POLYNOMIALS WITH A GIVEN CYCLIC GALOIS GROUP

JIŘÍ CIHLÁŘ, JAROSLAV FUKA, AND MARTIN KUŘIL

Abstract

For every natural number n such that $2 n+1$ is a prime, we present an explicit monic irreducible $n^{\text {th }}$ degree polynomial with integer coefficients whose Galois group over the field of all rational numbers is isomorphic to the cyclic group \mathbf{Z}_{n}. The discriminant of the splitting field of the presented polynomial is equal to $(2 n+1)^{n-1}$.

The topic of our paper is a special case of the Inverse Galois Problem. Recall this problem: Is a finite group G realizable over the field of all rational numbers \mathbf{Q} ? In other words, is there an extension $\mathbf{Q} \prec F$ such that $\operatorname{Gal}_{\mathbf{Q}} F \simeq G$? Note that this question only asks about the existence of an extension $\mathbf{Q} \prec F$. The second step is to construct a polynomial $f(x) \in \mathbf{Q}[x]$ whose splitting field over \mathbf{Q} is F, and so whose Galois group $\operatorname{Gal}_{\mathbf{Q}} f$ is G.

Note that the Kronecker-Weber Theorem states: Every finite abelian extension of \mathbf{Q} is a subfield of a cyclotomic field. So, if G is a finite abelian group, $f(x) \in \mathbf{Q}[x]$ is an irreducible polynomial whose splitting field over \mathbf{Q} is F and $\operatorname{Gal}_{\mathbf{Q}} F \simeq G$, then there exists a root of unity ξ such that F is a subfield of $\mathbf{Q}(\xi)$.

We are interested in the following task: A natural number n is given. Find a monic irreducible $n^{\text {th }}$ degree polynomial f with integer coefficients such that its Galois group over the field of all rational numbers \mathbf{Q} is isomorphic to the cyclic group \mathbf{Z}_{n}, i.e. $\operatorname{Gal}_{\mathbf{Q}} f \simeq \mathbf{Z}_{n}$.

It is easy to see that there are infinitely many polynomials solving our task. We formulate this in our Proposition 1 below.

More interesting is to present an explicit polynomial solving our task. In our theorem we give such a presentation in the case that $2 n+1$ is a prime number. Note that there exist infinitely many natural numbers n with the property $2 n+1$ is a prime.
Lemma 1. If n is a natural number then there is an irreducible polynomial $f \in$ $\mathbf{Q}[x]$ such that f has degree n and the Galois group of f over \mathbf{Q} is isomorphic to \mathbf{Z}_{n}.

[^0]Proof. See [1, page 187, Corollary 4.5].
Lemma 2. Let

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0} \in \mathbf{Q}[x] .
$$

For any $q \in \mathbf{Q}, q \neq 0$, we put

$$
f_{q}(x)=x^{n}+q a_{n-1} x^{n-1}+q^{2} a_{n-2} x^{n-2}+\ldots+q^{n-1} a_{1} x+q^{n} a_{0} .
$$

Then the following holds:
(i) $G a l_{\mathbf{Q}} f_{q}=G a l_{\mathbf{Q}} f$
(ii) f is irreducible if and only if f_{q} is irreducible.

Proof. (i) It is easy to see that $f(\alpha)=0 \Longleftrightarrow f_{q}(q \alpha)=0$, which implies that the splitting fields over \mathbf{Q} of the polynomials f and f_{q} are the same. Consequently, $\mathrm{Gal}_{\mathbf{Q}} f_{q}=\operatorname{Gal}_{\mathbf{Q}} f$.
(ii) Let $f(\alpha)=f_{q}(q \alpha)=0$. Then f is irreducible $\Longleftrightarrow[\mathbf{Q}(\alpha): \mathbf{Q}]=n$. Similarly, f_{q} is irreducible $\Longleftrightarrow[\mathbf{Q}(q \alpha): \mathbf{Q}]=n$. Since $\mathbf{Q}(\alpha)=\mathbf{Q}(q \alpha)$, we have f is irreducible if and only if f_{q} is irreducible.

Proposition 1. Let n be a natural number. There exist infinitely many monic irreducible $n^{\text {th }}$ degree polynomials with integer coefficients whose Galois groups over \mathbf{Q} are isomorphic to \mathbf{Z}_{n}.
Proof. By Lemma 1, there is an irreducible polynomial $f \in \mathbf{Q}[x]$ such that f has degree n and $\operatorname{Gal}_{\mathbf{Q}} f \simeq \mathbf{Z}_{n}$. We may assume that f is monic,

$$
f(x)=x^{n}+a_{n-1} x^{n-1}+a_{n-2} x^{n-2}+\ldots+a_{2} x^{2}+a_{1} x+a_{0} .
$$

Clearly, there is a non zero integer l with the property $l a_{0}, l a_{1}, \ldots, l a_{n-1} \in$ Z. For any natural number m, the polynomial $f_{m l}$ is a monic irreducible $n^{\text {th }}$ degree polynomial with integer coefficients whose Galois group over \mathbf{Q} is isomorphic to \mathbf{Z}_{n} (see Lemma 2). The polynomials $f_{m l}$ are pairwise distinct because the numbers $m^{n} l^{n} a_{0}$ are pairwise distinct (note that $a_{0} \neq 0$ since f is irreducible).
Lemma 3. Let n, j be integers, $0 \leq n, 0 \leq j \leq \frac{n}{2}$. Then

$$
\sum_{k=0}^{j}(-1)^{k}\binom{n-k}{k}\binom{n-2 k}{j-k}=1
$$

Proof. At first,

$$
\begin{aligned}
\binom{n-k}{k}\binom{n-2 k}{j-k} & =\frac{(n-k)!}{k!(n-2 k)!} \cdot \frac{(n-2 k)!}{(j-k)!(n-k-j)!} \\
& =\frac{(n-k)!}{k!(j-k)!(n-k-j)!} \cdot \frac{j!}{j!} \\
& =\binom{j}{k}\binom{n-k}{j} .
\end{aligned}
$$

So, we have to prove the identity

$$
\sum_{k=0}^{j}(-1)^{k}\binom{j}{k}\binom{n-k}{j}=1
$$

We use generating functions. Put

$$
f(x)=\sum_{k=0}^{\infty}(-1)^{k}\binom{j}{k} x^{k}, \quad g(x)=\sum_{k=0}^{\infty}\binom{n-j+k}{j} x^{k} .
$$

The j th coefficient of the product $f(x) g(x)$ is equal to $\sum_{k=0}^{j}(-1)^{k}\binom{j}{k}\binom{n-k}{j}$. Consequently, we would like to show that the j th coefficient of $f(x) g(x)$ is equal to 1. Clearly, $f(x)=(1-x)^{j}$. Further,

$$
\begin{aligned}
g(x) & =\frac{1}{x^{n-2 j}} \sum_{k=0}^{\infty} \frac{1}{j!}\left(x^{n-j+k}\right)^{(j)} \\
& =\frac{1}{j!} \cdot \frac{1}{x^{n-2 j}} \cdot\left(x^{n-j} \sum_{k=0}^{\infty} x^{k}\right)^{(j)} \\
& =\frac{1}{j!} \cdot \frac{1}{x^{n-2 j}} \cdot\left(x^{n-j} \cdot \frac{1}{1-x}\right)^{(j)} \\
& =\frac{1}{j!} \cdot \frac{1}{x^{n-2 j}} \cdot \sum_{i=0}^{j}\binom{j}{i}\left(x^{n-j}\right)^{(i)}\left(\frac{1}{1-x}\right)^{(j-i)} \\
& =\frac{1}{j!} \cdot \frac{1}{x^{n-2 j}} \cdot x^{n-j} \cdot j!\cdot \frac{1}{(1-x)^{j+1}}+ \\
& \frac{1}{j!} \cdot \frac{1}{x^{n-2 j}} \sum_{i=1}^{j} \frac{j!}{i!(j-i)!}(n-j) \ldots(n-j-i+1) x^{n-j-i} \frac{(j-i)!}{(1-x)^{j-i+1}} \\
= & \frac{x^{j}}{(1-x)^{j+1}}+\sum_{i=1}^{j}\binom{n-j}{i} \frac{x^{j-i}}{(1-x)^{j-i+1}} .
\end{aligned}
$$

Now,

$$
\begin{aligned}
f(x) g(x) & =\frac{x^{j}}{1-x}+\sum_{i=1}^{j}\binom{n-j}{i} x^{j-i}(1-x)^{i-1} \\
& =\left(x^{j}+x^{j+1}+x^{j+2}+\ldots\right)+\sum_{i=1}^{j}\binom{n-j}{i} x^{j-i}(1-x)^{i-1} .
\end{aligned}
$$

The polynomial $\binom{n-j}{i} x^{j-i}(1-x)^{i-1}$ has degree $j-1$, for any $i=1,2, \ldots, j$. Thus the j th coefficient of the product $f(x) g(x)$ is really equal to 1 .

Theorem 1. Let n be a natural number such that $2 n+1$ is a prime. Let

$$
f(x)=\sum_{0 \leq k \leq \frac{n}{2}}(-1)^{k}\binom{n-k}{k} x^{n-2 k}+\sum_{0 \leq k<\frac{n}{2}}(-1)^{k}\binom{n-k-1}{k} x^{n-2 k-1}
$$

Then f is a monic irreducible nth degree polynomial with integer coefficients such that $\operatorname{Gal}_{\mathbf{Q}} f \simeq \mathbf{Z}_{n}$.

Proof. Put $p=2 n+1, \xi=\cos \frac{2 \pi}{p}+i \sin \frac{2 \pi}{p}$. At first, we prove that $\operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}(\xi+$ $\left.\frac{1}{\xi}\right) \simeq \mathbf{Z}_{n}$. The following holds (see [1, page 135, 1.24.4]):

$$
\operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}(\xi) \simeq \mathbf{Z}_{p}^{\times} \simeq \mathbf{Z}_{p-1}=\mathbf{Z}_{2 n}
$$

So, $\operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}(\xi)$ contains a (unique) subgroup H of index n. Let $\tau \in \operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}(\xi)$, $\tau(\xi)=\xi^{p-1}=\frac{1}{\xi}$. The automorphism τ has order 2 since $\tau^{2}(\xi)=\tau(\tau(\xi))=$ $\tau\left(\frac{1}{\xi}\right)=\frac{1}{\tau(\xi)}=\xi$. So, $H=\langle\tau\rangle$. We will show that $H^{\prime}=\{u \in \mathbf{Q}(\xi) \mid \tau(u)=$ $u\}=\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. Then, by the Fundamental Theorem of Galois Theory ($[1$, page 129 , Theorem 1.22]), $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$ is normal over \mathbf{Q} and

$$
\operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}\left(\xi+\frac{1}{\xi}\right) \simeq \operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}(\xi) / H \simeq \mathbf{Z}_{n}
$$

Now, we show that really $H^{\prime}=\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. Since $\tau\left(\xi+\frac{1}{\xi}\right)=\tau(\xi)+\tau\left(\frac{1}{\xi}\right)=\frac{1}{\xi}+\xi$, it holds $\xi+\frac{1}{\xi} \in H^{\prime}$. It gives $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right) \prec H^{\prime}$. Altogether,

$$
\mathbf{Q} \prec \mathbf{Q}\left(\xi+\frac{1}{\xi}\right) \prec H^{\prime} \prec \mathbf{Q}(\xi) .
$$

By the Tower Theorem ([1, page 89, Proposition 2.1]),

$$
[\mathbf{Q}(\xi): \mathbf{Q}]=\left[\mathbf{Q}(\xi): H^{\prime}\right] \cdot\left[H^{\prime}: \mathbf{Q}\right]=\left[\mathbf{Q}(\xi): \mathbf{Q}\left(\xi+\frac{1}{\xi}\right)\right] \cdot\left[\mathbf{Q}\left(\xi+\frac{1}{\xi}\right): \mathbf{Q}\right]
$$

We know that $[\mathbf{Q}(\xi): \mathbf{Q}]=2 n$. Further, by the Fundamental Theorem of Galois Theory, $\left[\mathbf{Q}(\xi): H^{\prime}\right]=\left(H:\left\langle i_{\mathbf{Q}(\xi)}\right\rangle\right)=o(H)=2$. It remains to show that $\left[\mathbf{Q}(\xi): \mathbf{Q}\left(\xi+\frac{1}{\xi}\right)\right]=2$. Put $g(x)=x^{2}-\left(\xi+\frac{1}{\xi}\right) x+1$. Clearly, $g(x) \in$ $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)[x]$ and $g(\xi)=0$. Suppose that $g(x)$ is reducible over $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. Then $g(x)=(x-\alpha)(x-\beta), \alpha, \beta \in \mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. Thus $0=g(\xi)=(\xi-\alpha)(\xi-\beta)$, $\xi=\alpha$ or $\xi=\beta, \xi \in \mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. But then $\xi \in H^{\prime}, \tau(\xi)=\xi, \frac{1}{\xi}=\xi, 1=\xi^{2}$. It is a contradiction. Consequently, $g(x)$ is irreducible over $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. Remember that $g(\xi)=0$. So, $g(x)$ is the minimal polynomial of ξ over $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$. Then $\left[\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)(\xi): \mathbf{Q}\left(\xi+\frac{1}{\xi}\right)\right]=\operatorname{deg}(g)=2$. But $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)(\xi)=\mathbf{Q}(\xi)$ which yields $\left[\mathbf{Q}(\xi): \mathbf{Q}\left(\xi+\frac{1}{\xi}\right)\right]=2$.

Let us denote

$$
u_{i}=\xi^{i}+\xi^{p-i}=\xi^{i}+\frac{1}{\xi^{i}}, i \geq 1, u_{0}=1
$$

We have

$$
u_{0}+u_{1}+u_{2}+\cdots+u_{n}=0 .
$$

We will also use the next formulas for u_{1}^{k} which can be derived from the Binomial Theorem $(k \geq 0)$:

$$
\begin{aligned}
& u_{1}^{k}=\left(\xi+\frac{1}{\xi}\right)^{k} \\
&=\sum_{i=0}^{k}\binom{k}{i} \xi^{i}\left(\frac{1}{\xi}\right)^{k-i} \\
&=\sum_{i=0}^{k}\binom{k}{i} \xi^{2 i-k} \\
&=\sum_{0 \leq i<\frac{k}{2}}\left(\binom{k}{i} \xi^{2 i-k}+\binom{k}{k-i} \xi^{2(k-i)-k}\right)+\underbrace{\binom{k}{\frac{k}{2}} \xi^{0}}_{\text {for } k \text { even }} \\
&=\sum_{0 \leq i<\frac{k}{2}}\binom{k}{i}(\xi^{k-2 i}+\underbrace{\frac{1}{\xi^{k-2 i}}}_{\text {for } k \text { even }}) \\
&=\sum_{0 \leq i<\frac{k}{2}}^{\binom{k}{\frac{k}{2}} u_{0}} \\
&\binom{k}{i} u_{k-2 i}+\underbrace{\binom{k}{\frac{k}{2}} u_{0}}_{\text {for } k \text { even }} \\
&=\sum_{0 \leq i \leq \frac{k}{2}}\binom{k}{i} u_{k-2 i} .
\end{aligned}
$$

We have already shown that $\left[\mathbf{Q}\left(u_{1}\right): \mathbf{Q}\right]=n$. Clearly, f is a monic nth degree polynomial with integer coefficients. Suppose that $f\left(u_{1}\right)=0$. Then, since $\left[\mathbf{Q}\left(u_{1}\right): \mathbf{Q}\right]=n$ and $\operatorname{deg}(f)=n, f$ is a minimal polynomial of u_{1} over \mathbf{Q}. So, f is irreducible. Since $\mathbf{Q}\left(u_{1}\right)$ is normal over $\mathbf{Q}, f \in \mathbf{Q}[x]$ is irreducible, $f\left(u_{1}\right)=0$, it follows that $\mathbf{Q}\left(u_{1}\right)$ is a splitting field of the polynomial f over \mathbf{Q}. Thus $\operatorname{Gal}_{\mathbf{Q}} f=\operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}\left(u_{1}\right) \simeq \mathbf{Z}_{n}$. We have just seen that it remains to prove the equality $f\left(u_{1}\right)=0$. Let us compute:

$$
\begin{aligned}
f\left(u_{1}\right)= & \sum_{0 \leq k \leq \frac{n}{2}}(-1)^{k}\binom{n-k}{k} u_{1}^{n-2 k}+\sum_{0 \leq k<\frac{n}{2}}(-1)^{k}\binom{n-k-1}{k} u_{1}^{n-2 k-1} \\
= & \sum_{0 \leq k \leq \frac{n}{2}}(-1)^{k}\binom{n-k}{k} \cdot \sum_{0 \leq i \leq \frac{n}{2}-k}\binom{n-2 k}{i} u_{n-2 k-2 i} \\
& +\sum_{0 \leq k<\frac{n}{2}}(-1)^{k}\binom{n-k-1}{k} \cdot \sum_{0 \leq i<\frac{n}{2}-k}\binom{n-2 k-1}{i} u_{n-2 k-1-2 i}
\end{aligned}
$$

$$
\begin{aligned}
= & \sum_{0 \leq k \leq \frac{n}{2}} \sum_{0 \leq i \leq \frac{n}{2}-k}(-1)^{k}\binom{n-k}{k}\binom{n-2 k}{i} u_{n-2(k+i)} \\
& +\sum_{0 \leq k<\frac{n}{2}} \sum_{0 \leq i<\frac{n}{2}-k}(-1)^{k}\binom{n-1-k}{k}\binom{n-1-2 k}{i} u_{n-1-2(k+i)}
\end{aligned}
$$

Put $j=k+i$. Then

$$
\begin{aligned}
f\left(u_{1}\right)= & \sum_{0 \leq j \leq \frac{n}{2}} \sum_{k=0}^{j}(-1)^{k}\binom{n-k}{k}\binom{n-2 k}{j-k} u_{n-2 j} \\
& +\sum_{0 \leq j<\frac{n}{2}} \sum_{k=0}^{j}(-1)^{k}\binom{n-1-k}{k}\binom{n-1-2 k}{j-k} u_{n-1-2 j} \\
= & \sum_{0 \leq j \leq \frac{n}{2}} u_{n-2 j} \cdot \sum_{k=0}^{j}(-1)^{k}\binom{n-k}{k}\binom{n-2 k}{j-k} \\
& +\sum_{0 \leq j<\frac{n}{2}} u_{n-(2 j+1)} \cdot \sum_{k=0}^{j}(-1)^{k}\binom{n-1-k}{k}\binom{n-1-2 k}{j-k} .
\end{aligned}
$$

It follows from Lemma 3 that

$$
\begin{aligned}
f\left(u_{1}\right) & =\sum_{0 \leq j \leq \frac{n}{2}} u_{n-2 j}+\sum_{0 \leq j<\frac{n}{2}} u_{n-(2 j+1)} \\
& =u_{0}+u_{1}+u_{2}+\cdots+u_{n} \\
& =0
\end{aligned}
$$

The proof of our theorem is complete.
Problem 1. Formulate and prove analogous theorems for natural numbers n such that $k n+1$ is a prime $(k=3,4,5, \ldots)$.

Remark 1. For some concrete values of $n(n=5,8,9,11)$, the polynomial from the theorem can be found in the Appendix of the book [3].

At the end of our article, we would like to show that the discriminant of the splitting field (over the field of all rational numbers \mathbf{Q}) of the polynomial $f(x)$ from our theorem is equal to $(2 n+1)^{n-1}$. For the definition of the discriminant of an algebraic number field see [2, page 176].

Recall the notation. Let n be a natural number such that $2 n+1$ is a prime. We put $p=2 n+1, \xi=\cos \frac{2 \pi}{p}+i \sin \frac{2 \pi}{p}, u_{i}=\xi^{i}+\xi^{p-i}=\xi^{i}+\frac{1}{\xi^{i}}(i \geq 1)$.
Lemma 4. Let A be the ring of all algebraic integers in $\mathbf{Q}(\xi)$. Then A is a free abelian group with basis $\left\{1, \xi, \ldots, \xi^{p-2}\right\}$.

Proof. [4, page 82, Statement U].

Lemma 5. $u_{1}, u_{2}, \ldots, u_{n}$ is an integral basis for the ring D of algebraic integers in $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$.

Proof. Let $a_{1}, a_{2}, \ldots, a_{n} \in \mathbf{Q}, a_{1} u_{1}+a_{2} u_{2}+\cdots+a_{n} u_{n}=0$. Then

$$
\begin{aligned}
& a_{1} \xi+a_{1} \xi^{2 n}+a_{2} \xi^{2}+a_{2} \xi^{2 n-1}+\ldots+a_{n} \xi^{n}+a_{n} \xi^{n+1}=0 \\
& a_{1}+a_{1} \xi^{2 n-1}+a_{2} \xi+a_{2} \xi^{2 n-2}+\ldots+a_{n} \xi^{n-1}+a_{n} \xi^{n}=0
\end{aligned}
$$

Since the minimal polynomial of ξ over \mathbf{Q} is $x^{2 n}+x^{2 n-1}+\cdots+x+1$, we have $a_{1}=a_{2}=\ldots=a_{n}=0$ and the elements $u_{1}, u_{2}, \ldots, u_{n}$ are linearly independent over \mathbf{Q}. As $\left[\mathbf{Q}\left(\xi+\frac{1}{\xi}\right): \mathbf{Q}\right]=n$, we have $u_{1}, u_{2}, \ldots, u_{n}$ is a basis for $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$ over \mathbf{Q}. Now, we want to show that $D=\mathbf{Z} u_{1}+\mathbf{Z} u_{2}+\cdots+$ $\mathbf{Z} u_{n}$. Since ξ is an algebraic integer and the set of algebraic integers forms a ring, we have $u_{1}, u_{2}, \ldots, u_{n} \in D$. So, it remains to prove the inclusion $D \subseteq \mathbf{Z} u_{1}+\mathbf{Z} u_{2}+\cdots+\mathbf{Z} u_{n}$. Let $d \in D$. There exist $b_{1}, b_{2}, \ldots, b_{n} \in \mathbf{Q}$ such that $d=b_{1} u_{1}+b_{2} u_{2}+\cdots+b_{n} u_{n}$. We are going to prove that $b_{1}, b_{2}, \ldots, b_{n}$ are integers. By Lemma 4 , since clearly $D \subseteq A$, there exist integers $c_{0}, c_{1}, \ldots, c_{2 n-1}$ such that $d=c_{0}+c_{1} \xi+\cdots+c_{2 n-1} \xi^{2 n-1}$. Recall that $1=-\xi-\xi^{2} \ldots-\xi^{2 n}$. We have obtained the following expressions for d :

$$
\begin{gathered}
d=b_{1} \xi+b_{1} \xi^{2 n}+b_{2} \xi^{2}+b_{2} \xi^{2 n-1}+\cdots+b_{n} \xi^{n}+b_{n} \xi^{n+1} \\
d=\left(c_{1}-c_{0}\right) \xi+\left(c_{2}-c_{0}\right) \xi^{2}+\cdots+\left(c_{2 n-1}-c_{0}\right) \xi^{2 n-1}-c_{0} \xi^{2 n}
\end{gathered}
$$

The elements $1, \xi, \ldots, \xi^{2 n-1}$ are linearly independent over \mathbf{Q}. Consequently, the elements $\xi, \xi^{2}, \ldots, \xi^{2 n}$ are also linearly independent over \mathbf{Q}. Now, we compare our two expressions for d and get the equalities

$$
b_{i}=c_{i}-c_{0}
$$

for $i=1,2, \ldots, n$. We see that $b_{1}, b_{2}, \ldots, b_{n}$ are integers.
Proposition 2. The discriminant of the splitting field of the polynomial $f(x)$ from the theorem is equal to $(2 n+1)^{n-1}$.
Proof. We have shown in the proof of the theorem that $\mathbf{Q}\left(\xi+\frac{1}{\xi}\right)$ is a splitting field of the polynomial $f(x)$ over \mathbf{Q}. Let us denote the discriminant of $\mathbf{Q}(\xi+$ $\left.\frac{1}{\xi}\right) / \mathbf{Q}$ by δ. According to the definition, in view of Lemma 5 ,

$$
\delta=\operatorname{discr}\left(u_{1}, u_{2}, \ldots, u_{n}\right) .
$$

Let $1 \leq i \leq 2 n, \tau_{i} \in \operatorname{Gal}_{\mathbf{Q}} \mathbf{Q}(\xi), \tau_{i}(\xi)=\xi^{i}$. Then

$$
\tau_{i}\left(u_{1}\right)=\tau_{i}\left(\xi+\frac{1}{\xi}\right)=\tau_{i}(\xi)+\frac{1}{\tau_{i}(\xi)}=\xi^{i}+\frac{1}{\xi^{i}}=u_{i}
$$

Since $f\left(u_{1}\right)=0$ (see the proof of our theorem), $f\left(u_{i}\right)=0$ and f is the minimal polynomial of u_{i} over \mathbf{Q}. Note that the coefficient of the polynomial f at x^{n-1} is $(-1)^{0}\binom{n-0-1}{0}=1$. Thus $\operatorname{Tr}\left(u_{i}\right)=-1$. Let $1 \leq j<i \leq n$. We can compute

$$
u_{i} u_{j}=\left(\xi^{i}+\frac{1}{\xi^{i}}\right)\left(\xi^{j}+\frac{1}{\xi^{j}}\right)=\xi^{i+j}+\xi^{i-j}+\frac{1}{\xi^{i-j}}+\frac{1}{\xi^{i+j}}=u_{i+j}+u_{i-j}
$$

$$
\operatorname{Tr}\left(u_{i} u_{j}\right)=\operatorname{Tr}\left(u_{i+j}+u_{i-j}\right)=\operatorname{Tr}\left(u_{i+j}\right)+\operatorname{Tr}\left(u_{i-j}\right)=(-1)+(-1)=-2 .
$$

Similarly, for $1 \leq i \leq n$,

$$
\begin{gathered}
u_{i} u_{i}=\left(\xi^{i}+\frac{1}{\xi^{i}}\right)\left(\xi^{i}+\frac{1}{\xi^{i}}\right)=\xi^{2 i}+1+1+\frac{1}{\xi^{2 i}}=u_{2 i}+2, \\
\operatorname{Tr}\left(u_{i} u_{i}\right)=\operatorname{Tr}\left(u_{2 i}+2\right)=\operatorname{Tr}\left(u_{2 i}\right)+\operatorname{Tr}(2)=-1+2 n
\end{gathered}
$$

The traces of elements were computed using the elementary facts mentioned in [4, pages 16-17, Paragraph 10]. Finally,

$$
\delta=\operatorname{det}\left(\begin{array}{cccc}
2 n-1 & -2 & \ldots & -2 \\
-2 & 2 n-1 & \ldots & -2 \\
\vdots & \vdots & \ddots & \vdots \\
-2 & -2 & \ldots & 2 n-1
\end{array}\right)=(2 n+1)^{n-1} .
$$

Acknowledgement

The authors thank the referee for his suggestions about the paper.

References

[1] M. H. Fenrick. Introduction to the Galois correspondence. Birkhäuser Boston, Inc., Boston, MA, second edition, 1998.
[2] K. Ireland and M. Rosen. A classical introduction to modern number theory, volume 84 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1990.
[3] G. Malle and B. H. Matzat. Inverse Galois theory. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 1999.
[4] P. Ribenboim. Algebraic numbers. Wiley-Interscience [A Division of John Wiley \& Sons, Inc.], New York-London-Sydney, 1972. Pure and Applied Mathematics, Vol. 27.

Received November 6, 2013.

Jiří Cihláñ,
Department of Mathematics,
Faculty of Science,
J. E. Purkyne University

Ceske mladeze 8
40096 Usti nad Labem
Czech Republic
E-mail address: jiri.cihlar@ujep.cz

Martin Kuřil (corresponding author),
Department of Mathematics,
Faculty of Science,
J. E. Purkyne University

Ceske mladeze 8
40096 Usti nad Labem
Czech Republic
E-mail address: martin.kuril@ujep.cz

[^0]: 2010 Mathematics Subject Classification. 12F12, 11R20.
 Key words and phrases. Galois group of a polynomial, discriminant of a number field.

