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Abstract. Following the study of the indicatrix of a real Finsler space, in
this paper there are investigated some properties of the complex indicatrix
of a complex Finsler space, both in a fixed point and for the indicatrix
bundle. In a fixed point z0 ∈ M , the associated indicatrix Iz0M is a convex
hypersurface in the holomorphic tangent space T ′

z0M and it can be regarded
as a locally Minkowski manifold. Using the submanifold equations, several
properties of the indicatrix in a fixed point are obtained in terms of the
fundamental function. In the global case, an almost contact structure is
introduced on the indicatrix bundle and considering the Gauss-Weingarten
equations with respect to the Chern-Finsler connection, a constant value of
the mean curvature is determined.

1. Introduction

The study of the indicatrix of a real Finsler space is one of interest ([4,
6, 12, 2, 3, 7], etc.), mainly because it is a compact and strictly convex set
surrounding the origin. For example, the indicatrix plays a special role in the
definition of the volume of a Finsler space.

In the present paper, based on some ideas from the real case, the indicatrix
bundle of a complex Finsler manifold (M,F ) is introduced and several of its
properties are obtained, both locally and globally.

Firstly, we recall some basic notions about complex Finsler geometry (in
Section 1). Then, in Section 2 the notion of complex indicatrix in a fixed point
z0 will be introduced and using the submanifold equations ([10]), the relation
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between the locally coefficients of the second fundamental form and Wein-
garten operator will be given. Moreover, the properties of the hypersurfaces
homothetic to the indicatrix will be obtained. Considering an almost contact
metric structure introduced on the indicatrix bundle (as in [4]), we will be able
in Section 3 to express the mean curvature of constant value in the global case.

Now, we will make a short overview of the concepts and terminology used in
complex Finsler geometry, for more see [1, 8]. Let M be an n+ 1 dimensional
complex manifold, and z := (zk), k = 1, . . . , n+1, the complex coordinates on
a local chart (U,ϕ). The complexified of the real tangent bundle TCM splits
into the sum of holomorphic tangent bundle T ′M and its conjugate T ′′M , i.e.
TCM = T ′M ⊕ T ′′M . The holomorphic tangent bundle T ′M is in its turn
a (2n+ 2)-dimensional complex manifold and the local coordinates in a local
chart in u ∈ T ′M are u := (zk, ηk), k = 1, . . . , n+ 1.

Definition 1. A complex Finsler space is a pair (M,F ), where F : T ′M →
R+, F = F (z, η) is a continuous function that satisfies the following conditions:

i. F is a smooth function on T̃ ′M := T ′M \ {0};
ii. F (z, η) ≥ 0, the equality holds if and only if η = 0;
iii. F (z, λη) = |λ|F (z, η), ∀λ ∈ C;
iv. the Hermitian matrix

(
gij̄(z, η)

)
is positive definite, where gij̄ =

∂2L
∂ηi∂η̄j

is

the fundamental metric tensor, with L := F 2.

By L := F 2 we denote the complex Lagrangian associated to the complex
Finsler function F .

The fourth condition means that the indicatrix in a fixed point IzM =
{η | gij̄(z, η)ηiη̄j = 1} is strongly pseudoconvex, for any z ∈ M .

Moreover, condition iii. says that L is homogeneous with respect to the
complex norm L(z, λη) = λλ̄L(z, η), ∀λ ∈ C, and by applying Euler’s formula
we get that:

(1)
∂L

∂ηk
ηk =

∂L

∂η̄k
η̄k = L;

∂gij̄
∂ηk

ηk =
∂gij̄
∂η̄k

η̄k = 0 and L = gij̄η
iη̄j.

An immediate consequence of the above homogeneity conditions concerns
the following Cartan complex tensors:

Cij̄k :=
∂gij̄
∂ηk

and Cij̄k̄ :=
∂gij̄
∂η̄k

.

They have the following properties:

(2) Cij̄k = Ckj̄i; Cij̄k̄ = Cik̄j̄; Cij̄k = Cjı̄k̄

and

(3) Cij̄kη
k = Cij̄k̄η̄

j = Cij̄kη
i = Cij̄k̄η̄

k = 0

The positivity of (gij̄) from condition iv. ensures the existence of the inverse

(gj̄i), with gj̄igik̄ = δj̄
k̄
.
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Roughly speaking, the geometry of a complex Finsler space consists of the
study of the geometric objects of the complex manifold T ′M endowed with
a Hermitian metric structure defined by gij̄. Regarding this, the first step is
the study of the sections of the complexified tangent bundle of T ′M which
splits into the direct sum TC(T

′M) = T ′(T ′M)⊕ T ′′(T ′M), where T ′′
u (T

′M) =

T ′
u(T

′M) . Let be V (T ′M) ⊂ T ′(T ′M) the vertical bundle, locally spanned by{
∂

∂ηk

}
and let V (T ′′M) be its conjugate that contains (0, 1)− vector fields.

The idea of complex nonlinear connection, briefly (c.n.c.), is fundamental in
”linearization” of this geometry ([8]). A (c.n.c.) is a supplementary complex
subbundle to V (T ′M) in T ′(T ′M), i.e. T ′(T ′M) = H(T ′M) ⊕ V (T ′M). The

horizontal distribution Hu(T
′M) is locally spanned by

{
δ

δzk
= ∂

∂zk
−N j

k
∂

∂ηj

}
,

where N j
k(z, η) are the coefficients of the (c.n.c.). Then, we will call the

adapted frame of the (c.n.c.) the pair
{
δk :=

δ
δzk

, ∂̇k :=
∂

∂ηk

}
, which obey

the change rules δk = ∂z′j

∂zk
δ′j and ∂̇k = ∂z′j

∂zk
∂̇′
j. By conjugation everywhere

we get an adapted frame {δk̄, ∂̇k̄} on T ′′
u (T

′M). The dual adapted bases are{
dzk, δηk := dηk +Nk

j dz
j
}
, respectively {dz̄k, δη̄k}, where δη̄k = dη̄k+N k̄

j̄ dz̄
j.

Let us consider on T ′M the Hermitian metric structure G, named the Sasaki
type lift of the metric tensor gij̄, as

(4) G = gij̄dz
i ⊗ dz̄k + gij̄δη

i ⊗ δη̄j.

One main problem of this geometry is to determine a (c.n.c.) related only
by the fundamental function of a complex Finsler space (M,L); one almost
classical now is the Chern-Finsler (c.n.c.) ([1],[8]), in brief C-F (c.n.c.):

(5) Nk
j = gm̄k ∂glm̄

∂zj
ηl.

The next step is to specify the derivation law D on sections of TC(T
′M). A

Hermitian connection D, of (1, 0)-type, which satisfies DJXY = JDXY , for all
horizontal vectors X and J the natural complex structure J(δk) = iδk, J(δk̄) =

−iδk̄, J(∂̇k) = i∂̇k, J(∂̇k̄) = −i∂̇k̄, will be the Chern-Finsler linear connection,
locally given by the next set of coefficients (notations from [8]):

(6) Li
jk = g l̄iδk(gjl̄), Ci

jk = g l̄i∂̇k(gjl̄), Lı̄
j̄k = 0, C ı̄

j̄k = 0,

where Dδkδj = Li
jkδi, Dδk ∂̇j = Li

jk∂̇i, D∂̇k
∂̇j = Ci

jk∂̇i, D∂̇k
δj = Ci

jkδi. Of

course, there is also DXY = DX̄ Ȳ . From the homogeneity conditions (1) it

takes: Ci
jkη

j = Ci
jkη

k = 0. Moreover, we have Li
jk = ∂̇jN

i
k.

Further we will use the following notation η̄j =: ηj̄ to note a conjugate
object.
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2. The geometry of complex indicatrix in a fixed point z0

In this section we limit our research to the indicatrix in a fixed point z0 ∈ M .
Let T ′

z0
M be the corresponding holomorphic tangent space ofM in z0 ∈ M and

(gij̄(z0, η)) the Hermitian metric from (1). Then, (T ′
z0
M,F ) can be regarded

as a locally Minkowski space with the Hermitian metric G defined by:

G = gjk̄dη
j ⊗ dη̄k, with gjk̄ = G

(
∂̇j, ∂̇k̄

)
,

that acts on VC(T
′M).

According to [8], p.12, a linear connection on M extends by linearity to
TCM, which is isomorphic to VC(T

′M) via vertical lift, and it is well defined

by the next set of coefficients Γi
jk = Γı̄

j̄k̄
, Γı̄

j̄k
= Γi

jk̄
, Γı̄

jk = Γi
j̄k̄
, Γı̄

jk̄
= Γi

j̄k. We

require that ∇ be a complex connection with respect to the natural complex
structure J , i.e. ∇J = 0. So, it results that ∇ conserves the holomorphic
tangent space.

We can choose ∇ to be the Levi-Civita connection, which is a metrical
and symmetric connection and we get the next components of the Levi-Civita
connection:

Γi
jk =

1

2
gh̄i

(
∂̇kgjh̄ + ∂̇jgkh̄

)
= gh̄iCjh̄k =: Ci

jk(η),

Γı̄
j̄k =

1

2
g ı̄h

(
∂̇kghj̄ − ∂̇hgkj̄

)
= 0,

Γi
j̄k =

1

2
gh̄i

(
∂̇j̄gkh̄ − ∂̇h̄gkj̄

)
= 0,

Γı̄
jk = 0,

where we used relations (2). Since Γi
j̄k

= Γı̄
j̄k

= 0, it takes that the Levi-Civita
connection is Hermitian, and has only the following nonzero coefficients:

Ci
jk := Γi

jk = Γı̄
j̄k̄

= gh̄iCjh̄k = gh̄i∂̇kgjh̄,

with Cjk = Ckj and Ci
jkη

j = Ci
jkη

k = 0.
Then, the Riemannian tensor can be written as:

Rij̄kh̄ =
∂2gih̄
∂ηk∂η̄j

− gp̄q
∂gip̄
∂ηk

∂gqh̄
∂η̄j

.

It fulfills Rij̄kh̄ = Rkj̄ih̄ = Rkh̄ij̄. Moreover, we have

(7) Rij̄kh̄ = gil̄∂̇kC
l̄
j̄h̄ = glh̄∂̇j̄C

l
ik = −glh̄R

l
ij̄k = −gil̄R

l̄
j̄kh̄,

whereRi
jk̄h

= −∂̇k̄C
i
jh is the non-zero component of the curvature. Accordingly,

from Ci
jkη

j = Ci
jkη

k = 0, we can write

(8) Rij̄kh̄η
i = Rij̄kh̄η

j̄ = Rij̄kh̄η
k = Rij̄kh̄η

h̄ = 0.

The Ricci tensor is Sij̄ = −
∑
k

∂Ck
ik

∂η̄j
= Sı̄j.
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The covariant derivative of a tensor T h
ij̄
on T ′

z0
M is:

T h
ij̄ |k =

∂T h
ij̄

∂ηk
+ Ch

mkT
m
ij̄ − Cm

ikT
h
mj̄ − Cm̄

j̄kT
h
im̄,

and by applying it to the important tensors of the complex Finsler space, by
direct calculation we obtain the following relations:

F |i =
∂F

∂ηi
= li :=

ηi
2F

; F |ı̄ =
∂F

∂η̄i
= lı̄ :=

ηı̄
2F

;

li |j = − lilj
F

; li |j̄ = lj̄|i =
gij̄ − 2lilj̄

2F
=

hij̄

2F
;

hij̄ |k =
2lilj̄lk − lihkj̄

F
; hij̄ |k̄ =

2lilj̄lk̄ − lj̄hik̄

F
.

So, for a fixed point z0 on M , we consider the complex indicatrix in z0 as:

Iz0M =
{
η ∈ T ′

z0
| F (z0, η) = 1

}
.

The indicatrix Iz0M is an n dimensional immersed complex submanifold in
T ′
z0
M . Moreover, it is a locally Minkowski manifold ([11]) and we can take a

locally parametrization of this indicatrix as ηi = ηi(θα); we further consider
that the Latin indices i, j, k, . . . run from 1 to n + 1 and the Greek indices

α, β, γ, . . . run from 1 to n. We shall denote by Bi
α(θ) :=

∂ηi

∂θα
the projection

factor and by N i the unit normal vector to Iz0M . It can be noticed that

rank( ∂ηi

∂θα
) = n and the vector fields Bα = Bi

α (θ)
∂
∂ηi

define a local frame of the

holomorphic tangent bundle over Iz0M . Then, the induced Hermitian metric
tensor relative to Iz0M is given by:

(9) gαβ̄ = G

(
∂

∂θα
,

∂

∂θ̄β

)
= G

(
∂ηi

∂θα
∂

∂ηi
,
∂η̄j

∂θ̄β
∂

∂η̄j

)
= Bi

αB
j̄

β̄
gij̄,

So, rank(gαβ̄) = n and it admits the inverse
(
gβ̄α

)
such that gαβ̄g

β̄γ = δγα.

Moreover, we can notice that ∂̇α := ∂
∂θα

= ∂ηi

∂θα
∂
∂ηi

= Bi
α

∂
∂ηi

= Bi
α∂̇i.

Since on Iz0M we have F (z0, η(θ)) = 1 and considering that L = F 2, if we
differentiate the equation L(z0, η(θ)) = 1 with respect to θα and we use (1) we
get:

∂L

∂ηi
∂ηi

∂θα
= 0, that is equivalent to gij̄(z0, η(θ))η

j̄(θ)Bi
α = 0.

Now, if we differentiate the same identity with respect to θ̄α, and using

again (1) we obtain (∂̇j̄L)∂̇ᾱη̄
j = 0, which is equal to gij̄(z0, η(θ))η

i(θ)B j̄
ᾱ = 0.

Therefore, the vector field N = ηi(θ)∂̇i is a normal and unitary vector field to
the indicatrix, because gij̄(z0, η(θ))η

i(θ)η̄j(θ) = 1. It represents the vertical

Liouville vector field C = ηk∂̇k restriction to the indicatrix.



112 ELENA POPOVICI

We can define Bα
i = gβ̄αB j̄

β̄
gij̄ such that the following properties take place:

Bi
γB

α
i = δαγ , Bi

γB
γ
j = δij − ηi(θ)ηj(θ), gᾱβ = Bβ

i B
ᾱ
j̄ g

j̄i,

and

(10) gj̄i = Bi
αB

j̄

β̄
gβ̄α + ηi(θ)η̄j(θ),

where ηj(θ) = gjk̄η
k̄(θ).

Considering Iz0M an n-dimensional holomorphic submanifold immersed in
the n + 1 dimensional complex manifold T ′

z0
M , we can apply the theory of

submanifolds and we can denote by ∇̃, respectively ∇, their Levi-Civita con-
nections. Then, the Gauss-Weingarten formulae are as follows:

∇XY = ∇̃XY + h(X,Y ), ∀X, Y ∈ Γ(TC(Iz0M))(11)

∇XW = −AWX +∇⊥
XW, ∀X ∈ Γ(TC(Iz0M)), ∀W ∈ Γ(TC(I

⊥
z0
M))(12)

with the F(T ′M)-bilinear second fundamental form of the indicatrix subspace
h : Γ(TC(Iz0M)) × Γ(TC(Iz0M)) → Γ(TC(I

⊥
z0
M)) and the F(T ′M)-bilinear

shape operator (or Weingarten operator) A : Γ(TC(I
⊥
z0
M)) × Γ(TC(Iz0M)) →

Γ(TC(Iz0M)), AWX = A(W,X). This maps are defined by the following set
of coefficients hαβ = hᾱβ̄, hᾱβ = hαβ̄, Aα

β = Aᾱ
β̄
, Aα

β̄
= Aᾱ

β , regarded as:

h(∂̇β, ∂̇α) = hαβN, h(∂̇β, ∂̇ᾱ) = hᾱβN̄,

AN(∂̇β) = Aα
β ∂̇α, AN(∂̇β̄) = Aα

β̄
∂̇α.

The following results are valid in the general context of the complex subman-
ifolds of a Hermitian manifold ([9, 5]). Recall that an m−complex submanifold

M̃ of a complex manifold M is totally umbilical iff for every W ∈ Γ(T ′M̃⊥) it

exists a real constant λ such that AWX = λX, for all X ∈ Γ(T ′M̃). Accord-
ing to [8], a Hermitian structure g on the holomorphic tangent bundle T ′M
determines a Hermitian metric G on the manifold M , and conversely

g(X, Y ) = G(X, Ȳ ),

for any (1,0)-type vector fields. Thus, the mean curvature H is the length
of the mean curvature vector that is defined with respect to an orthonormal

frame {Ei}i=1,m on T ′M̃ and is the mean H = 1
m

∑
h(Ei, Ēi). Obvious, it is

independent of chosen frame and H is a real value.

Proposition 1. Let M̃ be an m-dimensional complex submanifold of an n-
dimensional complex manifold M , endowed with the Hermitian metric G which

is acting on the fibers of T ′M , such that G(X, Ȳ ) = G(Y, X̄). Considering D a
linear connection that is metric with respect to G, the following relations take
place:

i) G(AWX, Ȳ ) = G(W,h(X, Ȳ )), G(Y,AW̄X) = G(h(X,Y ), W̄ ), and

their conjugates, for all X, Y ∈ Γ(T ′M̃), W ∈ Γ(T ′M̃⊥);

ii) if, in addition, M̃ is a totally umbilical submanifold, we can state
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a) AWX = G(W,H)X, ∀X ∈ Γ(T ′M̃), ∀W ∈ Γ(T ′M̃⊥);

b) h(X, Ȳ ) = G(X, Ȳ ) ·H, ∀X, Y ∈ Γ(T ′M̃),

where H represents the mean curvature vector field of M̃ .

The proof of i) is a consequence of (DXG)(W, Ȳ ) = 0, ∀X,Y ∈ Γ(T ′M̃),W ∈
Γ(T ′M̃⊥). We obtain ii).a) by summing the relation λ = G(W,h(Ei, Ēi))
and for ii) b) is used {Wα}α=1,n−m a complementary orthonormal frame in

Γ(T ′M̃⊥). Then, from h(X, Ȳ ) =
∑n−m

i=1 G(Wi, h(X, Ȳ ))W̄i, by i) and ii).a),
we get G(X, Ȳ ) ·H.

We note that an equivalent definition of the totally umbilical complex sub-

manifold is h(X, Ȳ ) = G(X, Ȳ )H, for any X,Y ∈ Γ(T ′M̃), that locally be-
comes hᾱβ = Hgβᾱ.

Since the indicatrix Iz0M is an n dimensional immersed complex submani-
fold in the (n+ 1)-dimensional complex manifold T ′

z0
M , ∇ is the Levi-Civita

connection, i.e. it is metrical, and considering Γ(TC(I
⊥
z0
M)) = span{N, N̄},

we can apply the above Proposition, i), and, between the second fundamental
form and shape operator components, we find the next relation:

hᾱβ = Aγ
βgγᾱ, equivalent to Aα

β = hγ̄βg
γ̄α,

hᾱβ̄ = Aγ

β̄
gγᾱ, equivalent to Aα

β̄ = hγ̄β̄g
γ̄α.

Using the relationsG(∇XY, N̄) = G(h(X, Y ), N̄), respectivelyG(∇XN,∂̇β̄) =

−G(ANX,∂̇β̄), we can compute the above components and we obtain:

Proposition 2. The coefficients of the second fundamental form and Wein-
garten operator are given by

hαβ = 0, hᾱβ = gij̄
∂B j̄

ᾱ

∂θβ
ηi(θ)

Aα
β = −δαβ , Aα

β̄ = 0.

Now, looking to the form of the Weingarten operator coefficients from the
above Proposition and the definition of a totally umbilical submanifold, we
conclude that Iz0M is totally umbilical. Moreover, if we differentiate the or-

thogonality condition gij̄B
j̄
ᾱη

i(θ) = 0 with respect to θβ, using the relations

(1) and (9), we get gij̄η
i(θ)∂̇βB

j̄
ᾱ = −gβᾱ. From Proposition 2, we obtain

hᾱβ = −gβᾱ and thus, the coefficients of the second fundamental form of Iz0M

are Hermitian, i.e. hᾱβ = hβ̄α. Taking into account that Iz0M is a totally
umbilical submanifold of T ′

z0
M , hᾱβ = −gβᾱ and Proposition 1.ii)b), where G

is taken to be the Hermitian structure G = gjk̄dη
j ⊗ dη̄k, we can conclude:

Proposition 3. The indicatrix Iz0M of a complex Finsler space is a totally
umbilical complex hypersurface with constant mean curvature H = −1.
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Expressed in terms of the base vectors fields of Iz0M the Gauss-Weingarten
equations (11-12) become:

∂̇βB
i
α +Bk

βB
j
αC

i
jk = C̃γ

αβB
i
γ + hαβη

i(θ), ∂̇βη
i(θ) = −Aα

βB
i
α +

(
C⊥)i

βk
ηk(θ),

∂̇βB
ı̄
ᾱ = Γ̃γ̄

ᾱβB
ı̄
γ̄ + hᾱβ η̄

i(θ), ∂̇β̄η
i(θ) = −Aα

β̄
Bi

α +
(
Γ⊥)i

β̄k
ηk(θ).

Considering ∂̇βη
i(θ) = Bi

β, ∂̇β̄η
i(θ) = 0 and Proposition 2, we find that in

the Gauss-Weingarten equalities the coefficients of the orthogonal connection

fulfill
(
C⊥)i

βk
ηk(θ) =

(
Γ⊥)i

β̄k
ηk(θ) = 0.

So, given the above properties and since ∇ and ∇̃ are Levi-Civita connec-
tions, we can state:

Proposition 4. The Gauss-Weingarten formulae of the indicatrix Iz0M are
written locally as:

∂Bi
α

∂θβ
+Bk

βB
j
αC

i
jk = C̃γ

αβB
i
γ,

∂Bi
α

∂θ̄β
= −gαβ̄η

i(θ),

∂ηi(θ)

∂θβ
= Bi

β,
∂ηi(θ)

∂θ̄β
= 0.

Next, we consider

R̃αβ̄γδ̄ =
∂2gαδ̄
∂θγ∂θ̄β

− gσ̄λ
∂gασ̄
∂θγ

∂gλδ̄
∂θ̄β

the Riemannian tensor of Iz0M . The Gauss equations ([10]), for the Levi-
Civita connections, expressed by means of the metric structures G and G̃ =
gαβ̄dθ

α ⊗ dθ̄β, are as follows:

G (R(X, Y )Z,U)

= G̃
(
R̃(X, Y )Z,U

)
+G (H(X,Z), H(Y, U))−G(H(Y, Z), H(X,U)).

Using R(U,Z,X, Y ) = G(R(X,Y )Z,U) and taking X = ∂̇γ, Y = ∂̇δ̄, Z =

∂̇β̄, U = ∂̇α we get locally:

Bi
αB

j̄

β̄
Bk

γB
h̄
δ̄Rij̄kh̄ = R̃αβ̄γδ̄ + hβ̄γhαδ̄ − hβ̄δ̄hαγ.

Considering that hβ̄α = hαβ̄ = −gαβ̄ and hαβ = 0, we obtain

R̃αβ̄γδ̄ = Bi
αB

j̄

β̄
Bk

γB
h̄
δ̄Rij̄kh̄ − gγβ̄gαδ̄

Contracting by gδ̄α, considering rank
(
gαβ̄

)
= n and using (10), we get:

R̃β̄γ = B j̄

β̄
Bk

γRj̄k − ngγβ̄,

where R̃β̄γ is the Ricci tensor of Iz0M and Rj̄k = gh̄iRij̄kh̄ is v-Ricci tensor.

Moreover, contracting by gβ̄γ , we have

R̃ = R− n2,
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where R̃ is the scalar curvature of Iz0M and R = gj̄kRj̄k is v-scalar curvature.
In the following, considering the ideas from the real case [6, 12], we introduce

the hypersurfaces homothetic to the complex indicatrix in a fixed point z0 and
we give some properties of them.

Firstly, let M̃ be an n-dimensional hypersurface in T ′
z0
M represented by the

parametric equations ηi = ηi (uα) = ηi(u). IfN i denotes the unit normal vector

to M̃ and P i
α = ∂ηi

∂uα the projection factor, the Gauss-Weingarten formulae with

respect to the Levi-Civita connections, for the hypersurface M̃ , we have the
following expression

∂P i
α

∂uβ
+ P k

βP
j
αC

i
jk = C̃γ

αβP
i
γ + hαβN

i,
∂P i

α

∂ūβ
= hαβ̄N

i,

∂N i

∂uβ
+N jP k

βC
i
jk = −Aα

βP
i
α,

∂N i

∂ūβ
= −Aα

β̄P
i
α,

where hαβ, hαβ̄ and Aα
β , Aα

β̄
are the coefficients of the second fundamental

form and the shape operator of M̃ , respectively, that satisfy Aα
β = hγ̄βg

γ̄α

and Aα
β̄
= hγ̄β̄g

γ̄α. Moreover, the induced metric tensor is given by gαβ̄(u) =

P i
αP

j̄

β̄
gij̄ (z0, η(u)).

A closed (i.e. boundless and compact) hypersurface M̃ in T ′
z0
M of equation

F (z0, η) = c, i.e.

(13) gij̄η
i(u)η̄j(u) = c2, with c > 0 a real constant,

will be called homothetic to the indicatrix.
On differentiating (13) with respect to ūα and using (3), we obtain

gij̄(u)η
i(u)P j̄

ᾱ = 0

and hence it exists a constant ν such that ηi(u) = νN i.
We denote by Dα the operator of mixed covariant derivative, that acts on a

given T i
β as follows:

DαT
i
β =

∂T i
β

∂θα
+ Ci

jkT
j
βB

k
α − C̃γ

βαT
i
γ.

By a direct computation, using the above Gauss-Weingarten formulae, we
get:

DαP
i
β = hβαN

i, DαN
i = −hγ̄αg

γ̄βP i
β, Dαη

i = P i
α,

DᾱP
i
β = hβᾱN

i, DᾱN
i = −hγ̄ᾱg

γ̄βP i
β, Dᾱη

i = 0,

and Dαgij̄ = Dᾱgij̄ = 0, Dαgβγ̄ = Dᾱgβγ̄ = 0, and their conjugates.

Further, by applying Dβ to gij̄(u)η
i(u)P j̄

ᾱ = 0, we obtain hᾱβ = − 1
ν
gβᾱ.

Considering Proposition 1.ii)b), we get that a hypersurface homothetic to
the indicatrix is a totally umbilical one, with the mean curvature H = − 1

ν
.

Since H is a constant real value, we have ν also real, hαβ̄ = hβ̄α, i.e. the second
fundamental form coefficients of a hypersurface homothetic to the indicatrix
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are Hermitian, and η̄i(u) = νN̄ i. By substituting this into relation (13), we
obtain ν = εc, were ε = +1 or ε = −1. So, we can conclude:

Proposition 5. Let M̃ , given by the parametric equations ηi = ηi(uα), be a

hypersurface homothetic to the indicatrix in T̃ ′
z0
M . Then M̃ is totally umbilical

and satisfies the condition:
1 + εcH = 0.

3. The complex indicatrix bundle

Let (M,F ) be a Finsler manifold, dimC M = n + 1, and
(
T̃ ′M,G

)
be

the slit holomorphic tangent bundle of M endowed with the Sasaki lift (4),

which is a Hermitian metric structure on T̃ ′M = T ′M\{0}. Considering that
dimC T

′M = 2n + 2, on T ′M , we take the local coordinates (zk, ηk), with
k = 1, . . . , n+ 1.

We denote by IM the hypersurface of T̃ ′M given by

IM = ∪
z∈M

IzM, IzM = {η ∈ T ′
zM | F (z, η) = 1} ,

which will be called the indicatrix bundle of the complex Finsler space (M,F ).
The above condition can be written, for any z ∈ M, as

F (z, η) = 1 i.e. L(z, η) = 1 i.e. gij̄(z, η)η
iη̄j = 1.

Notice that it takes place the inclusion IM
i
↪→ T ′M . Locally, we can consider

a parametrization of this submanifold as:

zi = zi(uα), ηi = ηi(uα), α ∈ {1, 2, . . . , 2n+ 1}.

Differentiating F 2(z, η) = 1 with respect to uα we obtain: ∂F 2

∂zi
∂zi

∂uα+
∂F 2

∂ηi
∂ηi

∂uα =

0. Using F 2 = L, we can rewrite:

∂L

∂zi
∂zi

∂uα
+

∂L

∂ηi
∂ηi

∂uα
= 0.

From the homogeneity relations we define: ηi = gij̄ η̄
j = ∂L

∂ηi
. Furthermore,

on T ′M we consider the C-F (c.n.c.) such that δ
δzi

= ∂
∂zi

−Nk
i

∂
∂ηk

and δL
δzi

= 0.

Then the above relations can be written as:(
δL

δzi
+Nk

i

∂L

∂ηk

)
∂zi

∂uα
+

∂L

∂ηi
∂ηi

∂uα
= 0,

that is equivalent to

(14)

(
Nk

i

∂zi

∂uα
+

∂ηk

∂uα

)
ηk = 0.

The natural frame field on IM is represented by

∂

∂uα
=

∂zi

∂uα

∂

∂zi
+

∂ηi

∂uα

∂

∂ηi
=

∂zi

∂uα

δ

δzi
+

(
Nk

i

∂zi

∂uα
+

∂ηk

∂uα

)
∂

∂ηk
.
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Then, by (14), we have

G

(
∂

∂uα
, η̄l

∂

∂η̄l

)
=

(
Nk

i

∂zi

∂uα
+

∂ηk

∂uα

)
η̄lgkl̄ = 0,

where G is the Sasaki lift. Then it follows that the vertical Liouville vector
field N = ηl ∂

∂ηl
is orthogonal to T ′(IM), i.e. it is normal to the indicatrix,

and ξ = FN = ηiδi is the radial horizontal vector field, unitary and tangent
to IM , where F (which is bold) represents the complex structure defined on
T ′M as:

F (δj) = ∂̇j, F(∂̇j) = −δj, F
(
δj̄
)
= ∂̇j̄, F(∂̇j̄) = −δj̄.

To avoid an eventually confusion with the fundamental function F , we fur-
ther denote a complex Finsler space as (M,L). So, (M,F, G) is an almost
Hermitian structure on T ′M and its integrability implies the integrability of
horizontal distribution.

We consider the 1-form θ given by

(15) φ(X) = G(X, ξ̄), ∀X ∈ Γ(T ′T ′M).

Next, we denote by G̃ the induced metric on IM by the Sasaki lift G. Finally,
for any vector field X on IM we decompose FX as:

(16) FX = ϕX + φ(X)N,

where ϕX denotes a vector field that is tangent to IM .
Since ξ is a vector field unitary with respect to G̃, from (15) we get that

φ(ξ) = 1; moreover, φ(N) = 0. Also, from (15) and (16), we deduce that
φ ◦ ϕ = 0 and taking X = ξ in (16) we obtain ϕξ = 0. Further, by applying F
to (16), we obtain ϕ2X = −X + φ(X)ξ, i.e.

(17) ϕ2 = −Id+ φ⊗ ξ.

Moreover, taking into account that F is an isometry with respect to G̃ and
using (16), we infer that the induced Hermitian metric structure satisfies

G̃(ϕX,ϕY ) = G̃(X, Y )− φ(X)φ(Y ), ∀X, Y ∈ Γ (TCIM) .

So, we have:

Proposition 6. Let (M,L) be a complex Finsler manifold. Then (ϕ, ξ, φ, G̃)
is a metric almost contact structure on IM .

Next, we take a vector field X on M and consider its horizontal and vertical

lifts Xh and Xv on T̃ ′M , respectively; thus, for X = X i ∂
∂zi

we define:

Xh = X iδi and Xv = X i∂̇i.

Then Xh is tangent to IM , while Xv is expressed at the points of IM as
follows:

(18) Xv = X t + φ(Xh)N,
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whereX t represents the part ofXv tangent to IM and it is called the tangential
lift of X on IM .

Thus, we can make the notations:

HIM = HT̃ ′M |IM and V IM = V T̃ ′M |IM .

Also, we denote by IM t the bundle of tangential vectors, which are comple-
mentary orthogonal to span{N} in V IM . Then, the tangent bundle of IM
admits the orthogonal decomposition:

TCIM = T ′IM ⊕ T ′′IM, with T ′IM = HIM ⊕ IM t and T ′′IM = T ′IM.

Now, by applying F to (18) and taking into account that F(N) = −ξ,
φ(X t) = 0 and FXv = −Xh, we deduce that:

(19) Xh = −ϕX t + φ(Xh)ξ.

Thus, the above decomposition becomes:

T ′IM = span{ξ} ⊕ ϕ
(
IM t

)
⊕ IM t.

By applying ϕ to (19) and using (17), we obtain:

ϕXh = X t.

On T ′M we consider the Chern-Finsler (c.n.c.), given by the coefficients (5).

So, taking into account the Chern-Finsler linear connection on T̃ ′M , locally
given by the set of coefficients from (6), we get that

DvXN = vX, DvXN̄ = 0, DhXN = 0 and DhXN̄ = 0,

where by h and v we denote the projection morphisms of T ′(T ′M) on HT ′M
and V T ′M , respectively. More precisely, for a vector field X, we consider
hX = X iδi and vX = X i∂̇i. So, we deduce that

DXtN = X t, DXtN̄ = 0, DXhN = 0 and DXhN̄ = 0.

On the other hand, considering the general framework of the geometry of
hypersurfaces, for any X ∈ Γ(TCIM) we have the Weingarten formula on the
indicatrix IM with respect to the induced Chern-Finsler linear connection:

DXN = −ANX,

where AN(X) =: A(X) is the shape operator of the immersion of IM in

(T̃ ′M,G) , that satisfies G(DXN,∂̇k̄) = −G(A(X),∂̇k̄). Thus, comparing the
last two relations, we get:

(20) AX t = −X t, AX t = 0, AXh = 0 and AXh = 0,

where AX t = AN̄X t.
Let D̃ be the tangent Chern-Finsler connection induced on (IM, G̃). The

Gauss formula of the immersed subspace IM is:

DXY = D̃XY + h(X,Y ), ∀X,Y ∈ Γ(TCIM),
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where h(X,Y ) ∈ Γ(TCIM
⊥) is the normal part of the vector field DXY . The

map h : Γ(TCIM) × Γ(TCIM) → Γ(TCIM
⊥) is F(T ′M)-bilinear and it rep-

resents the second fundamental form of the indicatrix subspace. Moreover, it
takes place: G(DXY, N̄) = G(h(X, Y ), N̄).

Considering that the Chern-Finsler connection is metrical with respect to
the Sasaki lift G, we can apply Proposition 1.i), for the immersed subspace

IM in (T̃ ′M,G) , so between Weingarten operator and the second fundamental
tensor it exists the following relation:

G
(
ANX, Ȳ

)
= G(N, h(X, Ȳ )) and G(Y,AN̄X) = G(h(X, Y ), N̄),

and their conjugates, for all X, Y ∈ Γ(T ′IM).
If we take X = Xh, then we obtain h(Xh, Y ) = 0, equivalent to

(21) DXhY = D̃XhY.

Similar, D
XhY = D̃

XhY , DXtY = D̃XtY and h(X t, X t) = −N̄ .
Considering this, we can state the following proposition:

Proposition 7. The complex indicatrix bundle IM is a hypersurface in (T̃ ′M,G)
of constant mean curvature:

H = − n

2n+ 1
.
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Univ. Braşov Ser. III, 6(55)(1):63–76, 2013.

[11] H. Rund. The differential geometry of Finsler spaces. Die Grundlehren der Mathema-
tischen Wissenschaften, Bd. 101. Springer-Verlag, Berlin-Göttingen-Heidelberg, 1959.



120 ELENA POPOVICI

[12] S. Watanabe and F. Ikeda. On some properties of Finsler spaces based on the indica-
trices. Publ. Math. Debrecen, 28(1-2):129–136, 1981.

Received December 3, 2013.

Faculty of Mathematics and Computer Science,
Transilvania University of Braşov,
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