Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 31 (2015), 187-194 www.emis.de/journals ISSN 1786-0091

FIXED POINTS THEOREMS FOR MONOTONE SET-VALUED MAPS IN PSEUDO-ORDERED SETS

ABDELKADER STOUTI

ABSTRACT. In this paper, we first establish the existence of the greatest and the least fixed points for monotone set-valued maps defined on nonempty pseudo-ordered sets. Furthermore, we prove that the set of all fixed points of two classes of monotone set-valued maps defined on a non-empty complete trellis is also a non-empty complete trellis. As a consequence we obtain a generalization of the Skala's result [4, Theorem 37].

1. INTRODUCTION AND PRELIMINARIES

Let X be a non-empty set and let \succeq be a binary relation defined on its. If the binary relation \succeq is reflexive and antisymmetric, we say that (X, \succeq) is a pseudo-ordered set or a psoset. We will usually omit the pair notation and call X a pseudo-ordered set also. Every subset A of X is a pseudo-ordered set with the induced pseudo-ordered from X and will be called a pseudo-ordered set. Let $x, y \in X$. If $x \neq y$ and $x \succeq y$, then we shall write $x \triangleright y$.

Let A be a non-empty subset of a posset (X, \succeq) . An element u is said to be an upper bound of A (respectively v a lower bound of A) if $x \trianglerighteq u$ for every $x \in A$ (respectively $v \trianglerighteq x$ for every $x \in A$). An element s of X is called a greatest element or the maximum of A and denoted by $s = \max_{\bowtie}(A)$ if s is an upper bound of A and $s \in A$. An element ℓ is the least or the minimum element of A and denoted by $\ell = \min_{\bowtie}(A)$) if ℓ is a lower bound of A and $\ell \in A$. When the least upper bound (l.u.b.) s of A exists, we shall denoted its by $s = \sup_{\trianglerighteq}(A)$. Dually if the greatest lower bound (g.l.b.) of A exists, we shall denoted its by $\ell = \inf_{\triangleright}(A)$.

A posset (X, \succeq) is said to be a trellis if every pair of elements of (X, \succeq) has a greatest lower bound (g.l.b) and a least upper bound (l.u.b). A posset (X, \succeq) is said to be a complete trellis if every non-empty subset of X has a g.l.b and a l.u.b. More details for those notions can be found in H. L. Skala (see [5, 4]).

²⁰¹⁰ Mathematics Subject Classification. 06B23, 06B05, 54C60, 47H10.

Key words and phrases. Pseudo-ordered set, fixed point, monotone map, trellis, complete trellis.

ABDELKADER STOUTI

Let (X, \geq) be a non-empty pseudo-ordered set and $f: X \to X$ a map. We shall say that f is monotone if for every $x, y \in X$, with $x \geq y$, then we have $f(x) \geq f(y)$.

An element x of X is said to be a fixed point of a map $f: X \to X$ if f(x) = x. The set of all fixed points of f is denoted by Fix(f).

Let X be a non-empty set and 2^X be the set of all non-empty subsets of X. A set-valued map on X is any map $T: X \to 2^X$. An element x of X is called a fixed point of T if $x \in T(x)$. We denote by Fix(T) the set of all fixed points of T.

In this paper, we shall use the following definition of monotonicity for setvalued maps.

Definition 1.1. Let (X, \geq) be a non-empty pseudo-ordered set. A set-valued map $T: X \to 2^X$ is said to be monotone if for any $x, y \in X$ with $x \triangleright y$, then for every $a \in T(x)$ and $b \in T(y)$, we have $a \geq b$.

In this work, we shall need the following notion of inverse relation.

Definition 1.2. Let X be a non-empty set and let \succeq be a relation on its. The inverse relation \trianglelefteq of \succeq is defined for every $x, y \in X$ by:

$$(x \trianglelefteq y) \Leftrightarrow (y \trianglerighteq x).$$

In this paper, we shall need the two following technical lemmas which their proofs will be given in the Appendix.

Lemma 1.3. Let \succeq be a pseudo-order relation defined on a non-empty set X and let \trianglelefteq be its inverse relation. Then, \trianglelefteq is a pseudo-order relation on X.

Lemma 1.4. Let \succeq be a pseudo-order relation defined on a non-empty set X, let \trianglelefteq be its inverse relation and let A be a non-empty subset of X. Then, we have

- (i) if $\sup_{\rhd}(A)$ exists, so $\inf_{\triangleleft}(A)$ exists too and $\sup_{\rhd}(A) = \inf_{\triangleleft}(A)$;
- (ii) if $\inf_{\triangleright}(A)$ exists, hence $\sup_{\triangleleft}(A)$ exists also and $\inf_{\triangleright}(A) = \sup_{\triangleleft}(A)$;
- (iii) if $\min_{\triangleright}(A)$ exists, then $\max_{\triangleleft}(A)$ exists too and $\min_{\triangleright}(A) = \max_{\triangleleft}(A)$;
- (iv) if $\max_{\triangleright}(A)$ exists, so $\min_{\triangleleft}(A)$ exists too and $\max_{\triangleright}(A) = \min_{\triangleleft}(A)$.
- (v) if $T: X \to 2^X$ is a monotone set-valued map for \succeq , then T is also a set-valued map for \leq .

In 1971, H. Skala introduced the notions of pseudo-ordered sets and trellises and gave some fixed points theorems in this setting (see Theorems 36 and 37 in [4]). Later on, S. Parameshwara Bhatta and all [3, 1] studied the fixed point property in pseudo-ordered sets. In this work, we first establish the existence of the greatest and the least fixed points for monotone set-valued maps defined on non-empty pseudo-ordered sets. Furthermore, we prove that the set of all fixed points of two classes of monotone set-valued maps defined on a nonempty complete trellis is also a non-empty complete trellis. As a consequence, we reobtain the Skala's result [4, Theorem 37].

188

FIXED POINTS THEOREMS

2. Least and greatest fixed points for monotone set-valued maps in pseudo-ordered sets

In this section, we shall establish the existence of the least and the greatest fixed points for monotone set-valued maps defined on non-empty pseudoordered sets. First, we shall prove our key result in this paper.

Theorem 2.1. Let (X, \supseteq) be a non-empty pseudo-ordered set with a least element ℓ . Assume that every non-empty subset of X has a supremum in (X, \supseteq) . Then, the set of all fixed points Fix(T) of every monotone set-valued map $T: X \to 2^X$ is non-empty and has a least element.

Proof. Let (X, \geq) be a non-empty pseudo-ordered set with a least element ℓ and let $T: X \to 2^X$ be a monotone set-valued map.

First step. We have $Fix(T) \neq \emptyset$. Indeed, let \mathcal{F} be the family of all subsets A of X satisfying the following three conditions:

(i) $\ell \in A$;

(ii) $T(A) \subset A$;

(iii) for every non-empty subset B of A, we have $\sup_{\triangleright}(B) \in A$.

Since $X \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$. Set $S = \bigcap_{A \in \mathcal{F}} A$.

Claim 1. The subset S is the least non-empty element of \mathcal{F} for the inclusion relation. Indeed, as $\ell \in A$ for every $A \in \mathcal{F}$, so $\ell \in S$. Since $S = \bigcap_{A \in \mathcal{F}} A$, then

$$T(S) = T(\bigcap_{A \in \mathcal{F}} A) \subset \bigcap_{A \in \mathcal{F}} T(A) \subset \bigcap_{A \in \mathcal{F}} A.$$

Thus, we get $T(S) \subset S$. Now, let $D \subset S$ such that $D \neq \emptyset$. Then, $D \subset A$ for every $A \in \mathcal{F}$. So, $\sup_{\mathbb{P}}(D) \in A$ for every $A \in \mathcal{F}$. Hence, we obtain $\sup_{\mathbb{P}}(D) \in S$. Therefore, S is the least non-empty element of \mathcal{F} for the inclusion relation. Then, we set $m = \sup_{\mathbb{P}}(S)$.

Claim 2. We have $m \in Fix(T)$. Indeed, since $m \in S$ and $T(S) \subset S$, then for every $a \in T(m)$, we have $a \geq m$. By absurd assume that $m \notin T(m)$. So, we get $a \triangleright m$, for every $a \in T(m)$. Next, we shall associate for every $a \in T(m)$ a subset B_a defined by

$$B_a = \{ x \in S : x \ge a \}.$$

As $\ell = \min_{\mathbb{P}}(X)$, so $\ell \in B_a$. We shall show that $B_a \in \mathcal{F}$. Let $x \in B_a$ and $y \in T(x)$. So $x \in S$. As $m = \sup_{\mathbb{P}}(S)$, then $x \ge m$. We claim that $x \ne m$. Indeed, if x = m, so $m \ge a$. Hence we get a = m. That is not possible. Then, x > m. Hence, from the monotonicity of T, we get $y \ge a$, for every $y \in T(x)$. So, $T(x) \subset B_a$, for every $x \in B_a$. Thus, we have $T(B_a) \subset B_a$. Now, let $C \subset B_a$ and $C \ne \emptyset$. So, $C \subset S$. Then, $t = \sup_{\mathbb{P}}(C) \in S$. On the other hand By definition of B_a we deduce that a is an upper bound of C. Hence, we obtain $t \ge a$. Thus $\sup_{\mathbb{P}}(C) \in B_a$. Therefore, $B_a \in \mathcal{F}$ for every $a \in T(m)$. As S is the least non-empty element of \mathcal{F} for the inclusion relation, so we get $S \subset B_a$ for every $a \in T(m)$. On the other hand, we know that $B_a \subset S$ for every $a \in T(m)$. Therefore, we obtain $S = B_a$, for every $a \in T(m)$. Then, as $m \in B_a$, so $m \succeq a$ for every $a \in T(m)$. Thus, we get m = a, for every $a \in T(m)$. So, $T(m) = \{m\}$. That is a contradiction with our assumption that $m \notin T(m)$. Therefore, $m \in T(m)$.

Second step. The subset Fix(T) has a least element. Indeed from the first step above, we know that $Fix(T) \neq \emptyset$. Next, we consider the following subset B of X defined by

$$B = \{ x \in X : x \ge z \text{ for every } z \in Fix(T) \}.$$

As $\ell = \min_{\mathbb{P}}(X)$, so $\ell \in B$. Hence, we get $\ell = \min_{\mathbb{P}}(B)$. By absurd assume that $\operatorname{Fix}(T)$ has not a least element. So, for every $x \in B$, we have $x \triangleright z$ for every $z \in \operatorname{Fix}(T)$. Next, we shall show that $T(B) \subset B$. Indeed, if $x \in B$, $y \in T(x)$ and $z \in \operatorname{Fix}(T)$, then by the monotonicity of T we get $y \supseteq z$ for every $y \in T(x)$ and $z \in \operatorname{Fix}(T)$. Hence, we get $T(x) \subset B$, for every $x \in B$. Thus, $T(B) \subset B$. Now, let C be a non-empty subset of B and let $c = \sup_{\mathbb{P}}(C)$. By definition of B, we know that every element z of $\operatorname{Fix}(T)$ is an upper bound of C. So, we get $c \supseteq z$ for every $z \in \operatorname{Fix}(T)$. Thus, we have $c \in B$. Hence, from claim 1, we get $B \in \mathcal{F}$. Since S is the least element of \mathcal{F} , so $S \subset B$. On the other hand, by Claim 1, we know that the supremum m of S is a fixed point of T. Hence, $m \in B$. Thus, m is the least fixed of T. That is a contradiction with our assumption. Therefore, $\operatorname{Fix}(T)$ has a least element.

As a consequence of Theorem 2.1, we get the following result.

Corollary 2.2. Let (X, \leq) be a non-empty partially ordered ordered set with a least element ℓ . Assume that every non-empty subset of X has a supremum in (X, \leq) . Then, the set of all fixed points Fix(T) of every monotone set-valued map $T: X \to 2^X$ is non-empty and has a least element.

Next, by combining Lemmas 1.3 and 1.4 and Theorem 2.1 we obtain the the existence of the greatest fixed point for monotone set-valued maps defined on non-empty pseudo-ordered sets.

Theorem 2.3. Let (X, \geq) be a non-empty pseudo-ordered set with a greatest element g. Assume that every non-empty subset of X has an infimum in (X, \geq) . Then, the set of all fixed points of every monotone set-valued map $T: X \to 2^X$ is non-empty and has a greatest element.

Proof. Let (X, \succeq) be a non-empty pseudo-ordered set with a greatest element g such that every non-empty subset of X has an infimum in (X, \trianglerighteq) . Let $T: X \to 2^X$ be a monotone set-valued map for the pseudo-order relation \trianglerighteq and let \trianglelefteq be its inverse relation. Then from Lemma 1.2, we know that \trianglelefteq is a pseudo-order relation on X. On the other hand by Lemma 1.3, $\min_{\trianglelefteq}(X)$ exists and we have $\min_{\triangleleft}(X) = g$. As by our hypothesis $T: X \to 2^X$ is a monotone set-valued map for \trianglerighteq , so from Lemma 1.3 the set-valued map T is also a monotone set-valued map for \trianglelefteq . Thus, all hypothesis of Theorem 2.1 are satisfied. Therefore, The set $\operatorname{Fix}(T)$ of all fixed points of T is non-empty

190

and has a least element in (X, \leq) , m, say. Then from Lemma 1.3, we get $m = \min_{\leq}(\operatorname{Fix}(T)) = \max_{\geq}(\operatorname{Fix}(T))$.

Combining Theorems 2.1 and 2.3, we obtain the existence of the least and the greatest fixed points of monotone set-valued maps defined on non-empty complete trellises.

Corollary 2.4. Let (X, \succeq) be a non-empty complete trellis. Then, the set of all fixed points Fix(T) of every monotone set-valued map $T: X \to 2^X$ is non-empty and has a least and a greatest element.

For complete lattice, we obtain the following result.

Corollary 2.5. Let (X, \leq) be a non-empty complete lattice. Then, the set of all fixed points Fix(T) of every monotone set-valued map $T: X \to 2^X$ is non-empty and has a least and a greatest element.

3. Fixed points for monotone set-valued maps in complete trellises

In this section, we shall establish that the set of all fixed points of two classes of monotone set-valued maps defined on a non-empty compete trellis is also a non-empty compete trellis. First, we shall prove the following result.

Theorem 3.1. Let (X, \supseteq) be a non-empty complete trellis and let $T: X \to 2^X$ be a monotone set-valued map such that for every $x \in X$ there is $y \in T(x)$ such that $x \supseteq y$. Then, the set of all fixed points Fix(T) of T is a non-empty complete trellis.

Proof. Let (X, \geq) be a non-empty complete trellis and $T: X \to 2^X$ be a monotone set-valued map such that for every $x \in X$, there is $y \in T(x)$, such that $x \geq y$. Then by Corollary 2.4, we know that Fix(T) is non-empty and has a least and a greatest element. Let A be a non-empty subset of Fix(T).

Claim 1. The infimum of A in Fix(T) belongs to Fix(T). Indeed, consider the following subset D of X defined by

$$D = \{ x \in X : x \ge z \text{ for every } z \in A \}.$$

From Corollary 2.4, we know that the set-valued map T has a least fixed point. So, $D \neq \emptyset$. Let $d = \sup_{\triangleright}(D)$. We shall prove that $d \in T(d)$. Indeed assume on the contrary that $d \notin T(d)$. Since every element z of A is an upper bound of D, so we get $d \trianglerighteq z$ for every $z \in A$. As $d \notin T(d)$, then $d \triangleright z$ for every $z \in A$. We claim that $T(d) \subset D$. Indeed, let $x \in T(d)$. So, by the monotonicity of T we get $x \trianglerighteq z$ for every $z \in A$. Thus, we have $T(d) \subset D$. Hence, we obtain $x \trianglerighteq d$ for every $x \in T(d)$. On the other hand, by our hypothesis we know that there is an element $t \in T(d)$ such that $d \trianglerighteq t$. Hence, from the antisymmetry of the relation \trianglerighteq we deduce that t = d and $d \in T(d)$. That is a contradiction. Hence, $d \in Fix(T)$. Now, let B be the following subset of Fix(T) defined by

$$B = \{ x \in \operatorname{Fix}(T) : x \ge z \text{ for every } z \in A \}.$$

ABDELKADER STOUTI

From Corollary 2.4, we know that the set-valued map T has a least fixed point. So, $B \neq \emptyset$. Let $m = \sup_{\triangleright}(B)$. As $B \subset D$, then we get $m \succeq d$. On the other hand, we know that $d \in B$. Hence, we get $d \succeq m$. So, from the antisymmetry of the relation \succeq we deduce that m = d. Then, $m \in \operatorname{Fix}(T)$. Therefore, the infimum of A in $\operatorname{Fix}(T)$ belongs to $\operatorname{Fix}(T)$.

Claim 2. The supremum of A in Fix(T) belongs to Fix(T). Indeed, let E be the following subset of X defined by

$$E = \{ x \in X : z \ge x \text{ for every } z \in A \}.$$

From Corollary 2.4, we know that T has a greatest fixed point. Then $Fix(T) \neq T$ \emptyset . As (X, \triangleright) is a nonempty complete trellis, so let $q = \max(X)$. Hence, $q \in E$. Thus, $E \neq \emptyset$ and $q = \max(E)$. Now, we claim that $E \cap \operatorname{Fix}(T) \neq \emptyset$. Assume in the contrary that $E \cap Fix(T) = \emptyset$. Then, $T(E) \subset E$. Indeed, let $x \in E$, $y \in T(x)$ and let $z \in A$. As $z \triangleright x$ and T is monotone, so for every $z \in A$, we get $z \ge y$. Thus, we have $T(x) \subset E$ for every $x \in E$. Hence $T(E) \subset E$. On the other hand, as by our definition $T(x) \neq \emptyset$ for every $x \in X$. From the axiom of choice, there exists a map $\Phi: 2^X \to X$ such for every nonempty subset A of X we have $\Phi(A) \in A$. Then, for every $x \in X$ we define a new map $f: X \to X$ by setting: $f(x) = \Phi(T(x))$. We claim that f is a monotone map from (X, \triangleright) to (X, \geq) . Indeed, let $x, y \in X$ with $x \succ y$. Since $f(x) \in T(x), f(y) \in T(y)$ and T is monotone, then we get $f(x) \ge f(y)$. Hence, f is a monotone map. Let F be a nonempty subset of E, $f = \inf(F)$ and $x \in F$. As for every $z \in A$ we have $z \ge x$, then z is a lower bound of F. Hence, we get $z \ge f$. Thus, every nonempty subset of E has an infimum in E and (E, \geq) has a greatest element. Therefore, all hypothesis of Theorem 3.3 in [6] are satisfied for the monotone map $f: E \to E$. Hence, $Fix(f) \neq \emptyset$. Since $Fix(f) \subset E \cap Fix(T)$, so we get $E \cap \operatorname{Fix}(T) \neq \emptyset$. That is a contradiction. Therefore, $E \cap \operatorname{Fix}(T) \neq \emptyset$. Then, the set of all supremums of A in $(Fix(T), \geq)$: $G = E \cap Fix(T)$ is nonempty. Let $\ell = \inf_{\triangleright}(G)$. Then we get $\ell \in E$. We claim that $\ell \in Fix(T)$. On the contrary assume that $\ell \notin \operatorname{Fix}(T)$. Now, let $x \in G$ and $t \in T(e)$ be given. As $\ell \triangleright x$, $x \in Fix(T)$ and T is monotone, so we get $t \ge x$. Thus, t is a lower bound of G. As $\ell = \inf_{\triangleright}(G)$, then we deduce that we have $t \geq \ell$, for every $t \in T(\ell)$. On the other hand, we know that by our hypothesis there is an element $q \in T(\ell)$ such that $\ell \triangleright q$. So, from the antisymmetry of the relation \triangleright we deduce that $\ell = q$. Then, $\ell \in \operatorname{Fix}(T)$. Therefore, the infimum of A in $\operatorname{Fix}(T)$ belongs to $\operatorname{Fix}(T).$

As a consequence of Theorem 3.1, we reobtain the Skala's result [4, Theorem 37].

Corollary 3.2. Let (X, \supseteq) be a non-empty complete trellis and let $f: X \to X$ be a monotone map such that for every $x \in X$, $x \supseteq f(x)$. Then, the set of all fixed points Fix(f) of f is a non-empty complete trellis.

Using Lemmas 1.3 and 1.4 and Theorem 3.1, we get the following dual result.

192

Theorem 3.3. Let (X, \geq) be a non-empty complete trellis and let $T: X \to 2^X$ be a monotone set-valued map such that for every $x \in X$ there is $y \in T(x)$ satisfying $y \geq x$. Then, the set of all fixed points Fix(T) of T is a non-empty complete trellis.

As a corollary of Theorem 3.3, we obtain the following result for monotone map. That is a dual result of Theorem 37 in [4].

Corollary 3.4. Let (X, \supseteq) be a non-empty complete trellis and let $f: X \to X$ be a monotone map such that for every $x \in X$, $f(x) \supseteq x$. Then, the set of all fixed points Fix(f) of f is a non-empty complete trellis.

4. Appendix

In this section, we shall give the proofs of Lemmas 1.3 and 1.4.

Proof of Lemma 1.3. Let \geq be a pseudo-order defined on a non-empty set X and let \leq be its inverse relation.

(i) The relation \leq is reflexive. Let $x \in X$. Then, $x \geq x$. So, $x \leq x$. Hence, \leq is reflexive.

(ii) The relation \trianglelefteq is antisymmetric. Let $x, y \in X$ such that $x \trianglelefteq y$ and $y \trianglelefteq x$. So, we get $y \trianglerighteq x$ and $x \trianglerighteq y$. Since \trianglerighteq is antisymmetric, then we obtain x = y. Thus, the relation \trianglelefteq is antisymmetric. \Box

Proof of Lemma 1.4. Let \succeq be a pseudo-order defined on a non-empty set X, let \trianglelefteq be its inverse relation and let A be a non-empty subset of X.

(i) Assume that $\sup_{\geq}(A)$ exists. Set $s = \sup_{\geq}(A)$. Now, let $x \in A$. Then, $x \geq s$. So, we get $s \leq x$ for every $x \in A$. Thus, s is a \leq -lower bound of A. Let ℓ be another \leq -lower bound of A. So, we have $\ell \leq x$ for every $x \in A$. Hence, $x \geq \ell$. Then, ℓ is a \geq -upper bound of A. As $s = \sup_{\geq}(A)$, so $s \geq \ell$. Hence, we get $\ell \leq s$. Thus, s is the greatest \leq -lower bound of A. Then, $s = \inf_{\triangleleft}(A)$.

(ii) Assume that $\inf_{\geq}(A)$ exists. Set $\ell = \inf_{\geq}(A)$. Now, let $x \in A$. Then, $\ell \geq x$. So, we get $x \leq \ell$ for every $x \in A$. Thus, ℓ is a \leq -upper bound of A. Let m be another \leq -upper bound of A. So, we have $x \leq m$ for every $x \in A$. Hence, $m \geq x$. Then, m is a \geq -lower bound of A. As $\ell = \inf_{\geq}(A)$, so $m \geq \ell$. Thus, we have $\ell \leq m$. Thus, ℓ is the least \leq -upper bound of A. Then, $\ell = \sup_{\leq}(A)$.

(iii) Let $m = \min_{\geq}(A)$. Then, $m = \inf_{\geq}(A)$ and $m \in A$. From (ii) above, we get $m = \sup_{\leq}(A)$. As $m \in A$, hence we deduce that $m = \max_{\leq}(A)$.

(iv) Let $s = \max_{\geq}(A)$. So, $s = \sup_{\geq}(A)$ and $m \in A$. From (ii) above, we get $s = \inf_{\leq}(A)$. As $s \in A$, hence we obtain $s = \min_{\leq}(A)$.

(v) Let let $T: X \to 2^X$ be a monotone set-valued map in (X, \supseteq) . Let $x, y \in X$ such that $x \triangleleft y$. So, we have $y \triangleright x$. As T is \supseteq -monotone, so we for every $a \in T(x)$ and $b \in T(y)$, we get $b \supseteq a$. Hence, we deduce that for every $a \in T(x)$ and $b \in T(y)$, we have $a \trianglelefteq b$. Thus, T is \trianglelefteq -monotone. \Box

ABDELKADER STOUTI

References

- S. P. Bhatta. Weak chain-completeness and fixed point property for pseudo-ordered sets. Czechoslovak Math. J., 55(130)(2):365–369, 2005.
- [2] P. Crawley and R. Dilworth. Algebraic theory of lattices. Prentice-Hall, 1973.
- [3] S. Parameshwara Bhatta and H. Shashirekha. A characterization of completeness for trellises. Algebra Universalis, 44(3-4):305–308, 2000.
- [4] H. Skala. Trellis theory. American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 121.
- [5] H. L. Skala. Trellis theory. Algebra Universalis, 1:218–233, 1971/72.
- [6] A. Stouti and A. Maaden. Fixed points and common fixed points theorems in pseudoordered sets. *Proyecciones*, 32(4):409–418, 2013.

Received September 17, 2012.

CENTER FOR DOCTORAL STUDIES: SCIENCES AND TECHNIQUES, LABORATORY OF MATHEMATICS AND APPLICATIONS, FACULTY OF SCIENCES AND TECHNIQUES, UNIVERSITY SULTAN MOULAY SLIMANE, P.O. BOX 523. BENI-MELLAL 23000, MOROCCO *E-mail address*: stouti@yahoo.com or stout@fstbm.ac.ma