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ON COMPLETELY SIMPLE SEMIGROUPS

F. FATEHI AND M. R. MOLAEI

Abstract. In this paper completely simple semigroups or generalized gro-
ups are considered. We characterize generalized groups which are normal
generalized groups. Homomorphisms of generalized groups are considered.
Equivalent conditions for the kernel of a homomorphism are deduced. We
prove that the group components of a generalized group have the same
cardinality. We also prove that if G is a finite normal generalized group,
and q||G|, where q is a prime number, then G has a generalized subgroup
of order q. We deduce a theorem such as second isomorphism theorem for
generalized groups.

1. Introduction

The notion of generalized group has been studied in 1999 for constructing
a geometric theory [7]. A generalized group is a semigroup (G, .) with the
following properties:

(i) For each g ∈ G there is a unique e(g) ∈ G such that ge(g) = e(g)g = g;
(ii) For each g ∈ G there is a g−1 ∈ G such that gg−1 = g−1g = e(g).

In 2002, Araujo and Konieczny proved that this structure is equivalent to the
notion of completely simple semigroups [2]. We recall that a semigroup (G, .)
with an idempotent is called a completely simple semigroup [5] if for all a ∈ G,
GaG = G, and if e and f are idempotents in G such that ef = fe then e = f .
Completely simple semigroups have characterized by Ree’s matrix semigroups
[14]. If I and Λ are two sets, D is a group and P : Λ × I → D is a mapping,
then I×D×Λ with the operation (i1, d1, λ1)(i2, d2, λ2) = (i1, d1P (λ1, i2)d2, λ2)
is a completely simple semigroup and we denote it by M(D, I,Λ, P ). Each
completely simple semigroup is isomorphic to a Ree’s matrix semigroup. So in
this paper generalized groups, completely simple semigroups, and Ree’s matrix
semigroups are the same. One must pay attention to this point that each
generalized group is a completely regular semigroup [5], but the converse is
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not true. For example S = {1, 2} with the binary operation 2.2 = 2, 2.1 =
1.2 = 2, 1.1 = 1 is a semigroup. If we define 2−1 = 2, 1−1 = 1, then S is a
completely regular semigroup which is not a generalized group. Because the
identity of 2 is not unique.

In the references [1, 4, 6, 7, 10] the notion of generalized group has been
considered from the algebraic point of view. One can find the applications of
generalized group in dynamical systems, genetic and geometry in the references
[8, 9, 10, 11, 12, 13]. This structure has been considered from fuzzy point of
view in [3].

In section two we find a condition which determines the normality of gener-
alized groups. Two equivalent conditions for the kernel of a generalized groups
homomorphism are determined. If G is a generalized group, and a ∈ G, then
Ga = e−1(e(a)) is a group with the binary operation of G, and it is called a
group component of G. We will prove that the cardinality of all group com-
ponents of G are the same. If G is a finite normal generalized group, and
q||G|, where q is a prime number, then in section two we prove that G has a
generalized subgroup of order q. Second isomorphism theorem for generalized
groups is studied in section three.

2. Main Results

A generalized group G is called a normal generalized group if e : G → G
is a homomorphism. In the next theorem we characterize normal generalized
groups.

Theorem 2.1. Let M(D, I,Λ, P ) be a Ree’s matrix semigroup. Then e is a
homomorphism if and only if P is a separable function i.e. there exists h : I →
D and g : Λ → D such that P (λ, i) = g(λ)h(i) for all (λ, i) ∈ Λ× I.

Proof. The direct calculations imply that:

e(i1, a1, λ1) = (i1, h(i1)
−1g(λ1)

−1, λ1),

e(i2, a2, λ2) = (i2, h(i2)
−1g(λ2)

−1, λ2).

Now, we show that e is a homomorphism.

e((i1, a1, λ1))e((i2, a2, λ2)) = (i1, h(i1)
−1g(λ1)

−1, λ1)(i2, h(i2)
−1g(λ2)

−1, λ2)

= (i1, h(i1)
−1g(λ2)

−1, λ2)

= e((i1, a1p(λ1, i2)a2, λ2))

= e((i1, a1, λ1)(i2, a2, λ2)).

Conversely if e is a homomorphism then

e((i1, a1, λ1)(i2, a2, λ2)) = e((i1, a1, λ1))e((i2, a2, λ2)).

So

e((i1, a1p(λ1, i2)a2, λ2)) = (i1, p(λ1, i1)
−1, λ1)(i2, p(λ2, i2)

−1, λ2).
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Thus,

(i1, p(λ2, i1)
−1, λ2) = (i1, p(λ1, i1)

−1p(λ1, i2)p(λ2, i2)
−1, λ2).

Then

p(λ2, i1)
−1 = p(λ1, i1)

−1p(λ1, i2)p(λ2, i2)
−1.

So

(∗) p(λ1, i1) = p(λ1, i2)p(λ2, i2)
−1p(λ2, i1).

Let i0 ∈ I and λ0 ∈ Λ be fixed.
Then for (λ, i) ∈ Λ× I the equality (∗) implies

P (λ, i) = p(λ, i0)p(λ0, i0)
−1p(λ0, i).

If we define g : Λ → D and h : I → D by g(λ) = p(λ, i0) and
h(i) = p(λ0, i0)

−1p(λ0, i), then p(λ, i) = g(λ)h(i) so p is separable. �

If f : G1 → G2 is a homomorphism then in [6] the kernel of f is defined as
the set {x ∈ G1| ∃a ∈ G1 such that f(x) = f(e(a))}.

Lemma 2.2. If f : G1 → G2 is a homomorphism then

(i) ker f = {x ∈ G1| f(x) = f(e(x))};
(ii) ker f = {x ∈ G1| f(x2) = f(x)}.

Proof. (i) If x ∈ ker f , then there is an a ∈ G1 such that f(x) = f(e(a)). So
e(f(x)) = e(f(e(a))). Hence, f(e(x)) = f(e(e(a))). So f(e(x)) = f(e(a)).
Thus, f(e(x)) = f(x). So ker f ⊆ {x ∈ G1| f(x) = f(e(x))}.

Moreover, the definition of kernel implies {x ∈ G1| f(x) = f(e(x))} ⊆ ker f .
Thus,

ker f = {x ∈ G1| f(x) = f(e(x))}.
(ii) By (i) ker f = {x ∈ G1| f(x) = f(e(x))} = {x ∈ G1| f(x) = e(f(x))}.

The condition f(x) = e(f(x)) implies

f(x)f(x) = f(x)e(f(x)) = f(x).

So f(x2) = f(x). Moreover, if f(x2) = f(x), then f(x)f(x) = f(x). Thus,
e(f(x)) = f(x).

Hence ker f = {x ∈ G1| f(x2) = f(x)}. �

Remark 2.3. If M(D, I,Λ, P ) is a Ree’s matrix semigroup, then e(e(a)e(b)) =
e(ab) for all a, b ∈ M(D, I,Λ, P ).

Since each generalized group is equivalent to a Ree’s matrix semigroup, then
e(e(a)e(b)) = e(ab) for all a, b belong to a generalized group.

Theorem 2.4. If f : G1 → G2 is a homomorphism then ker f is a generalized
subgroup of G1 if and only if Im(f) is a generalized subgroup of G2, and e is
a homomorphism on it.
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Proof. Let ker f be a generalized subgroup of G1. Then

ker f = {x ∈ G1| f(x) = f(e(x))}.
Since e(x) ∈ ker f for all x ∈ G1, then e(x)e(y) ∈ ker f for all x, y ∈ G1.

So f(e(x)e(y)) = f(e(e(x)e(y))) by Lemma 2.2. The Remark 2.3, implies
f(e(x)e(y)) = f(e(xy)). So

e(f(x))e(f(y)) = f(e(x))f(e(y)) = f(e(x)e(y))

= f(e(xy)) = e(f(xy)) = e(f(x)f(y)).

So e is a homomorphism on Im f . Moreover in [6] has been proved that: Im f
is a generalized subgroup of G2.

Conversely if Im (F ) is a normal generalized subgroup of G2.
If a, b ∈ ker f , then

f(e(ab−1)) = e(f(ab−1)) = e(f(a)f(b)−1) = e(f(a))e(f(b)−1)

= f(e(a))f(e(b−1)) = f(a)f(b−1) = f(ab−1).

So Lemma 2.2 implies ab−1 ∈ ker f .
By Theorem 2.1 of [6] ker f is a generalized subgroup of G1. �
We define the center of a generalized group G by

Z(G) = {x ∈ G| xy = yx for all y ∈ G}.

Theorem 2.5. Z(G) 6= ∅ if and only if G is a group.

Proof. If G is a group then its identity is element of Z(G). So Z(G) 6= ∅.
Conversely, if Z(G) 6= ∅, then there is x ∈ G such that xy = yx for all

y ∈ G. Hence, xy = xye(y) and e(y)xy = e(y)yx = yx = xy. So e(xy) = e(y).
Similarly e(xy) = e(x). So e(y) = e(x) for all y ∈ G. Thus, G is a group. �
Theorem 2.6. Let G be a generalized group with the Ree’s matrix represen-
tation M(D, I,Λ, P ) then |Ga| = |D| for all a ∈ G.

Proof. If a = (i1, a1, λ1), then for d ∈ D.
e((i1, d, λ1)) = (i1, p(λ1, i1)

−1, λ1) = e(a). So {(i1, d, λ1)| d ∈ D} ⊆ Ga. If
(i2, d, λ2) ∈ Ga, then e((i2, d, λ2)) = e(a).

So (i2, p(λ2, i2)
−1, λ2) = (i1, p(λ1, i1)

−1, λ1). Thus, i2 = i1, λ2 = λ1. Then
Ga ⊆ {(i1, d, λ1)| d ∈ D}. Hence, Ga = {(i1, d, λ1)| d ∈ D}. So |Ga| = |D|. �
Theorem 2.7. Let G be a finite generalized group with non constant identity.
Moreover, let the cardinality of G be a prime number. Then e(x) = x for all
x ∈ G.

Proof. Let E be a subset of G such that E ∩ Ga be a singleton for all a ∈ G.
Then G =

⋃
a∈E Ga. So |G| = |E||Ga| for a ∈ G. Since, |E| 6= 1, then |Ga| = 1

for all a ∈ G. Thus e(a) = a for all a ∈ G. �
Corollary 2.8. If G is a finite generalized group and its cardinality is prime,
then G is a normal generalized group.
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Lemma 2.9. If G is a finite generalized group and e(x) = x for all x ∈ G,
then for all prime number q which q||G|, G has a generalized subgroup of order
q.

Proof. We use of the Ree’s matrix representation forG, i.e. G = M(D, I,Λ, P ).
Since e(x) = x, then |D| = |Gx| = 1. So q||G| = |I| × |Λ|. Hence, we have

the following two Cases:

1) If q||I|, then for a fixed λ0 ∈ Λ we define G1 by

{(ir, e, λ0)| ir ∈ I, r ∈ {1, 2, . . . , q}}.

G1 with the product of G is a generalized subgroup of G of order q.
2) If q||Λ|, then as the previous case we can fined a generalized subgroup

of order q.

�
Theorem 2.10. If G is a finite normal generalized group, and q||G|, where q
is a prime number, then G has a generalized subgroup of order q.

Proof. G =
⋃

a∈AGa where A = {e(x)| x ∈ G}. Then |G| = |A||Ga|, and
q||A||Ga|.

Case 1. If q||Ga|, then Ga has a subgroup of order q.
Case 2. If q||A|, then the previous lemma implies A has a generalized

subgroup of order q. �

3. Second Isomorphism Theorem

In the group theory if G is a group and H is a normal subgroup of it,
then any subgroup of G/H has the form K/H where K is a subgroup of
G and H ⊆ K. This fact is not true in generalized group, for example
if G = {x1, x2, . . . , x10}, then G with the operation xixj = xi is a nor-
mal generalized group, then N = {x1, . . . , x8} is a generalized normal sub-
group of G. So G/N =

⋃8
i=1 Gxi

/Nxi
= {{x1}, {x2}, . . . , {x8}}, and its op-

eration is {xi}{xj} = {xi}. G/N is a normal generalized group. If K =
{{x1}, {x2}, . . . , {x5}}, then K is a generalized normal subgroup of G/N , but
the next theorem implies there is no any generalized normal subgroup M of G
such that K = M/N and N ⊆ M .

Theorem 3.1. If N is a generalized normal subgroup of G and M is a general-
ized subgroup of G such that N ⊆ M , then N is a generalized normal subgroup
of M .

Proof. Since, N is a generalized normal subgroup of G, then there is a gen-
eralized group E and a homomorphism f : G → E such that N ∩ Ga = ∅ or
N ∩ Ga = ker fa for all a ∈ G. Let g be the restriction of f on M . Then
g : M → E is a homomorphism and Ma = M ∩ Ga, and N ∩ Ma = ∅ or
N ∩Ma = ker ga. So N is a generalized normal subgroup of M . �
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Theorem 3.2. Let G be a normal general group and M and N be to general-
ized normal subgroup of G and N ⊆ M . Then M/N is a generalized normal
subgroup of G/N .

Proof. The previous theorem implies that N is a generalized normal subgroup
of M . There is a generalized group E and a homomorphism f : G → E such
that Ma = ∅ or Ma = ker fa for all a ∈ G.

We define f : G/N → E by f(xNa) = f(x). f is a well defined mapping,
because if xNa = yNb, then there is r ∈ Nb such that x = yr. Since N ⊆ M ,
then Nb ⊆ Mb, and

f(x) = f(yr) = f(y)f(r) = f(y)f(e(b)) = f(y)f(e(y)) = f(y).

So f(xNa) = f(yNb). f is also a homomorphism. Because

f(xNayNb) = f(xyNab) = f(xy) = f(x)f(y) = f(xNa)f(yNb).

Moreover

ker f = {xNa| f(xNa) = f(e(xNa))}
= {xNa| f(x) = f(e(x)Na)}
= {xNa| f(x) = f(e(x))}
= {xNa| f(x) = f(e(a))}

= {xNa| x ∈ ker fa = Ma} =
⋃
a∈G

Ma/Na = M/N.

So M/N is a generalized normal subgroup of G/N . �

Theorem 3.3. If G is a normal generalized group and M and N are general-

ized normal subgroups of G and N ⊆ M , then G/N
M/N

∼= G/M .

Proof. We have

(G/N)xNa = {yNb| e(yNb) = e(xNa)}
= {yNb| e(y)Nb = e(x)Na}
= {yNb| Nb = Na and e(y) = e(x) = e(a)}
= {yNb| e(b) = e(a) and e(y) = e(a)}
= {yNb| e(y) = e(b)} = {yNb| y ∈ Gb} = Gb/Nb.

Since e(a) = e(b), then Gb/Nb = Ga/Na. Similarly, (M/N)xNa = Ma/Na.
Thus,

G/N

M/N
=

⋃
xNa∈G/N

(G/N)xNa

(M/N)xNa

=
⋃
a∈G

Ga/Na

Ma/Na

∼=
⋃
a∈G

Ga/Ma = G/M.

�
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4. Conclusion

In this paper we deduce new results on generalized groups. The reader
must pay attention to this point that if H and K are two generalized normal
subgroups of a generalized group G, then it is not necessary that HK = KH.

In generalized groups we have no any theorem such as Lagrange theorem.
For example if G = {x1, x2, x3, x4} with the operation xixj = xj for all i, j ∈
{1, 2, 3, 4}. Then {x1, x2, x3} is a generalized subgroup of G and 3 6 |4.
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groups. Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor. Fiz., 48(52)(1-2):1–5 (2003),
2002.

[3] M. Bakhshi and R. A. Borzooei. Some properties of T -fuzzy generalized subgroups.
Iran. J. Fuzzy Syst., 6(4):73–87, 2009.

[4] H. Fazaeli and M. R. Molaei. Quasi-modules. Pure Math. Appl., 13(3):333–341, 2002.
[5] J. M. Howie. Fundamentals of semigroup theory, volume 12 of London Mathematical

Society Monographs. New Series. The Clarendon Press Oxford University Press, New
York, 1995. Oxford Science Publications.

[6] M. Mehrabi, M. R. Molaei, and A. Oloomi. Generalized subgroups and homomorphisms.
Arab J. Math. Sci., 6(2):1–7, 2000.

[7] M. R. Molaei. Generalized groups. Bul. Inst. Politeh. Iaşi. Secţ. I. Mat. Mec. Teor.
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