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ON MODAL BE–ALGEBRAS

O. YOUSEFI KIA, A. REZAEI AND A. BORUMAND SAEID

Abstract. In this paper, we introduce modal BE-algebra and study some
structural properties of modal BE-algebra. The notions of modal upper
set, modal BE-filter, BE −�-tautology filter, dual modal BE-algebra and
quotient modal BE-algebraare introduced and their basic properties are
investigated. We will prove that every self- distributive BE-algebra, induce
a dual modal BE-algebra. Finally, we will prove that every dual modal
BE-algebra is a modal BE-algebras under special conditions.

1. Introduction and Preliminaries

Modal logic is a theoretical field that is important not only in philosophy,
where logic in general is commonly studied, but also in mathematics, linguis-
tics, computer and information sciences as well. Classical modal logics have
been a matter of growing interest in the last decades due to their role in the
formalization of several aspects of computer science. The earliest paper on a
many-valued modal logic appears to have been Segerberg (1967), which spec-
ifies some 3-valued modal logics.

Modal logics and many-valued logics were both historically introduced in or-
der to free oneself from the rigidity of propositional logic. With many-valued
logics, the logician can choose the truth values of the propositions in a set
with more than two elements. With modal logics, the logician introduce a
new connector whose aim is, for instance, to model the possibility. Many
systems with various kind of modal operators have been constructed in order
to provide effective formalisms for talking about time, space, knowledge, be-
liefs, actions, obligations, temporal, spatial, epistemic, dynamic, deontic, and
so forth. However, modern applications often require rather complex formal
models and corresponding languages that are capable of reflecting different
features of the application domain [1, 9, 10].

2010 Mathematics Subject Classification. 06F35, 03G25.
Key words and phrases. Self distributive, commutative, bounded, involutory, modal BE–

algebra, modal (normal) BE–filter.
195



196 O. YOUSEFI KIA, A. REZAEI AND A. BORUMAND SAEID

Furthermore, the study of BCK/BCI–algebras was initiated by K. Iséki in
1966 as a generalization of propositional logic. There exist several generaliza-
tion of BCK/BCI–algebras, such as BCH–algebras, d–algebras, B–algebras,
BH–algebras, etc. Especially, the notion of BE–algebras was introduced by
H. S. Kim and Y. H. Kim [13], in which was deeply studied by S. S. Ahn and
et al. in [2, 3, 4], Walendziak in [18], A. Rezaei and et al. in [7, 8, 15, 16, 17].

The idea of introducing modal operators in residuated lattices and other
algebraic structures has been adapted by some researchers, for several pur-
pose: Belohlavek and Vychodil [6] defined a so-called ”truth stresser” ν for a
residuated lattice (L,∪,∩, ∗,→, 0, 1) as a unary operator on L such that

• νx ≤ x,
• ν1 = 1,
• ν(x→ y) ≤ νx→ νy, for all x, y ∈ L.

Ono [14] defined modal structures (L,∪,∩, ∗,→, ν, 0, 1) in which (L,∪,∩, ∗,→
, 0, 1) is a residuated lattice and ν is a unary operator on L such that:

• νx ≤ x,
• νx ≤ ννx,
• ν1 = 1,
• ν(x ∩ y) ≤ νx
• νx ∗ νy ≤ ν(x ∗ y), for all x, y ∈ L.

Hajek [11] used a unary operator 4 on the BL–algebra L to get the algebra
BL4 such that axioms of BL4 are those of BL plus:

• 4φ ∨ ¬4φ,
• 4(φ ∨ ψ) =⇒ (4φ ∨4ψ),
• 4φ =⇒ φ,
• 4φ =⇒ 44φ,
• 4(φ =⇒ ψ) =⇒ (4φ =⇒ 4ψ).

The axioms evidently resemble modal logic with 4 as necessity; but in the
axiom on 4(φ ∨ ψ), 4 be haves as possibility rather than necessity.

Magdalena and Rachunek [12] defined a unary operator f on anMV –algebra
A as follows: If A = (A,⊕,¬, 0) is anMV –algebra where x�y = ¬(¬x⊕¬y),
then f : A→ A is called a modal operator on A satisfying:

• x ≤ f(x),
• f(f(x)) = f(x),
• f(x� y) = f(x)� f(y), for all x, y ∈ A.

In fact the modal operator f be haves as possibility ♦ in modal logics. All
above motivates us to introduce a modal operator on BE–algebra to get a
modal BE–algebra as an algebraic structure.

This paper has been organized in three sections. In section 1, we give some
definitions and some previous results. In section 2 we define modal BE–
algebras and modal BE–filters. Finally, in section 3 we construct quotient
modal BE–algebra via the modal normal BE–filter.
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Definition 1.1 ([13]). An algebra (X; ∗, 1) of type (2, 0) is called a BE–
algebra if following axioms hold:

(BE1) x ∗ x = 1,
(BE2) x ∗ 1 = 1,
(BE3) 1 ∗ x = x,
(BE4) x ∗ (y ∗ z) = y ∗ (x ∗ z), for all x, y, z ∈ X.

We introduce a relation ” ≤ ” on X by x ≤ y if and only if x ∗ y = 1.

Definition 1.2 ([13]). A BE–algebra X is said to be self distributive if

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z), for all x, y, z ∈ X.

Proposition 1.3 ([16]). Let X be a self distributive. If x ≤ y, then

(i) z ∗ x ≤ z ∗ y, and y ∗ z ≤ x ∗ z,
(ii) y ∗ z ≤ (z ∗ x) ∗ (y ∗ x), for all x, y, z ∈ X.

Definition 1.4 ([15, 18]). A BE–algebra X is said to be commutative if

(x ∗ y) ∗ y = (y ∗ x) ∗ x, for all x, y ∈ X.

Proposition 1.5 ([18]). If X is a commutative BE–algebra, then for all x, y ∈
X, x ∗ y = 1 and y ∗ x = 1 imply x = y.

Proposition 1.6 ([13]). Let X be a BE–algebra. Then

(i) x ∗ (y ∗ x) = 1,
(ii) y ∗ ((y ∗ x) ∗ x) = 1, for all x, y ∈ X.

Definition 1.7 ([13]). A subset F of X is called a filter of X if

(F1) 1 ∈ F ,
(F2) x ∈ F and x ∗ y ∈ F imply y ∈ F , for all x, y ∈ X.

Definition 1.8 ([19]). A filter F is said to be normal if it satisfies the following
condition:

(NF ) x ∗ y ∈ F ⇒ [(z ∗ x) ∗ (z ∗ y) ∈ F and (y ∗ z) ∗ (x ∗ z) ∈ F ],

for all x, y, z ∈ X.

2. Modal BE-algebras

Definition 2.1. An algebra (X; ∗,�, 1) of type (2, 1, 0) is called a modal BE–
algebra if it satisfies the following:

(BE) (X; ∗, 1) is a BE–algebra,
(MBE1) �1 = 1,
(MBE2) �x ≤ x,
(MBE3) �x = ��x,
(MBE4) �(x ∗ y) = �x ∗�y,
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From now on, for simply in this section X is a modal BE–algebra, unless
otherwise is stated.
Example 2.2. (i). Let X = {1, a, b, c}. Define the operations ” ∗ ” and ”�” on
X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 a 1 c
c 1 b 1 1

x 1 a b c
� 1 a c c

Then, (X; ∗,�, 1) is a modal BE–algebra.
(ii). Let X = N and ” ∗ ” be the binary operation on X defined by

x ∗ y =

{
y, if x = 1,

1, if x 6= 1.

Then, (X; ∗, 1) is a BE–algebra. Now, if we define the unary operation ”�”
such as:

n−times︷ ︸︸ ︷
(� · · ·�)x =


1, if x = 1,

2, if x = 2,

(x− n) + (n− 1), if x 6= 1, 2.

Then, (X; ∗,�, 1) is a modal BE–algebra.
Proposition 2.3. Let X be a modal BE–algebra. Then

(i) if x ≤ y, then �x ≤ �y,
(ii) �x ∗�x = 1,
(iii) �x ∗ 1 = 1,
(iv) 1 ∗�x = �x,
(v) �x ∗ (�y ∗�z) = �y ∗ (�x ∗�z), for all x, y, z ∈ X.

For every modal BE–algebra X, put �X = {�x : x ∈ X}.
IfX is a modalBE–algebra, then�X = X does not hold, necessary. Indeed,

in Example 2.2 (i) we have �X = {1, a, c} 6= X.

Theorem 2.4. Let (X; ∗, 1) be a BE–algebra. Then (�X; ∗, 1) is a BE–
algebra.

Proof. By using Proposition 2.3, the proof is clear. �
Definition 2.5. Let (X; ∗,�, 1) be a modal BE–algebra and x, y ∈ X. Modal
upper set of x, y is denoted by mA(x, y) and defined as follows:

mA(x, y) = {z ∈ X : x ∗ (y ∗�z) = 1}.

Obviously, it is a non empty set. Because 1 ∈ mA(x, y).

Remark 2.6. The upper set A(x, y) does not equal to modal upper setmA(x, y).
Indeed, in the Example 2.2(i), mA(1, b) = {1, a} 6= {1, a, b} = A(1, b).
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Proposition 2.7. If �y = y, then A(1, y) = mA(1, y), for all x ∈ X.

Proof. Let y ∈ X. Then we have

A(1, y) = {z ∈ X : y ∗ z = 1}
= {z ∈ X : �(y ∗ z) = 1}
= {z ∈ X : �y ∗�z = 1}
= {z ∈ X : y ∗�z = 1}
= mA(1, y).

�
Proposition 2.8. mA(x, 1) ⊆ mA(x, y), for all x, y ∈ X.

Proof. Let z ∈ mA(x, 1). Then 1 = x ∗ (1 ∗�z) = x ∗�z. Now, we get that

x ∗ (y ∗�z) = y ∗ (x ∗�z) = 1.

Therefore, z ∈ mA(x, y). �
Theorem 2.9. Let X be a modal BE–algebra and x, y ∈ X. Then

(i) mA(�x, 1) ⊆ mA(�x, y),
(ii) if mA(�x, 1) is a filter of X and y ∈ mA(�x, 1), then

mA(�x, y) ⊆ mA(�x, 1).
Proof. (i). Let z ∈ mA(�x, 1). Then �x ∗ (1 ∗ �z) = 1, i.e. �x ∗ �z = 1.
Hence �x ∗ (y ∗�z) = y ∗ (�x ∗�z) = y ∗ 1 = 1, i.e. z ∈ mA(�x, y).

(ii). Since �x ∗ (1 ∗ �x) = 1, we can see that �x ∈ mA(�x, 1). Now, let
y ∈ mA(�x, 1), then we have 1 = �x∗�y = �x∗ (1∗�y) ∈ mA(�x, 1). Thus

�y ∈ mA(�x, 1).
Let z ∈ mA(�x, y). Then by using (BE4)

1 = �x ∗ (y ∗�z) = y ∗ (�x ∗�z).
Now, by (MBE1), (MBE3) and (MBE4) we get that

1 = �1 = �(y ∗ (�x ∗�z)) = �y ∗�(�x ∗�z)
= �y ∗ (�x ∗�z) ∈ mA(�x, 1).

Hence �x ∗�z ∈ mA(�x, 1). Thus �z ∈ mA(�x, 1) and so

1 = �x ∗ (1 ∗��z) = �x ∗ (1 ∗�z).
Therefore, z ∈ mA(�x, 1). �
Proposition 2.10. Let F be a filter of X. Then �mA(x, y) ⊆ F , for all
x, y ∈ F .

Proof. Let z ∈ �mA(x, y), then there exists a c ∈ mA(x, y) such that z = �c.
Hence x ∗ (y ∗�c) = 1 ∈ F . Thus y ∗�c ∈ F . Therefore, z = �c ∈ F . �
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Theorem 2.11. Let F be a subset of X containing 1. �F is a modal filter if
and only if x ≤ y ∗ z imply z ∈ �F , for all x, y ∈ �F .
Proof. Let �F be a modal filter and x ≤ y ∗ z, for all x, y ∈ �F . Since
x, y ∈ �F and �F is a modal filter, we have y ∗ z ∈ �F and so z ∈ �F .

Conversely, 1 ∈ �F , since 1 ∈ F . If x, x ∗ y ∈ �F , since x ∗ y ≤ x ∗ y, we
can see that by hypothesis y ∈ �F . Then there is a z ∈ F such that y = �z.
Therefore, �y = �(�z) = �z = y ∈ �F . �
Theorem 2.12. Let F be a subset of X containing 1. �F is a modal filter of
X if and only if x ∈ �F , y ∈ X r�F , then x ∗ y ∈ X r�F .
Proof. Assume that �F is a modal filter of X and let x, y ∈ X be such that
x ∈ �F and y ∈ X r�F . If x ∗ y /∈ X r�F . Then x ∗ y ∈ �F , i.e. y ∈ �F .
which is a contradiction. Hence x ∗ y ∈ X r�F .

Conversely, 1 ∈ F by hypothesis. Let x, x ∗ y ∈ �F . Let y /∈ �F . By
assumption x∗y ∈ XrF . This is a contradiction. Hence y ∈ �F . Thus there
is a z ∈ F such that y = �z. Therefore, �y = �(�z) = �z = y ∈ �F . �
Theorem 2.13. Let F be a modal filter. Then

�F =
⋃

x,y∈F

�mA(�x, y).

Proof. Let F be a modal filter of X and consider �z, for z ∈ F . Since

�z ∗ (1 ∗�z) = �z ∗ (1 ∗��z) = 1 by (MBE3),

we have �z ∈ mA(�z, 1). Now, by Proposition 2.9, we have

�z ∈ mA(�z, 1) ⊆ mA(�z, y).
Thus �z = ��z ∈ �mA(�z, 1) ⊆ �mA(�z, y). Therefore,

�F ⊆ �mA(�z, y) ⊆
⋃
y∈F

�mA(�z, y).

Now, by Theorem 2.10, �mA(x, y) ⊆ F , for all x, y ∈ F . Thus �mA(�x, y) ⊆
�F , for all x, y ∈ F . Therefore,

⋃
x,y∈F

�mA(�x, y) ⊆ �F . �

Definition 2.14. A (normal)filter F of a modal BE–algebra X is called a
modal (normal)BE–filter if it closed under � (i.e. if x ∈ F , then �x ∈ F , for
all x ∈ X).

Example 2.15. In Example 2.2(i), F1 = {1, a} is a modal BE–filter of X and
F2 = {1, b} is a filter but it is not a modal BE–filter.

Theorem 2.16. If {Fi}i∈I is a family of modal BE–filters of X, then
⋂
i∈I

Fi

is a modal BE–filter of X, too.
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Proposition 2.17. Let X be a modal BE–algebra and ker(�) := {x ∈ X :
�x = 1}. Then

(i) ker(�) is a filter of X,
(ii) ker(�) is closed under �.

Proof. (i). Since �1 = 1, we have 1 ∈ ker(�). Hence ker(�) is a non-empty
set. Now, let x ∗ y ∈ ker(�) and x ∈ ker(�). Thus �(x ∗ y) = �(x) = 1. By
using (MBE4) and (BE3) we have

1 = �(x ∗ y) = �x ∗�y = 1 ∗�y = �y.
Therefore, y ∈ ker(�).

(ii). Let x ∈ ker(�). Then �x = 1. Using (MBE1) and (MBE3) we have

1 = �1 = �(�x).
Therefore, �x ∈ ker(�). �
Definition 2.18. The ker(�) is called the �–tautology filter related to BE–
algebra X or is called a BE–�–tautology filter.

Example 2.19. In Example 2.2(i), F1 = {1} is a BE–�–tautology filter.

Proposition 2.20. Let [α, 1] = {x ∈ X : α ≤ x ≤ 1}, where X is a commu-
tative self distributive BE–algebra and α ∈ X. Then ker(�α) = [α, 1], where
�α(x) = α ∗ x.

Proof. Let x ∈ [α, 1]. Then, α ≤ x ≤ 1. Hence by using self distributivity and
commutativity 1 = α ∗ α ≤ α ∗ x ≤ α ∗ 1 = 1 and so �α(x) = α ∗ x = 1.
Therefore, x ∈ ker(�α).

Conversely, let x ∈ ker(�α). Then �α(x) = 1, i.e. α ∗ x = 1. Hence α ≤ x
and so x ∈ [α, 1]. Therefore, [α, 1] is a BE–�–tautology filter. �
Definition 2.21. An algebra (X; ∗,�, 1) of type (2, 1, 0) is called a dual modal
BE–algebra if it satisfies the following:

(BE) (X; ∗, 1) is a BE–algebra,
(MBE1) �1 = 1,

(dMBE2) x ≤ �x,
(MBE3) �x = ��x,
(MBE4) �(x ∗ y) = �x ∗�y, for all x, y ∈ X.

Example 2.22. (i). Let X = {1, a, b, c}. Define the operations ” ∗ ” and ”�”
on X as follows:

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 a 1 c
c 1 b 1 1

x 1 a b c
� 1 a 1 1

Then, (X; ∗,�, 1) is a dual modal BE–algebra.
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(ii). Let X = N and ” ∗ ” be the binary operation on X defined by

x ∗ y =

{
y, if x = 1

1, if x 6= 1

Then, (X; ∗, 1) is a BE–algebra. Now, we define the unary operation ”�” on
X as:

n−times︷ ︸︸ ︷
(� · · ·�)x =

{
1, if x = 1

(x+ n)− (n− 1), if x 6= 1

Therefore, (X; ∗,�, 1) is a dual modal BE–algebra.

Proposition 2.23. Let X be a self distributive BE–algebra. Define �α(x) =
α ∗ x, for all x ∈ X. Then (X; ∗,�α, 1) is a dual modal BE–algebra.

Proof. Clearly, (X; ∗, 1) is a BE–algebra. For (MBE1), we have �α(1) =
α ∗ 1 = 1, by (BE3). Since x ∗ (α ∗ x) = α ∗ (x ∗ x) = α ∗ 1 = 1, we have
x ≤ α ∗ x, i.e. x ≤ �α(x). Hence (dMBE3) is valid. For (MBE4),

�α(�α(x)) = α ∗ (α ∗ x)) = (α ∗ α) ∗ (α ∗ x) = 1 ∗ (α ∗ x) = α ∗ x = �α(x).

Also, �α(x ∗ y) = α ∗ (x ∗ y) = (α ∗ x) ∗ (α ∗ y) = �α(x) ∗�α(y). �

3. Quotient modal BE–algebra

For a modal normal BE–filter F of X we define the binary relation ∼F in
the following way:

x ∼F y ⇔ x ∗ y ∈ F and y ∗ x ∈ F.

Clearly ∼F is reflexive and symmetry. Now, let x ∼F y and y ∼F z. Then
x ∗ y, y ∗ x, y ∗ z, z ∗ y ∈ F . Since F is a normal filter, (y ∗ z) ∗ (x ∗ z) ∈ F .
Hence x ∗ z ∈ F . By a similar way, z ∗ x ∈ F . Consequently, x ∼F z. So, ∼F

is a transitive relation. Thus ∼F is an equivalence relation on X.

Theorem 3.1. [19] Let F be a normal filter of a BE–algebra X. Then ∼F is
a congruence relation on X.

We have
Fx = {y ∈ X : x ∼F y}

Also, define the operations ”�” and ” ∗ ” on congruence classes as follows:

�Fx = F�x and Fx ∗ Fy = Fx∗y.

We show that � and ∗ on congruence classes are well defined. Let Fx = Fy.
Then x ∼F y and y ∼F x, i.e. x ∗ y, y ∗ x ∈ F . We get that �x ∗ �y =
�(x∗y) ∈ F and �y ∗�x = �(y ∗x) ∈ F , since F is a modal filter. Therefore,
�x ∼F �y, i.e. F�x = F�y. Equivalently, �Fx = �Fy. Also, let Fx = Fy and
Fu = Fv, i.e. x ∼F y, y ∼F x and u ∼F v, v ∼F u. Hence x ∗ y, y ∗ x ∈ F and
u ∗ v, v ∗ u ∈ F . Since F is a normal filter, (z ∗ x) ∗ (z ∗ y), (z ∗ y) ∗ (z ∗ x) ∈ F .
Therefore, z ∗ x ∼F z ∗ y. By a similar way x ∗ z ∼F y ∗ z. Now, x ∗ u ∼F y ∗ u
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and y ∗ u ∼F y ∗ v. Since ∼F is transitive, we have x ∗ u ∼F y ∗ v. Therefore,
Fx∗u = Fy∗v, i.e. Fx ∗ Fu = Fy ∗ Fv. Set

X
∼F

:= {[x] : x ∈ X} = {Fx : x ∈ X}.
It can be easily seen that F1 = F . Since:

x ∈ F1 ⇔ x ∼F 1

⇔ x ∗ 1 = 1, 1 ∗ x = x ∈ F

⇔ x ∈ F,

we define a binary operation ” ∗ ” on X
∼F

as follows:

Fx ∗ Fy = Fx∗y and �Fx = F�x.

We saw in above, this binary operation is well-defined.
We can define an order such as ” ≤ ” on X

∼F
as follows:

Fx ≤ Fy ⇔ x ∗ y = 1.

Theorem 3.2. ( X
∼F

; ∗,�, F ) is a modal BE–algebra.

Proof. By Proposition 3.11 of [19], ( X
∼F

; ∗, F1) is a BE–algebra,

(MBE1) �F1 = F�1 = F1 = F = 1 X
∼F

,

(MBE2) �Fx = F�x ≤ Fx, since �x ∗ x = 1,
(MBE3) �Fx = F�x = F��x = �F�x = ��Fx,
(MBE4) �(Fx ∗Fy) = �Fx∗y = F�(x∗y) = F�x∗�y = F�x ∗F�y = �Fx ∗�Fy. �

Theorem 3.3. Let F be a modal normal BE–filter of a commutative modal
BE–algebra X. Then ( X

∼F
; ∗,�, F ) is a commutative modal BE–algebra.

Proof. Let Fx, Fy ∈ X
∼F

. Then

(Fx ∗ Fy) ∗ Fy = (Fx∗y) ∗ Fy

= F(x∗y)∗y

= F(y∗x)∗x

= Fy∗x ∗ Fx

= (Fy ∗ Fx) ∗ Fx. �

Example 3.4. Let X = {1, a, b, c}. Define the operations ” ∗ ” and ”�” on X
as follow:

∗ 1 a b c
1 1 a b c
a 1 1 1 1
b 1 a 1 c
c 1 b 1 1

x 1 a b c
� 1 a b a

Then (X; ∗,�, 1) is a modal BE–algebra, F = {1, b} is a modal normal BE–
filter, F1 = {b, 1} = F , Fa = {a, c}, Fb = {b, c, 1} and Fc = {a, c}. Hence
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( X
∼F

; ∗,�, F1 = F ) is a modalBE–algebra, where X
∼F

= {{b, 1}, {a, c}, {b, c, 1}}
with the following table:

∗ F1 Fa Fb

F1 F1 Fa Fb

Fa F1 F1 F1

Fb F1 Fa F1

Let (X; ∗,�, 1) be a dual modal BE–algebra. We define

Fx = {y ∈ X : x ∼F y}
Also, define the operations ”�” and ” ∗ ” on congruence classes as follows:

�Fx = F�x and Fx ∗ Fy = Fx∗y.

Then by a similar way ( X
∼F

; ∗,�, F ) is a dual modal BE–algebra. Because, it

remains only to prove the condition (dMBE2). Since x ∗�x = 1, we get

Fx ≤ �Fx = F�x.
Theorem 3.5. Let X be a modal BE–algebra. Then ( X

∼F
; ∗,�, F ) is a dual

modal BE–algebra if and only if the relation ≤ has been defined as follows:

Fx ≤ Fy ⇐⇒ y ∗ x = 1.

Proof. Since X is a modal BE–algebra, we have �x∗x = 1. Thus Fx ≤ F�x =
�Fx. Therefore, the condition (dMBE2) is valid. �
Theorem 3.6. Let (X; ∗,�, 1) be a dual modal BE–algebra. Let the relation ≤
has been defined as

Fx ≤ Fy ⇐⇒ y ∗ x = 1.

Then ( X
∼F

; ∗,�, F ) is a modal BE–algebra. In particular, if (X; ∗,�, 1) is a
commutative dual modal BE–algebra and the operator � is one-to-one, then
the structure (X; ∗,�, 1) is a modal BE–algebra.

Proof. Clearly ( X
∼F

; ∗,�, F ) is a modal BE–algebra by Theorem 3.2. Since
X is a commutative BE-algebra then every filter is a normal filter. Hence,
F1 = {1} is a normal filter. Now, let

Fx = {y ∈ X : x ∼F y and �x = �y}.
Hence the equivalence class Fx = {x} (in particular F1 = {1}), since � is
one-to-one. Thus the natural map π : X → X

∼F1
where π(x) = [x]F1 , is an

isomorphism. Now, we can easily see that (X; ∗,�, 1) is a modal BE–algebra.
�

4. Conclusion and future research

In this paper, we introduced the notion of modal BE–algebras and get some
results.

In the future work, we try assemble of calculus relative to different kinds of
modal algebraic structure.
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’96 (Brno, 1996), volume 6 of Lecture Notes Logic, pages 23–33. Springer, Berlin, 1996.
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