (2.14)
or (2.15) holds then, since yn ≤ zn, it follows that yn → 0 as n → ∞. If pn
satisfies (2.16), then zn ≤ yn − b4yτ(n), and it follows that

0 = lim inf
n→∞

zn ≤ lim inf
n→∞

[yn − b4yτ(n)]

≤ lim sup
n→∞

yn + lim inf
n→∞

[−b4yτ(n)]

= (1− b4) lim sup
n→∞

yn.

Then lim supn→∞ yn = 0, which implies limn→∞ yn = 0.
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If yn is eventually negative for large n, then we may proceed with xn =
−yn. �

2.2. Results for bounded or unbounded solutions. Clearly, the condition
(H3) implies (2.12), so we combine the results Corollary 2.6 and Theorem 2.7
to state the following result.

Theorem 2.8. Suppose that either (2.13) holds or (2.14) holds. Further as-
sume (H0)–(H6) to hold. Then every solution of (1.1) is oscillatory or tends
to zero as n → ∞.

The following oscillation result does not assume that τ(n) is increasing, but
restricts pn further than the theorem above.

Theorem 2.9. Assume (H0)–(H6) and that 0 ≤ pn ≤ b2 < 1. Then every
solution of (1.1) is oscillatory or tends to zero as n → ∞.

Proof. By contradiction assume y = yn is an eventually positive solution of
(1.1), which does not tend to zero as n → ∞. Then there exists a n0 such that
for n ≥ n0: yn, yα(n), yσ(n), yτ(n) are positive and lim supn→∞ yn > 0. Define wn

by (2.9). Then, as above, ∆mwn ≤ 0 and w,∆wn, . . . ,∆
m−1wn are monotonic

and of constant sign for n ≥ n1. We do not know that wn > 0 yet. Since
0 ≤ pn ≤ b2 < 1 and yn > 0,

wn ≥ yn − b2yτ(n) + Tn − Fn.

Taking the limit superior, using that wn is monotonic and that Tn and Fn

converge to zero, we have

λ = lim
n→∞

wn ≥ (1− b2) lim sup
n→∞

yn > 0.

Then wn is positive for n large enough. By Lemma 2.3, w(n) ≤ 0 and wn > 0
imply the existence of n1 such that ∆m−1wn > 0 for n ≥ n1. Next we show
that lim infn→∞ yn > 0, which will be used for bounding G(yσ(n)) from below
by a positive constant. Using that 0 ≤ pn and yn > 0, we have

wn ≤ yn + Tn − Fn.

Taking the limit inferior, using that wn is monotonic and that Tn and Fn

approach zero, we have

0 < λ = lim
n→∞

wn ≤ lim inf
n→∞

yn.

Then there exists a n2 ≥ n1 such that for n ≥ n2: yn, yα(n), yσ(n), yτ(n) are
bounded below by a positive constant. By (H0)–(H1), for n ≥ n2, G(yσ(n) is
bounded below by a positive constant c. Taking sum in (2.10), we obtain

∆m−1wn = ∆m−1wn2 −
n∑

k=n2

vkG(yσ(k)) ≤ ∆m−1wn2 − c
n∑

k=n2

vk.
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Note that by (H3), the right-hand side approaches−∞, while the left-hand side
is positive. This contradiction implies that the solution can not be eventually
positive without approaching zero.

If y = yn is an eventually negative solution of (1.1) that does not tend to
zero as n → ∞, then we may proceed with xn = −yn. This completes the
proof. �

Next, we give some examples to signify the importance of the above results.

Example 2.1. Consider the neutral equation

(2.20) ∆m

(
yn −

1

2
yn−1

)
+ n−myαn−2 = n−m2α(2−n),

where m ≥ 2, α is a positive rational, being the quotient of two odd integers.
Here, pn = 1

2
, and vn = n−m, fn = n−m2α(2−n). It is clear that

∞∑
n=n0

nm−1fn < ∞.

Hence,it follows that

Fn =
(−1)m

(m− 1)!

∞∑
j=n

(j − n+m− 1)(m−1)j−m2α(2−j).

Obviously, |Fn| < ∞. Clearly, the equation (2.20) satisfies all the conditions
of Theorem 2.7. Hence every bounded non-oscillatory solution tends to zero as
n → ∞. In particular yn = 2−n is a bounded solution of (2.20), which tends to
zero as n → ∞. However, the results in [18, Theorem 2.2] cannot be applied
to (2.20) if α > 1, because G is sub-linear in [18]. If α < 1 then m ≥ 2 implies
m− αm+ α > 1. Therefore the following condition

(2.21)
∞∑

n=n0

vn(n− k)α(m−1) = ∞,

does not hold. Hence, the result [18, Theorem 2.2] cannot be applied to (2.20).
Also,in the case when α < 1, the results in [4, 14] cannot be applied to (2.20)
as G is super-linear there.

Example 2.2. Consider the neutral equation

(2.22) ∆m

(
yn +

1

2
yn−1

)
+ n−1yαn−2 = (−1)m2−n−m+1 + n−12α(2−n),

where m ≥ 2, α is a positive rational, which is the quotient of two odd integers.
Here, pn = −1

2
, vn = n−1, G(x) = xα and fn = (−1)m2−n−m+1 + n−12α(2−n).

Easily, we can verify that,
∑∞

n=n0
nm−1fn < ∞ and the equation (2.22) satisfies

all the conditions of Theorem 2.8. Hence yn = 2−n is a positive solution of
(2.22), which tends to zero as n → ∞. However, if α < 1, then the results of
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[4, 14] cannot be applied to this equation, because (1.3) is not satisfied. Again
if α ≥ 1 then results of [17, 18] fail as G is sublinear there.

In the next result we remove the barrier at −1 for pn. However, we assume
additional hypotheses.

Theorem 2.10. Assume (H0)–(H2), (H4)–(H6), b4 ≤ pn ≤ 0, and the delay
functions satisfy σ(τ(n)) = τ(σ(n)). Also assume that

(2.23)
∞∑
n0

min{vn, vτ(n)} = ∞;

that there exists a positive constant δ, such that for x, y, z > 0,

(2.24) G(x+ y) ≤ δ(G(x) +G(y)), G(zx) ≤ G(z)G(x);

and that for x, y < 0 and z > 0,

(2.25) G(x+ y) ≥ δ(G(x) +G(y)), G(zx) ≥ G(z)G(x).

Then every solution of (1.1) is oscillatory or tends to zero as n → ∞.

Proof. By contradiction assume y = yn is an eventually positive solution of
(1.1), which does not tend to zero as n → ∞. Then there exists a n0 such
that for n ≥ n0: yn, yα(n), yσ(n), yτ(n) are positive and lim supn→∞ yn > 0.
Define wn by (2.9). Then, as above, ∆mwn ≤ 0 and wn,∆wn, . . . ,∆

m−1wn are
monotonic and of constant sign for n ≥ n1. From pn ≤ 0 and yn > 0, it follows
that wn ≥ yn + Tn − Fn. In the limit

λ = lim
n→∞

wn ≥ lim sup
n→∞

yn > 0.

Since Tn and Fn approach zero, yn − pnyτ(n) is bounded below by a positive
constant, for all n large. Using yn − b4yτ(n) ≥ yn − pnyτ(n), limn→∞ σ(n) = ∞,
and σ(τ(n)) = τ(σ(n)), it follows that yσ(n) − b4yσ(τ(n)) is also bounded below
by a positive constant, for some n ≥ n2. Then by (H0)–(H1), there exist a
positive constant c such that c ≤ G

(
yσ(n) − b4yσ(τ(n))

)
. Using (2.24)

c ≤ G
(
yσ(n) − b4yσ(τ(n))

)
≤ δ[G(yσ(n)) +G(−b4yσ(τ(n)))]

≤ δ
[
G(yσ(n)) +G(−b4)G

(
yσ(τ(n))

)]
From (2.10),

∆mwn +G(−b4)∆
mwτ(n) ≤ −min{vn, vτ(n)}

[
G(yσ(n)) +G(−b4)G

(
yσ(τ(n))

)]
≤ −min{vn, vτ(n)}c/δ

Taking the sum,

∆m−1wn +G(−b4)∆
m−1wτ(n)

≤ ∆m−1wn2 +G(−b4)∆
m−1wτ(n2) − (c/δ)

n∑
n2

min{vk, vτ(k)}.
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In the limit as n → ∞, by (2.23), the right-hand side approaches −∞ while the
left-hand side is positive. This contradiction proves that eventually positive
solutions must converge to zero. For eventually negative solutions, we proceed
as above. Thus the proof is complete. �

As prototypes of functions G satisfying the conditions (H0), (H1), (2.24)–
(2.25), we have G(x) = |x|λ sgn(x) and G(x) = (β+|x|µ)|x|λ sgn(x) with λ > 0,
µ > 0, λ + µ ≥ 1, β ≥ 1. For verifying these conditions, we may use the well
known inequality [3, p. 292]

xp + yp ≥

{
(x+ y)p, for 0 ≤ p < 1,

21−p(x+ y)p, for 1 ≤ p.

Clearly, (2.23) implies (H3), but not the other way around. However, when
v is monotonic, (2.23) is equivalent to (H3).

A result similar to Theorem 2.10 is shown in [14, Theorem 2.20]. There it
is assumed that

∞∑
n=n0

nm−2min{vn, vτ(n)} = ∞

which is less restrictive than (2.23). This is a trade off for G being non-
decreasing and of super-linear growth there.

Next, we would like to prove a result when pn is in a different range, not
yet, considered in this work. For that we need the following definition.

Definition 2.2. For any positive integer n ≥ n0, define

τ−1(n) = {m : m is an integer ≥ n and τ(m) = n}.

Theorem 2.11. Suppose that m is odd. Assume that (H0)–(H4) hold. Let
1 ≤ pn ≤ b2. Then every non-oscillatory solution of

(2.26) ∆m
(
yn − pnyτ(n)

)
+ unG(yσ(n))− vnH(yα(n)) = 0

tends to ±∞.

Setting zn and Tn by (2.5) and (2.6) respectively and Proceeding as in the
proof of theorem 2.7 we obtain (2.7) and (2.8). Then using all these in (2.26)
we obtain

(2.27) ∆mzn = −vnG(yσ(n)) ≤ 0.

This implies zn,∆zn,∆
2zn, . . . ,∆

m−1zn are monotonic and single sign for large
n. As ∆m−1zn is decreasing we have

lim
n→∞

∆m−1zn = λ, −∞ ≤ λ < ∞.

We claim λ = −∞. Otherwise, −∞ < λ < ∞.
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Next, we show that lim infn→∞ yn = 0 as in the proof of theorem 2.7. Then
there exists a subsequence ynk

such that nk → ∞ and ynk
→ 0 as k → ∞. As

znk
< ynk

, we have lim sup znk
≤ 0. Again,

(2.28) zτ−1(nk) = yτ−1(nk) + pτ−1(nk)ynk
> −b2ynk

.

This implies lim infn→∞ zτ−1(nk) ≥ 0. As zn is monotonic and limn→∞ zn exists
(finitely or infinitely), we have limn→∞ zn = 0. Consequently, by applying
Lemma 2.3 we obtain

(−1)m+k∆kzn < 0, k = 0, 1, . . . ,m− 1, for large n,

and
lim
n→∞

∆kzn = 0, k = 0, 1, . . . ,m− 1.

Since m is odd, ∆zn < 0 for large n. Hence zn > 0 for n ≥ n2. This implies
yn > yτn which further implies lim infn→∞ yn > 0, a contradiction. Hence our
claim holds. Thus, λ = −∞. From (2.28), we have ynk

> − 1
b2
zτ−1(nk). This

implies that limn→∞ yn = ∞. Thus the proof of the theorem is complete.

Corollary 2.12. Under the assumptions of the above theorem every bounded
solution of (2.26) oscillates.

Remark 2.1. The results in this section hold when G is linear, sub-linear or
super linear.

Remark 2.2. Note that, even in the particular cases of our results for u ≡ 0 in
(1.1); i.e., for the equation

∆m
[
yn − pnyτ(n)

]
+ vnG(yσ(n)) = f(t),

Theorems 2.5, 2.7, 2.9 and 2.10 generalize the results in [4]. Due to this
generalization, particularly, by relaxing the conditions thatG is non-decreasing
and super linear, it is now possible to apply these results to the oscillatory and
asymptotic behaviour of higher-order neutral equation (1.6) with oscillating
coefficient qn in our next section, which was not hitherto possible.

3. Application to neutral equations with oscillating
coefficients

In this section, we find sufficient conditions so that every solution of the
higher order (m ≥ 2) neutral differential equation

(3.1) ∆m
[
yn − pnyτ(n)

]
+ qnG(yσ(n)) = fn

oscillates or tends to zero as n → ∞, where qn is allowed to change sign. Let
q+n = max{qn, 0} and q−n = max{−qn, 0}. Then qn = q+n − q−n and the above
equation can be written as

(3.2) ∆m
[
yn − pnyτ(n)

]
+ q+nG(yσ(n))− q−nG(yσ(n)) = fn.

Now, we proceed as in the previous section by setting vn = q+n , un = q−n and
H(x) = G(x). Assumptions (H3), (H4) become
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(C3)
∞∑
n0

q+n = ∞,

(C4)
∞∑
n0

nm−1q−n < ∞,

respectively, which are feasible conditions. Therefore, the study of (3.1) re-
duces to the study of (1.1) in Theorems 2.5, 2.7, 2.8, 2.10. Thus we can have
the following results for (3.1), where qn changes sign.

Theorem 3.1. Suppose that (H0),(H1), (H5),(C3) and (C4) hold. Suppose
that G is bounded. Assume that the sequence {pn} satisfies one of the condi-
tions (2.13) or (2.14). Then every unbounded solution of (3.1) oscillates.

Theorem 3.2. Assume (H0), (H1), (C4), (H6). Further assume that (2.12)
holds for vn = q+n . If pn satisfies one of the conditions of (2.13),(2.14), (2.15),
and (2.16) then every bounded solution of (3.1) oscillates or tends to zero as
n → ∞.

Theorem 3.3. Assume (H0), (H1)(H5), (H6), (C3) and (C4) to hold. Suppose
that pn lies in the range given by (2.13)or (2.14). Let G be bounded. Then
every solution of (3.1) oscillates or tends to zero as n → ∞.

Theorem 3.4. Assume (H0), (H1), (C4), (H5),(H6). Suppose b4 ≤ pn ≤ 0,
and the delay functions satisfy σ(τ(n)) = τ(σ(n)). Further, assume that G is
bounded. Suppose that (2.23) holds for vn = q+n . Let (2.24), and (2.25) hold.
Then every solution of (3.1) oscillates or tends to zero as n → ∞.

However, technique in [14] can not be applied to get results for (3.1) because
(H2) and (1.3) are incompatible conditions if G ≡ H.

For the results in this section, we need G to be bounded, continuous, and to
satisfy (H0) and (H1). The prototype of such a function G(y) is y2n sgn(y)/(1+
y2n). Next, we present some examples to illustrate our results and to prove
their significance.

Remark 3.1. The results in this work hold for fn ≡ 0.

All the results in the cited papers fail to apply to the neutral equations given
in the following examples, which illustrate some of the results of this section.

3.1. Examples.

Example 3.1. Consider the linear delay equation

(3.3) ∆m(yn) + qnyn−k =
(−1)m

2n+m
,

where m is any positive integer,k is a small positive odd integer and qn is as
given below.
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(3.4) qn =

{
(−1)m2−(k+m), n is even,

(−1)1+m2−(k+m), n is odd.

It is easily verified that eq. (3.3) satisfies all the conditions of Theorem 3.2.
As such, every bounded solution of (3.3) oscillates or tends to zero as n → ∞
and in fact, this equation admits a bounded non-oscillatory solution given by

yn =

{
2−n, n is odd,

0, n is even,

which tends to zero as n → ∞. However, none of the results in the papers
under our reference can be applied to (3.3).

Example 3.2. Consider the non-linear neutral equation

(3.5) ∆m(yn) + qnG(yn−k) = 0,

where m is any positive integer, k is a small positive integer odd or even and
G(u) = u2

(1+u2)
sgnu, qn is as given below.

(3.6) qn =

{
(−1)m 1+22k−2n

22k−n+m , n is odd,

(−1)m+1 1+22k−2n

22k−n+m , n is even.

It is easily verified that eq. (3.5) satisfies all the conditions of Theorem 3.3.
As such, every solution of (3.5) oscillates or tends to zero as n → ∞ and in
fact, this equation admits a oscillatory solution given by

yn =

{
−2−n, n is odd,

2−n, n is even,

which tends to zero as n → ∞. However, none of the results in the articles of
our reference can be applied to (3.5).

Remark 3.2. The results in this section extend the results of [15] to higher
order neutral difference equations.

Before we close, we would like to share a few things with the reader that
may be helpful for further research.

Final Comments

It would be interesting to study the oscillation of solutions to (3.1) or to
(3.2) for the case when qn oscillates and G(x) = x. It is so because when
we compare (3.2) with (1.1), we have G(x) = H(x) = x and (H2) not being
satisfied.

While studying (1.1) and (3.1), we assumed (H4). However, we do not know
yet, what would happen, if this condition is not met. Hence it would be very
interesting, to do some work in this direction.
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We observe that in the majority of the results for forced equations, non-
oscillatory solutions tend to zero at ∞. Can we change this asymptotic be-
haviour of the non-oscillatory solutions, by imposing additional conditions on
the coefficient functions of (1.1) or (3.1).
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[18] M. K. Yildiz and Ö. Öcalan. Oscillation results for higher order nonlinear neutral delay
difference equations. Appl. Math. Lett., 20(3):243–247, 2007.

Received May 2, 2014.

Radhanath Rath,
Registrar cum Principal,
Khallikote University,
Berhampur, 760001,
India
E-mail address: radhanathmath@yahoo.co.in

Ajit Kumar Bhuyan,
Department of Mathematics, SIT,
Bhubaneswar, Odisha,
India
E-mail address: akbhuyan13@gmail.com

Chitta Ranjan Behera,
Department of Mathematics, G. E. C.,
Bhubaneswar, Odisha,
India
E-mail address: crb sit@yahoo.co.uk


