FIXED POINTS THEOREMS FOR MONOTONE SET-VALUED MAPS IN PSEUDO-ORDERED SETS

ABDELKADER STOUTI

Abstract

In this paper, we first establish the existence of the greatest and the least fixed points for monotone set-valued maps defined on nonempty pseudo-ordered sets. Furthermore, we prove that the set of all fixed points of two classes of monotone set-valued maps defined on a non-empty complete trellis is also a non-empty complete trellis. As a consequence we obtain a generalization of the Skala's result [4, Theorem 37].

1. Introduction and preliminaries

Let X be a non-empty set and let \unrhd be a binary relation defined on its. If the binary relation \unrhd is reflexive and antisymmetric, we say that (X, \unrhd) is a pseudo-ordered set or a psoset. We will usually omit the pair notation and call X a pseudo-ordered set also. Every subset A of X is a pseudo-ordered set with the induced pseudo-ordered from X and will be called a pseudo-ordered set. Let $x, y \in X$. If $x \neq y$ and $x \unrhd y$, then we shall write $x \triangleright y$.

Let A be a non-empty subset of a psoset (X, \unrhd). An element u is said to be an upper bound of A (respectively v a lower bound of A) if $x \unrhd u$ for every $x \in A$ (respectively $v \unrhd x$ for every $x \in A$). An element s of X is called a greatest element or the maximum of A and denoted by $s=\max _{\unrhd}(A)$ if s is an upper bound of A and $s \in A$. An element ℓ is the least or the minimum element of A and denoted by $\left.\ell=\min _{\unrhd}(A)\right)$ if ℓ is a lower bound of A and $\ell \in A$. When the least upper bound (l.u.b.) s of A exists, we shall denoted its by $s=\sup _{\triangleright}(A)$. Dually if the greatest lower bound (g.l.b.) of A exists, we shall denoted its by $\ell=\inf _{\unrhd}(A)$.

A psoset (X, \unrhd) is said to be a trellis if every pair of elements of (X, \unrhd) has a greatest lower bound (g.l.b) and a least upper bound (l.u.b). A psoset (X, \unrhd) is said to be a complete trellis if every non-empty subset of X has a g.l.b and a l.u.b. More details for those notions can be found in H. L. Skala (see [5, 4]).

[^0]Let (X, \unrhd) be a non-empty pseudo-ordered set and $f: X \rightarrow X$ a map. We shall say that f is monotone if for every $x, y \in X$, with $x \unrhd y$, then we have $f(x) \unrhd f(y)$.

An element x of X is said to be a fixed point of a map $f: X \rightarrow X$ if $f(x)=x$. The set of all fixed points of f is denoted by $\operatorname{Fix}(f)$.

Let X be a non-empty set and 2^{X} be the set of all non-empty subsets of X. A set-valued map on X is any map $T: X \rightarrow 2^{X}$. An element x of X is called a fixed point of T if $x \in T(x)$. We denote by $\operatorname{Fix}(T)$ the set of all fixed points of T.

In this paper, we shall use the following definition of monotonicity for setvalued maps.

Definition 1.1. Let (X, \unrhd) be a non-empty pseudo-ordered set. A set-valued map $T: X \rightarrow 2^{X}$ is said to be monotone if for any $x, y \in X$ with $x \triangleright y$, then for every $a \in T(x)$ and $b \in T(y)$, we have $a \unrhd b$.

In this work, we shall need the following notion of inverse relation.
Definition 1.2. Let X be a non-empty set and let \unrhd be a relation on its. The inverse relation \unlhd of \unrhd is defined for every $x, y \in X$ by:

$$
(x \unlhd y) \Leftrightarrow(y \unrhd x) .
$$

In this paper, we shall need the two following technical lemmas which their proofs will be given in the Appendix.
Lemma 1.3. Let \unrhd be a pseudo-order relation defined on a non-empty set X and let \unlhd be its inverse relation. Then, \unlhd is a pseudo-order relation on X.

Lemma 1.4. Let \unrhd be a pseudo-order relation defined on a non-empty set X, let \unlhd be its inverse relation and let A be a non-empty subset of X. Then, we have
(i) if $\sup _{\triangleright}(A)$ exists, so $\inf _{\unlhd}(A)$ exists too and $\sup _{\triangleright}(A)=\inf _{\unlhd}(A)$;
(ii) if $\inf _{\unrhd}(A)$ exists, hence $\sup _{\triangleleft}(A)$ exists also and $\inf _{\unrhd}(A)=\sup _{\triangleleft}(A)$;
(iii) if $\min _{\unrhd}(A)$ exists, then $\max _{\unlhd}(A)$ exists too and $\min _{\unrhd}(A)=\max _{\unlhd}(A)$;
(iv) if $\max _{\unrhd}(A)$ exists, so $\min _{\unlhd}(A)$ exists too and $\max _{\unrhd}(A)=\min _{\unlhd}(A)$.
(v) if $T: X \rightarrow 2^{X}$ is a monotone set-valued map for \unrhd, then T is also a set-valued map for \unlhd.

In 1971, H. Skala introduced the notions of pseudo-ordered sets and trellises and gave some fixed points theorems in this setting (see Theorems 36 and 37 in [4]). Later on, S. Parameshwara Bhatta and all $[3,1]$ studied the fixed point property in pseudo-ordered sets. In this work, we first establish the existence of the greatest and the least fixed points for monotone set-valued maps defined on non-empty pseudo-ordered sets. Furthermore, we prove that the set of all fixed points of of two classes of monotone set-valued maps defined on a nonempty complete trellis is also a non-empty complete trellis. As a consequence, we reobtain the Skala's result [4, Theorem 37].

2. LEAST AND GREATEST FIXED POINTS FOR MONOTONE SET-VALUED MAPS IN PSEUDO-ORDERED SETS

In this section, we shall establish the existence of the least and the greatest fixed points for monotone set-valued maps defined on non-empty pseudoordered sets. First, we shall prove our key result in this paper.
Theorem 2.1. Let (X, \unrhd) be a non-empty pseudo-ordered set with a least element ℓ. Assume that every non-empty subset of X has a supremum in (X, \unrhd). Then, the set of all fixed points $\operatorname{Fix}(T)$ of every monotone set-valued map $T: X \rightarrow 2^{X}$ is non-empty and has a least element.

Proof. Let (X, \unrhd) be a non-empty pseudo-ordered set with a least element ℓ and let $T: X \rightarrow 2^{X}$ be a monotone set-valued map.

First step. We have $\operatorname{Fix}(T) \neq \emptyset$. Indeed, let \mathcal{F} be the family of all subsets A of X satisfying the following three conditions:
(i) $\ell \in A$;
(ii) $T(A) \subset A$;
(iii) for every non-empty subset B of A, we have $\sup _{\unrhd}(B) \in A$.

Since $X \in \mathcal{F}$, so $\mathcal{F} \neq \emptyset$. Set $S=\bigcap_{A \in \mathcal{F}} A$.
Claim 1. The subset S is the least non-empty element of \mathcal{F} for the inclusion relation. Indeed, as $\ell \in A$ for every $A \in \mathcal{F}$, so $\ell \in S$. Since $S=\bigcap_{A \in \mathcal{F}} A$, then

$$
T(S)=T\left(\bigcap_{A \in \mathcal{F}} A\right) \subset \bigcap_{A \in \mathcal{F}} T(A) \subset \bigcap_{A \in \mathcal{F}} A
$$

Thus, we get $T(S) \subset S$. Now, let $D \subset S$ such that $D \neq \emptyset$. Then, $D \subset A$ for every $A \in \mathcal{F}$. So, $\sup _{\unrhd}(D) \in A$ for every $A \in \mathcal{F}$. Hence, we obtain $\sup _{\unrhd}(D) \in S$. Therefore, S is the least non-empty element of \mathcal{F} for the inclusion relation. Then, we set $m=\sup _{\unrhd}(S)$.

Claim 2. We have $m \in \operatorname{Fix}(T)$. Indeed, since $m \in S$ and $T(S) \subset S$, then for every $a \in T(m)$, we have $a \unrhd m$. By absurd assume that $m \notin T(m)$. So, we get $a \triangleright m$, for every $a \in T(m)$. Next, we shall associate for every $a \in T(m)$ a subset B_{a} defined by

$$
B_{a}=\{x \in S: x \unrhd a\} .
$$

As $\ell=\min _{\unrhd}(X)$, so $\ell \in B_{a}$. We shall show that $B_{a} \in \mathcal{F}$. Let $x \in B_{a}$ and $y \in T(x)$. So $x \in S$. As $m=\sup _{\unrhd}(S)$, then $x \unrhd m$. We claim that $x \neq m$. Indeed, if $x=m$, so $m \unrhd a$. Hence we get $a=m$. That is not possible. Then, $x \triangleright m$. Hence, from the monotonicity of T, we get $y \unrhd a$, for every $y \in T(x)$. So, $T(x) \subset B_{a}$, for every $x \in B_{a}$. Thus, we have $T\left(B_{a}\right) \subset B_{a}$. Now, let $C \subset B_{a}$ and $C \neq \emptyset$. So, $C \subset S$. Then, $t=\sup _{\unrhd}(C) \in S$. On the other hand By definition of B_{a} we deduce that a is an upper bound of C. Hence, we obtain $t \unrhd a$. Thus $\sup _{\unrhd}(C) \in B_{a}$. Therefore, $B_{a} \in \mathcal{F}$ for every $a \in T(m)$. As S is the least non-empty element of \mathcal{F} for the inclusion relation, so we get $S \subset B_{a}$ for every $a \in T(m)$. On the other hand, we know that $B_{a} \subset S$ for every $a \in T(m)$. Therefore, we obtain $S=B_{a}$, for every $a \in T(m)$. Then,
as $m \in B_{a}$, so $m \unrhd a$ for every $a \in T(m)$. Thus, we get $m=a$, for every $a \in T(m)$. So, $T(m)=\{m\}$. That is a contradiction with our assumption that $m \notin T(m)$. Therefore, $m \in T(m)$.

Second step. The subset $\operatorname{Fix}(T)$ has a least element. Indeed from the first step above, we know that $\operatorname{Fix}(T) \neq \emptyset$. Next, we consider the following subset B of X defined by

$$
B=\{x \in X: x \unrhd z \text { for every } z \in \operatorname{Fix}(T)\} .
$$

As $\ell=\min _{\unrhd}(X)$, so $\ell \in B$. Hence, we get $\ell=\min _{\unrhd}(B)$. By absurd assume that $\operatorname{Fix}(T)$ has not a least element. So, for every $x \in B$, we have $x \triangleright z$ for every $z \in \operatorname{Fix}(T)$. Next, we shall show that $T(B) \subset B$. Indeed, if $x \in B$, $y \in T(x)$ and $z \in \operatorname{Fix}(T)$, then by the monotonicity of T we get $y \unrhd z$ for every $y \in T(x)$ and $z \in \operatorname{Fix}(T)$. Hence, we get $T(x) \subset B$, for every $x \in B$. Thus, $T(B) \subset B$. Now, let C be a non-empty subset of B and let $c=\sup _{\triangleright}(C)$. By definition of B, we know that every element z of $\operatorname{Fix}(T)$ is an upper bound of C. So, we get $c \unrhd z$ for every $z \in \operatorname{Fix}(T)$. Thus, we have $c \in B$. Hence, from claim 1, we get $B \in \mathcal{F}$. Since S is the least element of \mathcal{F}, so $S \subset B$. On the other hand, by Claim 1, we know that the supremum m of S is a fixed point of T. Hence, $m \in B$. Thus, m is the least fixed of T. That is a contradiction with our assumption. Therefore, $\operatorname{Fix}(T)$ has a least element.

As a consequence of Theorem 2.1, we get the following result.
Corollary 2.2. Let (X, \leq) be a non-empty partially ordered ordered set with a least element ℓ. Assume that every non-empty subset of X has a supremum in (X, \leq). Then, the set of all fixed points $\operatorname{Fix}(T)$ of every monotone set-valued map $T: X \rightarrow 2^{X}$ is non-empty and has a least element.

Next, by combining Lemmas 1.3 and 1.4 and Theorem 2.1 we obtain the the existence of the greatest fixed point for monotone set-valued maps defined on non-empty pseudo-ordered sets.

Theorem 2.3. Let (X, \unrhd) be a non-empty pseudo-ordered set with a greatest element g. Assume that every non-empty subset of X has an infimum in (X, \unrhd). Then, the set of all fixed points of every monotone set-valued map $T: X \rightarrow 2^{X}$ is non-empty and has a greatest element.

Proof. Let (X, \unrhd) be a non-empty pseudo-ordered set with a greatest element g such that every non-empty subset of X has an infimum in (X, \unrhd). Let $T: X \rightarrow 2^{X}$ be a monotone set-valued map for the pseudo-order relation \unrhd and let \unlhd be its inverse relation. Then from Lemma 1.2 , we know that \unlhd is a pseudo-order relation on X. On the other hand by Lemma 1.3, $\min _{\unlhd}(X)$ exists and we have $\min _{\unlhd}(X)=g$. As by our hypothesis $T: X \rightarrow 2^{X}$ is a monotone set-valued map for \unrhd, so from Lemma 1.3 the set-valued map T is also a monotone set-valued map for \unlhd. Thus, all hypothesis of Theorem 2.1 are satisfied. Therefore, The set $\operatorname{Fix}(T)$ of all fixed points of T is non-empty
and has a least element in $(X, \unlhd), m$, say. Then from Lemma 1.3, we get $m=\min _{\unlhd}(\operatorname{Fix}(T))=\max _{\unrhd}(\operatorname{Fix}(T))$.

Combining Theorems 2.1 and 2.3, we obtain the existence of the least and the greatest fixed points of monotone set-valued maps defined on non-empty complete trellises.

Corollary 2.4. Let (X, \unrhd) be a non-empty complete trellis. Then, the set of all fixed points $\operatorname{Fix}(T)$ of every monotone set-valued map $T: X \rightarrow 2^{X}$ is non-empty and has a least and a greatest element.

For complete lattice, we obtain the following result.
Corollary 2.5. Let (X, \leq) be a non-empty complete lattice. Then, the set of all fixed points $\operatorname{Fix}(T)$ of every monotone set-valued map $T: X \rightarrow 2^{X}$ is non-empty and has a least and a greatest element.

3. Fixed points for monotone set-valued maps in complete TRELLISES

In this section, we shall establish that the set of all fixed points of two classes of monotone set-valued maps defined on a non-empty compete trellis is also a non-empty compete trellis. First, we shall prove the following result.
Theorem 3.1. Let (X, \unrhd) be a non-empty complete trellis and let $T: X \rightarrow 2^{X}$ be a monotone set-valued map such that for every $x \in X$ there is $y \in T(x)$ such that $x \unrhd y$. Then, the set of all fixed points $\operatorname{Fix}(T)$ of T is a non-empty complete trellis.
Proof. Let (X, \unrhd) be a non-empty complete trellis and $T: X \rightarrow 2^{X}$ be a monotone set-valued map such that for every $x \in X$, there is $y \in T(x)$, such that $x \unrhd y$. Then by Corollary 2.4, we know that $\operatorname{Fix}(T)$ is non-empty and has a least and a greatest element. Let A be a non-empty subset of $\operatorname{Fix}(T)$.

Claim 1. The infimum of A in $\operatorname{Fix}(T)$ belongs to $\operatorname{Fix}(T)$. Indeed, consider the following subset D of X defined by

$$
D=\{x \in X: x \unrhd z \text { for every } z \in A\}
$$

From Corollary 2.4, we know that the set-valued map T has a least fixed point. So, $D \neq \emptyset$. Let $d=\sup _{\unrhd}(D)$. We shall prove that $d \in T(d)$. Indeed assume on the contrary that $d \notin T(d)$. Since every element z of A is an upper bound of D, so we get $d \unrhd z$ for every $z \in A$. As $d \notin T(d)$, then $d \triangleright z$ for every $z \in A$. We claim that $T(d) \subset D$. Indeed, let $x \in T(d)$. So, by the monotonicity of T we get $x \unrhd z$ for every $z \in A$. Thus, we have $T(d) \subset D$. Hence, we obtain $x \unrhd d$ for every $x \in T(d)$. On the other hand, by our hypothesis we know that there is an element $t \in T(d)$ such that $d \unrhd t$. Hence, from the antisymmetry of the relation \unrhd we deduce that $t=d$ and $d \in T(d)$. That is a contradiction. Hence, $d \in \operatorname{Fix}(T)$. Now, let B be the following subset of $\operatorname{Fix}(T)$ defined by

$$
B=\{x \in \operatorname{Fix}(T): x \unrhd z \text { for every } z \in A\} .
$$

From Corollary 2.4, we know that the set-valued map T has a least fixed point. So, $B \neq \emptyset$. Let $m=\sup _{\unrhd}(B)$. As $B \subset D$, then we get $m \unrhd d$. On the other hand, we know that $d \in \bar{B}$. Hence, we get $d \unrhd m$. So, from the antisymmetry of the relation \unrhd we deduce that $m=d$. Then, $m \in \operatorname{Fix}(T)$. Therefore, the infimum of A in $\operatorname{Fix}(T)$ belongs to $\operatorname{Fix}(T)$.

Claim 2. The supremum of A in $\operatorname{Fix}(T)$ belongs to $\operatorname{Fix}(T)$. Indeed, let E be the following subset of X defined by

$$
E=\{x \in X: z \unrhd x \text { for every } z \in A\} .
$$

From Corollary 2.4, we know that T has a greatest fixed point. Then $\operatorname{Fix}(T) \neq$ \emptyset. As (X, \unrhd) is a nonempty complete trellis, so let $g=\max (X)$. Hence, $g \in E$. Thus, $E \neq \emptyset$ and $g=\max (E)$. Now, we claim that $E \cap \operatorname{Fix}(T) \neq \emptyset$. Assume in the contrary that $E \cap \operatorname{Fix}(T)=\emptyset$. Then, $T(E) \subset E$. Indeed, let $x \in E$, $y \in T(x)$ and let $z \in A$. As $z \triangleright x$ and T is monotone, so for every $z \in A$, we get $z \unrhd y$. Thus, we have $T(x) \subset E$ for every $x \in E$. Hence $T(E) \subset E$. On the other hand, as by our definition $T(x) \neq \emptyset$ for every $x \in X$. From the axiom of choice, there exists a map $\Phi: 2^{X} \rightarrow X$ such for every nonempty subset A of X we have $\Phi(A) \in A$. Then, for every $x \in X$ we define a new map $f: X \rightarrow X$ by setting: $f(x)=\Phi(T(x))$. We claim that f is a monotone map from (X, \unrhd) to (X, \unrhd). Indeed, let $x, y \in X$ with $x \triangleright y$. Since $f(x) \in T(x), f(y) \in T(y)$ and T is monotone, then we get $f(x) \unrhd f(y)$. Hence, f is a monotone map. Let F be a nonempty subset of $E, f=\inf (F)$ and $x \in F$. As for every $z \in A$ we have $z \unrhd x$, then z is a lower bound of F. Hence, we get $z \unrhd f$. Thus, every nonempty subset of E has an infimum in E and (E, \unrhd) has a greatest element. Therefore, all hypothesis of Theorem 3.3 in [6] are satisfied for the monotone map $f: E \rightarrow E$. Hence, $\operatorname{Fix}(f) \neq \emptyset$. Since $\operatorname{Fix}(f) \subset E \cap \operatorname{Fix}(T)$, so we get $E \cap \operatorname{Fix}(T) \neq \emptyset$. That is a contradiction. Therefore, $E \cap \operatorname{Fix}(T) \neq \emptyset$. Then, the set of all supremums of A in $(\operatorname{Fix}(T), \unrhd): G=E \cap \operatorname{Fix}(T)$ is nonempty. Let $\ell=\inf _{\unrhd}(G)$. Then we get $\ell \in E$. We claim that $\ell \in \operatorname{Fix}(T)$. On the contrary assume that $\ell \notin \operatorname{Fix}(T)$. Now, let $x \in G$ and $t \in T(e)$ be given. As $\ell \triangleright x$, $x \in \operatorname{Fix}(T)$ and T is monotone, so we get $t \unrhd x$. Thus, t is a lower bound of G. As $\ell=\inf _{\unrhd}(G)$, then we deduce that we have $t \unrhd \ell$, for every $t \in T(\ell)$. On the other hand, we know that by our hypothesis there is an element $g \in T(\ell)$ such that $\ell \unrhd g$. So, from the antisymmetry of the relation \unrhd we deduce that $\ell=g$. Then, $\ell \in \operatorname{Fix}(T)$. Therefore, the infimum of A in $\operatorname{Fix}(T)$ belongs to $\operatorname{Fix}(T)$.

As a consequence of Theorem 3.1, we reobtain the Skala's result [4, Theorem 37].

Corollary 3.2. Let (X, \unrhd) be a non-empty complete trellis and let $f: X \rightarrow X$ be a monotone map such that for every $x \in X, x \unrhd f(x)$. Then, the set of all fixed points $\operatorname{Fix}(f)$ of f is a non-empty complete trellis.

Using Lemmas 1.3 and 1.4 and Theorem 3.1, we get the following dual result.

Theorem 3.3. Let (X, \unrhd) be a non-empty complete trellis and let $T: X \rightarrow 2^{X}$ be a monotone set-valued map such that for every $x \in X$ there is $y \in T(x)$ satisfying $y \unrhd x$. Then, the set of all fixed points $\operatorname{Fix}(T)$ of T is a non-empty complete trellis.

As a corollary of Theorem 3.3, we obtain the following result for monotone map. That is a dual result of Theorem 37 in [4].

Corollary 3.4. Let (X, \unrhd) be a non-empty complete trellis and let $f: X \rightarrow X$ be a monotone map such that for every $x \in X, f(x) \unrhd x$. Then, the set of all fixed points $\operatorname{Fix}(f)$ of f is a non-empty complete trellis.

4. Appendix

In this section, we shall give the proofs of Lemmas 1.3 and 1.4.
Proof of Lemma 1.3. Let \unrhd be a pseudo-order defined on a non-empty set X and let \unlhd be its inverse relation.
(i) The relation \unlhd is reflexive. Let $x \in X$. Then, $x \unrhd x$. So, $x \unlhd x$. Hence, \unlhd is reflexive.
(ii) The relation \unlhd is antisymmetric. Let $x, y \in X$ such that $x \unlhd y$ and $y \unlhd x$. So, we get $y \unrhd x$ and $x \unrhd y$. Since \unrhd is antisymmetric, then we obtain $x=y$. Thus, the relation \unlhd is antisymmetric.

Proof of Lemma 1.4. Let \unrhd be a pseudo-order defined on a non-empty set X, let \unlhd be its inverse relation and let A be a non-empty subset of X.
(i) Assume that $\sup _{\unrhd}(A)$ exists. Set $s=\sup _{\unrhd}(A)$. Now, let $x \in A$. Then, $x \unrhd s$. So, we get $s \unlhd x$ for every $x \in A$. Thus, s is a $\unlhd-$ lower bound of A. Let ℓ be another \unlhd-lower bound of A. So, we have $\ell \unlhd x$ for every $x \in A$. Hence, $x \unrhd \ell$. Then, ℓ is a \unrhd-upper bound of A. As $s=\sup _{\triangleright}(A)$, so $s \unrhd \ell$. Hence, we get $\ell \unlhd s$. Thus, s is the greatest \unlhd-lower bound of \bar{A}. Then, $s=\inf _{\unlhd}(A)$.
(ii) Assume that $\inf _{\unrhd}(A)$ exists. Set $\ell=\inf _{\unrhd}(A)$. Now, let $x \in A$. Then, $\ell \unrhd x$. So, we get $x \unlhd \ell$ for every $x \in A$. Thus, ℓ is a \unlhd-upper bound of A. Let m be another \unlhd-upper bound of A. So, we have $x \unlhd m$ for every $x \in A$. Hence, $m \unrhd x$. Then, m is a \unrhd-lower bound of A. As $\ell=\inf _{\unrhd}(A)$, so $m \unrhd \ell$. Thus, we have $\ell \unlhd m$. Thus, ℓ is the least \unlhd-upper bound of A. Then, $\ell=\sup _{\unlhd}(A)$.
(iii) Let $m=\min _{\unrhd}(A)$. Then, $m=\inf _{\unrhd}(A)$ and $m \in A$. From (ii) above, we get $m=\sup _{\unlhd}(A)$. As $m \in A$, hence we deduce that $m=\max _{\unlhd}(A)$.
(iv) Let $s=\max _{\unrhd}(A)$. So, $s=\sup _{\unrhd}(A)$ and $m \in A$. From (ii) above, we get $s=\inf _{\unlhd}(A)$. As $s \in A$, hence we obtain $s=\min _{\unlhd}(A)$.
(v) Let let $T: X \rightarrow 2^{X}$ be a monotone set-valued map in (X, \unrhd). Let $x, y \in X$ such that $x \triangleleft y$. So, we have $y \triangleright x$. As T is \unrhd-monotone, so we for every $a \in T(x)$ and $b \in T(y)$, we get $b \unrhd a$. Hence, we deduce that for every $a \in T(x)$ and $b \in T(y)$, we have $a \unlhd b$. Thus, T is $\unlhd-$ monotone.

References

[1] S. P. Bhatta. Weak chain-completeness and fixed point property for pseudo-ordered sets. Czechoslovak Math. J., 55(130)(2):365-369, 2005.
[2] P. Crawley and R. Dilworth. Algebraic theory of lattices. Prentice-Hall, 1973.
[3] S. Parameshwara Bhatta and H. Shashirekha. A characterization of completeness for trellises. Algebra Universalis, 44(3-4):305-308, 2000.
[4] H. Skala. Trellis theory. American Mathematical Society, Providence, R.I., 1972. Memoirs of the American Mathematical Society, No. 121.
[5] H. L. Skala. Trellis theory. Algebra Universalis, 1:218-233, 1971/72.
[6] A. Stouti and A. Maaden. Fixed points and common fixed points theorems in pseudoordered sets. Proyecciones, 32(4):409-418, 2013.

Received September 17, 2012.

Center for Doctoral Studies: Sciences and Techniques, Laboratory of Mathematics and Applications, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, P.O. Box 523. Beni-Mellal 23000, Morocco
E-mail address: stouti@yahoo.com or stout@fstbm.ac.ma

[^0]: 2010 Mathematics Subject Classification. 06B23, 06B05, 54C60, 47H10.
 Key words and phrases. Pseudo-ordered set, fixed point, monotone map, trellis, complete trellis.

