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FIXED POINTS THEOREMS FOR MONOTONE
SET-VALUED MAPS IN PSEUDO-ORDERED SETS

ABDELKADER STOUTI

Abstract. In this paper, we first establish the existence of the greatest
and the least fixed points for monotone set-valued maps defined on non-
empty pseudo-ordered sets. Furthermore, we prove that the set of all fixed
points of two classes of monotone set-valued maps defined on a non-empty
complete trellis is also a non-empty complete trellis. As a consequence we
obtain a generalization of the Skala’s result [4, Theorem 37].

1. Introduction and preliminaries

Let X be a non-empty set and let D be a binary relation defined on its. If
the binary relation D is reflexive and antisymmetric, we say that (X,D) is a
pseudo-ordered set or a psoset. We will usually omit the pair notation and
call X a pseudo-ordered set also. Every subset A of X is a pseudo-ordered set
with the induced pseudo-ordered from X and will be called a pseudo-ordered
set. Let x, y ∈ X. If x 6= y and xD y, then we shall write xB y.

Let A be a non-empty subset of a psoset (X,D). An element u is said to
be an upper bound of A (respectively v a lower bound of A) if xD u for every
x ∈ A (respectively v D x for every x ∈ A). An element s of X is called a
greatest element or the maximum of A and denoted by s = maxD(A) if s is
an upper bound of A and s ∈ A. An element ` is the least or the minimum
element of A and denoted by ` = minD(A)) if ` is a lower bound of A and
` ∈ A. When the least upper bound (l.u.b.) s of A exists, we shall denoted
its by s = supD(A). Dually if the greatest lower bound (g.l.b.) of A exists, we
shall denoted its by ` = infD(A).

A psoset (X,D) is said to be a trellis if every pair of elements of (X,D) has a
greatest lower bound (g.l.b) and a least upper bound (l.u.b). A psoset (X,D)
is said to be a complete trellis if every non-empty subset of X has a g.l.b and
a l.u.b. More details for those notions can be found in H. L. Skala (see [5, 4]).
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Let (X,D) be a non-empty pseudo-ordered set and f : X → X a map. We
shall say that f is monotone if for every x, y ∈ X, with x D y, then we have
f(x)D f(y).

An element x ofX is said to be a fixed point of a map f : X → X if f(x) = x.
The set of all fixed points of f is denoted by Fix(f).

Let X be a non-empty set and 2X be the set of all non-empty subsets of X.
A set-valued map on X is any map T : X → 2X . An element x of X is called
a fixed point of T if x ∈ T (x). We denote by Fix(T ) the set of all fixed points
of T .

In this paper, we shall use the following definition of monotonicity for set-
valued maps.

Definition 1.1. Let (X,D) be a non-empty pseudo-ordered set. A set-valued
map T : X → 2X is said to be monotone if for any x, y ∈ X with x B y, then
for every a ∈ T (x) and b ∈ T (y), we have aD b.

In this work, we shall need the following notion of inverse relation.

Definition 1.2. Let X be a non-empty set and let D be a relation on its. The
inverse relation E of D is defined for every x, y ∈ X by:

(xE y) ⇔ (y D x).

In this paper, we shall need the two following technical lemmas which their
proofs will be given in the Appendix.

Lemma 1.3. Let D be a pseudo-order relation defined on a non-empty set X
and let E be its inverse relation. Then, E is a pseudo-order relation on X.

Lemma 1.4. Let D be a pseudo-order relation defined on a non-empty set X,
let E be its inverse relation and let A be a non-empty subset of X. Then, we
have

(i) if supD(A) exists, so infE(A) exists too and supD(A) = infE(A);
(ii) if infD(A) exists, hence supE(A) exists also and infD(A) = supE(A);
(iii) if minD(A) exists, then maxE(A) exists too and minD(A) = maxE(A);
(iv) if maxD(A) exists, so minE(A) exists too and maxD(A) = minE(A).
(v) if T : X → 2X is a monotone set-valued map for D, then T is also a

set-valued map for E.

In 1971, H. Skala introduced the notions of pseudo-ordered sets and trellises
and gave some fixed points theorems in this setting (see Theorems 36 and 37
in [4]). Later on, S. Parameshwara Bhatta and all [3, 1] studied the fixed point
property in pseudo-ordered sets. In this work, we first establish the existence
of the greatest and the least fixed points for monotone set-valued maps defined
on non-empty pseudo-ordered sets. Furthermore, we prove that the set of all
fixed points of of two classes of monotone set-valued maps defined on a non-
empty complete trellis is also a non-empty complete trellis. As a consequence,
we reobtain the Skala’s result [4, Theorem 37].
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2. Least and greatest fixed points for monotone set-valued
maps in pseudo-ordered sets

In this section, we shall establish the existence of the least and the great-
est fixed points for monotone set-valued maps defined on non-empty pseudo-
ordered sets. First, we shall prove our key result in this paper.

Theorem 2.1. Let (X,D) be a non-empty pseudo-ordered set with a least
element `. Assume that every non-empty subset of X has a supremum in
(X,D). Then, the set of all fixed points Fix(T ) of every monotone set-valued
map T : X → 2X is non-empty and has a least element.

Proof. Let (X,D) be a non-empty pseudo-ordered set with a least element `
and let T : X → 2X be a monotone set-valued map.

First step. We have Fix(T ) 6= ∅. Indeed, let F be the family of all subsets
A of X satisfying the following three conditions:

(i) ` ∈ A;
(ii) T (A) ⊂ A;
(iii) for every non-empty subset B of A, we have supD(B) ∈ A.

Since X ∈ F , so F 6= ∅. Set S =
⋂

A∈F A.
Claim 1. The subset S is the least non-empty element of F for the inclusion

relation. Indeed, as ` ∈ A for every A ∈ F , so ` ∈ S. Since S =
⋂

A∈F A, then

T (S) = T (
⋂
A∈F

A) ⊂
⋂
A∈F

T (A) ⊂
⋂
A∈F

A.

Thus, we get T (S) ⊂ S. Now, let D ⊂ S such that D 6= ∅. Then, D ⊂ A
for every A ∈ F . So, supD(D) ∈ A for every A ∈ F . Hence, we obtain
supD(D) ∈ S. Therefore, S is the least non-empty element of F for the
inclusion relation. Then, we set m = supD(S).

Claim 2. We have m ∈ Fix(T ). Indeed, since m ∈ S and T (S) ⊂ S, then
for every a ∈ T (m), we have a Dm. By absurd assume that m 6∈ T (m). So,
we get aBm, for every a ∈ T (m). Next, we shall associate for every a ∈ T (m)
a subset Ba defined by

Ba = {x ∈ S : xD a}.
As ` = minD(X), so ` ∈ Ba. We shall show that Ba ∈ F . Let x ∈ Ba and
y ∈ T (x). So x ∈ S. As m = supD(S), then x D m. We claim that x 6= m.
Indeed, if x = m, so mD a. Hence we get a = m. That is not possible. Then,
x Bm. Hence, from the monotonicity of T, we get y D a, for every y ∈ T (x).
So, T (x) ⊂ Ba, for every x ∈ Ba. Thus, we have T (Ba) ⊂ Ba. Now, let
C ⊂ Ba and C 6= ∅. So, C ⊂ S. Then, t = supD(C) ∈ S. On the other
hand By definition of Ba we deduce that a is an upper bound of C. Hence,
we obtain tD a. Thus supD(C) ∈ Ba. Therefore, Ba ∈ F for every a ∈ T (m).
As S is the least non-empty element of F for the inclusion relation, so we get
S ⊂ Ba for every a ∈ T (m). On the other hand, we know that Ba ⊂ S for
every a ∈ T (m). Therefore, we obtain S = Ba, for every a ∈ T (m). Then,
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as m ∈ Ba, so m D a for every a ∈ T (m). Thus, we get m = a, for every
a ∈ T (m). So, T (m) = {m}. That is a contradiction with our assumption
that m 6∈ T (m). Therefore, m ∈ T (m).

Second step. The subset Fix(T ) has a least element. Indeed from the first
step above, we know that Fix(T ) 6= ∅. Next, we consider the following subset
B of X defined by

B = {x ∈ X : xD z for every z ∈ Fix(T )}.

As ` = minD(X), so ` ∈ B. Hence, we get ` = minD(B). By absurd assume
that Fix(T ) has not a least element. So, for every x ∈ B, we have x B z for
every z ∈ Fix(T ). Next, we shall show that T (B) ⊂ B. Indeed, if x ∈ B,
y ∈ T (x) and z ∈ Fix(T ), then by the monotonicity of T we get yDz for every
y ∈ T (x) and z ∈ Fix(T ). Hence, we get T (x) ⊂ B, for every x ∈ B. Thus,
T (B) ⊂ B. Now, let C be a non-empty subset of B and let c = supD(C). By
definition of B, we know that every element z of Fix(T ) is an upper bound of
C. So, we get cD z for every z ∈ Fix(T ). Thus, we have c ∈ B. Hence, from
claim 1, we get B ∈ F . Since S is the least element of F , so S ⊂ B. On the
other hand, by Claim 1, we know that the supremum m of S is a fixed point
of T . Hence, m ∈ B. Thus, m is the least fixed of T . That is a contradiction
with our assumption. Therefore, Fix(T ) has a least element. �

As a consequence of Theorem 2.1, we get the following result.

Corollary 2.2. Let (X,≤) be a non-empty partially ordered ordered set with a
least element `. Assume that every non-empty subset of X has a supremum in
(X,≤). Then, the set of all fixed points Fix(T ) of every monotone set-valued
map T : X → 2X is non-empty and has a least element.

Next, by combining Lemmas 1.3 and 1.4 and Theorem 2.1 we obtain the the
existence of the greatest fixed point for monotone set-valued maps defined on
non-empty pseudo-ordered sets.

Theorem 2.3. Let (X,D) be a non-empty pseudo-ordered set with a greatest
element g. Assume that every non-empty subset of X has an infimum in
(X,D). Then, the set of all fixed points of every monotone set-valued map
T : X → 2X is non-empty and has a greatest element.

Proof. Let (X,D) be a non-empty pseudo-ordered set with a greatest element
g such that every non-empty subset of X has an infimum in (X,D). Let
T : X → 2X be a monotone set-valued map for the pseudo-order relation D
and let E be its inverse relation. Then from Lemma 1.2, we know that E is
a pseudo-order relation on X. On the other hand by Lemma 1.3, minE(X)
exists and we have minE(X) = g. As by our hypothesis T : X → 2X is a
monotone set-valued map for D, so from Lemma 1.3 the set-valued map T is
also a monotone set-valued map for E. Thus, all hypothesis of Theorem 2.1
are satisfied. Therefore, The set Fix(T ) of all fixed points of T is non-empty



FIXED POINTS THEOREMS 191

and has a least element in (X,E), m, say. Then from Lemma 1.3, we get
m = minE(Fix(T )) = maxD(Fix(T )). �

Combining Theorems 2.1 and 2.3, we obtain the existence of the least and
the greatest fixed points of monotone set-valued maps defined on non-empty
complete trellises.

Corollary 2.4. Let (X,D) be a non-empty complete trellis. Then, the set
of all fixed points Fix(T ) of every monotone set-valued map T : X → 2X is
non-empty and has a least and a greatest element.

For complete lattice, we obtain the following result.

Corollary 2.5. Let (X,≤) be a non-empty complete lattice. Then, the set
of all fixed points Fix(T ) of every monotone set-valued map T : X → 2X is
non-empty and has a least and a greatest element.

3. Fixed points for monotone set-valued maps in complete
trellises

In this section, we shall establish that the set of all fixed points of two classes
of monotone set-valued maps defined on a non-empty compete trellis is also a
non-empty compete trellis. First, we shall prove the following result.

Theorem 3.1. Let (X,D) be a non-empty complete trellis and let T : X → 2X

be a monotone set-valued map such that for every x ∈ X there is y ∈ T (x)
such that x D y. Then, the set of all fixed points Fix(T ) of T is a non-empty
complete trellis.

Proof. Let (X,D) be a non-empty complete trellis and T : X → 2X be a mono-
tone set-valued map such that for every x ∈ X, there is y ∈ T (x), such that
x D y. Then by Corollary 2.4, we know that Fix(T ) is non-empty and has a
least and a greatest element. Let A be a non-empty subset of Fix(T ).

Claim 1. The infimum of A in Fix(T ) belongs to Fix(T ). Indeed, consider
the following subset D of X defined by

D = {x ∈ X : xD z for every z ∈ A}.
From Corollary 2.4, we know that the set-valued map T has a least fixed point.
So, D 6= ∅. Let d = supD(D). We shall prove that d ∈ T (d). Indeed assume
on the contrary that d 6∈ T (d). Since every element z of A is an upper bound
of D, so we get dD z for every z ∈ A. As d 6∈ T (d), then dB z for every z ∈ A.
We claim that T (d) ⊂ D. Indeed, let x ∈ T (d). So, by the monotonicity of
T we get x D z for every z ∈ A. Thus, we have T (d) ⊂ D. Hence, we obtain
xD d for every x ∈ T (d). On the other hand, by our hypothesis we know that
there is an element t ∈ T (d) such that d D t. Hence, from the antisymmetry
of the relation D we deduce that t = d and d ∈ T (d). That is a contradiction.
Hence, d ∈ Fix(T ). Now, let B be the following subset of Fix(T ) defined by

B = {x ∈ Fix(T ) : xD z for every z ∈ A}.
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From Corollary 2.4, we know that the set-valued map T has a least fixed point.
So, B 6= ∅. Let m = supD(B). As B ⊂ D, then we get m D d. On the other
hand, we know that d ∈ B. Hence, we get dDm. So, from the antisymmetry
of the relation D we deduce that m = d. Then, m ∈ Fix(T ). Therefore, the
infimum of A in Fix(T ) belongs to Fix(T ).

Claim 2. The supremum of A in Fix(T ) belongs to Fix(T ). Indeed, let E
be the following subset of X defined by

E = {x ∈ X : z D x for every z ∈ A}.

From Corollary 2.4, we know that T has a greatest fixed point. Then Fix(T ) 6=
∅. As (X,D) is a nonempty complete trellis, so let g = max(X). Hence, g ∈ E.
Thus, E 6= ∅ and g = max(E). Now, we claim that E ∩ Fix(T ) 6= ∅. Assume
in the contrary that E ∩ Fix(T ) = ∅. Then, T (E) ⊂ E. Indeed, let x ∈ E,
y ∈ T (x) and let z ∈ A. As z B x and T is monotone, so for every z ∈ A, we
get zDy. Thus, we have T (x) ⊂ E for every x ∈ E. Hence T (E) ⊂ E. On the
other hand, as by our definition T (x) 6= ∅ for every x ∈ X. From the axiom of
choice, there exists a map Φ: 2X → X such for every nonempty subset A of
X we have Φ(A) ∈ A. Then, for every x ∈ X we define a new map f : X → X
by setting: f(x) = Φ(T (x)). We claim that f is a monotone map from (X,D)
to (X,D). Indeed, let x, y ∈ X with x B y. Since f(x) ∈ T (x), f(y) ∈ T (y)
and T is monotone, then we get f(x) D f(y). Hence, f is a monotone map.
Let F be a nonempty subset of E, f = inf(F ) and x ∈ F . As for every z ∈ A
we have zDx, then z is a lower bound of F . Hence, we get zD f . Thus, every
nonempty subset of E has an infimum in E and (E,D) has a greatest element.
Therefore, all hypothesis of Theorem 3.3 in [6] are satisfied for the monotone
map f : E → E. Hence, Fix(f) 6= ∅. Since Fix(f) ⊂ E ∩ Fix(T ), so we get
E∩Fix(T ) 6= ∅. That is a contradiction. Therefore, E∩Fix(T ) 6= ∅. Then, the
set of all supremums of A in (Fix(T ),D) : G = E ∩ Fix(T ) is nonempty. Let
` = infD(G). Then we get ` ∈ E. We claim that ` ∈ Fix(T ). On the contrary
assume that ` 6∈ Fix(T ). Now, let x ∈ G and t ∈ T (e) be given. As ` B x,
x ∈ Fix(T ) and T is monotone, so we get t D x. Thus, t is a lower bound of
G. As ` = infD(G), then we deduce that we have tD `, for every t ∈ T (`). On
the other hand, we know that by our hypothesis there is an element g ∈ T (`)
such that `D g. So, from the antisymmetry of the relation D we deduce that
` = g. Then, ` ∈ Fix(T ). Therefore, the infimum of A in Fix(T ) belongs to
Fix(T ). �

As a consequence of Theorem 3.1, we reobtain the Skala’s result [4, Theorem
37].

Corollary 3.2. Let (X,D) be a non-empty complete trellis and let f : X → X
be a monotone map such that for every x ∈ X, xD f(x). Then, the set of all
fixed points Fix(f) of f is a non-empty complete trellis.

Using Lemmas 1.3 and 1.4 and Theorem 3.1, we get the following dual result.
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Theorem 3.3. Let (X,D) be a non-empty complete trellis and let T : X → 2X

be a monotone set-valued map such that for every x ∈ X there is y ∈ T (x)
satisfying y D x. Then, the set of all fixed points Fix(T ) of T is a non-empty
complete trellis.

As a corollary of Theorem 3.3, we obtain the following result for monotone
map. That is a dual result of Theorem 37 in [4].

Corollary 3.4. Let (X,D) be a non-empty complete trellis and let f : X → X
be a monotone map such that for every x ∈ X, f(x)D x. Then, the set of all
fixed points Fix(f) of f is a non-empty complete trellis.

4. Appendix

In this section, we shall give the proofs of Lemmas 1.3 and 1.4.

Proof of Lemma 1.3. Let D be a pseudo-order defined on a non-empty set X
and let E be its inverse relation.

(i) The relation E is reflexive. Let x ∈ X. Then, xD x. So, xE x. Hence,
E is reflexive.

(ii) The relation E is antisymmetric. Let x, y ∈ X such that xEy and yEx.
So, we get y D x and xD y. Since D is antisymmetric, then we obtain x = y.
Thus, the relation E is antisymmetric. �

Proof of Lemma 1.4. Let D be a pseudo-order defined on a non-empty set X,
let E be its inverse relation and let A be a non-empty subset of X.

(i) Assume that supD(A) exists. Set s = supD(A). Now, let x ∈ A. Then,
xD s. So, we get sE x for every x ∈ A. Thus, s is a E–lower bound of A. Let
` be another E–lower bound of A. So, we have `E x for every x ∈ A. Hence,
xD `. Then, ` is a D–upper bound of A. As s = supD(A), so sD `. Hence, we
get `E s. Thus, s is the greatest E–lower bound of A. Then, s = infE(A).

(ii) Assume that infD(A) exists. Set ` = infD(A). Now, let x ∈ A. Then,
`Dx. So, we get xE ` for every x ∈ A. Thus, ` is a E–upper bound of A. Let
m be another E–upper bound of A. So, we have xEm for every x ∈ A. Hence,
m D x. Then, m is a D–lower bound of A. As ` = infD(A), so m D `. Thus,
we have `Em. Thus, ` is the least E–upper bound of A. Then, ` = supE(A).

(iii) Let m = minD(A). Then, m = infD(A) and m ∈ A. From (ii) above,
we get m = supE(A). As m ∈ A, hence we deduce that m = maxE(A).

(iv) Let s = maxD(A). So, s = supD(A) and m ∈ A. From (ii) above, we
get s = infE(A). As s ∈ A, hence we obtain s = minE(A).

(v) Let let T : X → 2X be a monotone set-valued map in (X,D). Let
x, y ∈ X such that xC y. So, we have y B x. As T is D–monotone, so we for
every a ∈ T (x) and b ∈ T (y), we get b D a. Hence, we deduce that for every
a ∈ T (x) and b ∈ T (y), we have aE b. Thus, T is E–monotone. �
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