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WARPED PRODUCT SUBMANIFOLD IN GENERALIZED
SASAKIAN SPACE FORM

FERESHTEH MALEK AND VAHID NEJADAKBARY

Abstract. In 2002, K. Matsumoto and I. Mihai established sharp inequal-
ities for some warped product submanifolds in Sasakian space forms.

A. Olteanu, established one of these inequalities for Legendrian warped
product submanifolds in generalized Sasakian space forms.

In the present paper, we generalize another inequalities for warped prod-
uct submanifolds in generalized Sasakian space forms with contact struc-
ture.

1. Introduction

Let (M1, g1) and (M2, g2) be two Rimannian manifolds and f a positive
differentiable function on M1. the warped product of M1 and M2 is the Rie-
mannian manifold

M1 ×f M2 = (M1 ×M2, g),

where g = g1 + f 2g2, f is called the warped function (see, for instance, [3] and
[4]).

Let x : M1 ×f M2 −→ M
m

be an isometric immersion. We denote by h the
second fundamental form of x. The immersion x is said to be Mixed totally
geodesic if h(X,Y ) = 0, for any vector fields X and Y tangent to M1 and M2,
respectively.

In the following theorems, K. Matsumoto and I. Mihai established the sharp
inequalities between the warped function of some warped product submanifolds
in the Sasakian space form and the squared mean curvature, see [5].

Theorem 1.1. Let x be a C-totally real isometric immersion of n-dimensional
warped product M1 ×f M2 into a (2m + 1)-dimensional Sasakian space form
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M(c) then

(1)
∆f

f
≤ n2

4n2

‖H‖2 + n1
c+ 3

4
,

where ni = dimMi (i = 1, 2), and ∆ is the Laplacian operator of M1. More-
over, the equality case of (1) holds if and only if x is a mixed totally geodesic
immersion and n1H1 = n2H2, where H and Hi(i = 1, 2) are the mean curva-
ture vector and partial mean curvature vectors, respectively.

Theorem 1.2. Let M(c) be a (2m+1)-dimensional Sasakian space form and
M1×fM2 an n-dimensional warped product submanifold, such that ξ is tangent
to M1. then

(2)
∆f

f
≤ n2

4n2

‖H‖2 + n1
c+ 3

4
− c− 1

4
,

where ni = dimMi (i = 1, 2), and ∆ is the Laplacian operator of M1. More-
over, the equality case of (2) holds if and only if x is a mixed totally geodesic
immersion and n1H1 = n2H2, where H and Hi(i = 1, 2) are the mean curva-
ture vector and partial mean curvature vectors, respectively.

In the following theorem Olteanu established a sharp relationship between
the warped function of the Legendrian warped product submanifold in the
generalized Sasakian space form and the squared mean curvature (see [7]).

Theorem 1.3. Let x be a Legendrian isometric immersion of an n-dimentional
warped product M1×fM2 into a (2n+1)-dimentional generalized Sasakian space
form M(f1, f2, f3). Then

(3)
∆f

f
≤ n2

4n2

‖H‖2 + n1f1,

where ni = dimMi (i = 1, 2), and ∆ is the Laplacian operator of M1. More-
over, the equality case of (3) holds if and only if x is a mixed totally geodesic
immersion and n1H1 = n2H2, where H and Hi(i = 1, 2) are the mean curva-
ture vector and partial mean curvature vectors, respectively.

In this paper we are going to generalize another inequalities, by establishing
the sharp relationships between the warped function of the warped product
submanifolds in the generalized Sasakian space form M(f1, f2, f3) with contact
structure and the squared mean curvature such that structure vector field of
M(f1, f2, f3) is tangent to these submanifolds.

2. Preliminaries

In this section, we recall some definitions and basic formulas which we will
use later.

A (2n + 1)-dimensional Riemannian manifold (M, g) is said to be almost
contact metric if there exist on M a (1,1)-tensor field φ, a vector field ξ(is
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called the structure vector field) and a 1-form η such that η(ξ) = 1, φ2(X) =
−X + η(X)ξ and g(φX, φY ) = g(X,Y )− η(X)η(Y ) for any vector fields X,Y
on M . Also, it can be simply proved that in an almost contact metric manifold
we have φξ = 0 and η ◦ φ = 0 (see for instance [1]). We denote an almost
contact metric manifold by (M,φ, ξ, η, g).

If in an almost contact manifold (M,φ, ξ, η, g),

2Φ(X, Y ) = dη(X, Y ),

where Φ(X, Y ) = g(Y, φX), then (M,φ, ξ, η, g) is called the contact metric
manifold. A contact metric manifold is called the K-contact metric manifold
if the structure vector field be a killing vector field, it is easy to see that in
K-contact metric manifold, we have

∇Xξ = φX,

in which X ∈ τ(M).
If in an almost contact metric manifold (M,φ, ξ, η, g),(

∇Xφ
)
(Y ) = η(Y )X − g(X, Y )ξ,

then we call (M,φ, ξ, η, g) is the Sasakian manifold. It is easy to see that a
Sasakian manifold is contact metric manifold.

Let (M,φ, ξ, η, g) be an almost contact manifold. If πp ⊂ TpM is generated
by {X,φX} where 0 6= X ∈ TpM is normal to ξp, is called the φ-section of M
at p and K(πp) is φ-sectional curvature. If in a Sasakian manifold, there exist
c ∈ < such that for any p ∈ M , K(πp) = c then we call M is the Sasakian
space form and denote it by M(c). In [6] we see that in a Sasakian space form
M(c), the curvature tensor is

R(X, Y )Z =
c+ 3

4
{g(Y, Z)X − g(X,Z)Y }

+
c− 1

4
{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+
c− 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

−g(Y, Z)η(X)ξ}.
Almost contact manifolds are said to be Generalized Sasakian space form if

R(X, Y )Z = f1{g(Y, Z)X − g(X,Z)Y }
+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}
+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ},

(4)

where f1, f2, f3 are differentiable functions on M and we denote this kind of
manifold byM(f1, f2, f3). It is clear that a Sasakian space form is a generalized
Sasakian space form, but the converse is not necessarily true.
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Let Mn be a submanifold of M
2m+1

and h is the second fundamental form
of M and R and R are the curvature tensors of M and M respectively. The
Gauss equation is given by

(5) R(X, Y, Z,W ) = R(X,Y, Z,W )

+ g
(
h(X,W ), h(Y, Z)

)
− g

(
h(X,Z), h(Y,W )

)
,

for any vector fields X, Y , Z, W on M .
Let

H =
1

n

n∑
i=1

h(ei, ei),

be the mean curvature vector field of M , in which {e1, . . . , e2m+1} is a local
orthonormal frame for M such the e1, . . . , en are tangent to M . Thus,

(6) n2‖H‖2 =
n∑

i,j=1

g
(
h(ei, ei), h(ej, ej)

)
.

As, it is known, M is said to be minimal if H vanishes identically. Also, we
set

(7) hr
ij = g

(
h(ei, ej), er

)
, i, j ∈ {1, . . . , n}, r ∈ {n+ 1, . . . , 2m+ 1},

the coefficients of the second fundamental form h with respect to
{e1, . . . , en, . . . , e2m+1}, and

(8) ‖h‖2 =
n∑

i,j=1

g
(
h(ei, ej), h(ei, ej)

)
.

Now, by (6) and (8), the Gauss equation can be rewritten as follows:

(9)
∑

1≤i,j≤n

Rm(ej, ei, ei, ej) = R− n2‖H‖2 + ‖h‖2.

in which R is the scalar curvature of M .
Let Mn be a Riemannian manifold and {e1, . . . , en} be a local orthonormal

frame of M . For a differentiable function f on M , the Laplacian ∆f of f is
defined by

(10) ∆f =
n∑

j=1

(
(∇ejej)f − ej(ejf)

)
.

We recall the following result of B. Y. Chen for later use.

Lemma 2.1 ([2]). Let n ≥ 2 and a1, . . . , an and b are real numbers such that( n∑
i=1

ai

)2

= (n− 1)
( n∑

i=1

a2i + b
)
.
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Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = . . . = an.

3. Warped product submanifolds tangent to the structure
vector field

In this section, we investigate warped product submanifold M = M1 ×f M2

tangent to the structure vector field ξ in a generalized Sasakian space form
M(f1, f2, f3) with contact structure.

We distinguish the following three cases:

(a) ξ tangent to M1;
(b) ξ tangent to M2;
(c) ξ = ξ1 + ξ2 such that ξ1 and ξ2 are nonzero at any point of M and

tangent to M1 and M2 respectively.

Theorem 3.1. Let M(f1, f2, f3) be a (2m + 1)-dimensional generalized
Sasakian space form with contact structure and M1 ×f M2 an n-dimensional
warped product submanifold of M .

a. If ξ is tangent to M1, then

(11)
∆f

f
≤ n2

4n2

‖H‖2 + n1f1 − f3

b. If ξ is tangent to M2, then

(12)
∆f

f
≤ n2

4n2

‖H‖2 + n1f1 −
n1

n2

f3,

c. If ξ = ξ1 + ξ2 such that ξ1 and ξ2 are nonzero at any point of M1 ×f M2

and tangent to M1 and M2 respectively, then

n2
∆f

f
≤

(
n2 − g(ξ1, ξ1)

)(
n1 − g(ξ2, ξ2)

)
f1

−
(
n2

(
g(ξ1, ξ1)

)2

+ n1

(
g(ξ2, ξ2)

)2

+ 3g(ξ1, ξ1)g(ξ2, ξ2)− 1

)
f3

+ 3(n− 2)Θ(f2) +
n2

4
‖H‖2

(13)

in which for any x ∈ M1 ×M2

Θ(f2)(x) :=

{
f2(x), f2(x) > 0,
0, f2(x) ≤ 0,

and ni = dimMi(i = 1, 2) and ∆ is the Laplacian operator of M1.
d. The equality in (11) and (12) hold if and only if M1 ×f M2 is a mixed

totally geodesic submanifold of M and n1H1 = n2H2, where H and Hi(i = 1, 2)
are the mean curvature vector and partial mean curvature vectors, respectively.
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Proof. a. Let M1 ×f M2 be a warped product submanifold of a generalized
Sasakian space form M(f1, f2, f3).

Since M1 ×f M2 is a warped product, it is easily seen that

(14) ∇XZ = ∇ZX =
1

f
(Xf)Z,

for any vector fields X and Z tangent to M1 and M2, respectively (see [8]). If
X and Z are orthonormal vector fields, then the sectional curvature K(X ∧Z)
of the plane section spanned by X and Z is given by

(15) K(X ∧ Z) = g(∇Z∇XX −∇X∇ZX,Z) =
1

f

(
(∇XX)f −X2f

)
.

We choose a local orthonormal frame {e1, . . . , en, en+1, . . . , e2m+1} such that
e1, . . . , en1 = ξ are tangent to M1, en1+1, . . . , en are tangent to M2 and en+1 is
parallel to H. Then using (14), we have

(16)
∆f

f
=

n1∑
j=1

K(ej ∧ es),

for each s ∈ {n1 + 1, . . . , n}. From (4) and (9) we have

(17) n2‖H‖2 = 2τ − n(n− 1)f1 + 2(n− 1)f3 − 3f2P + ‖h‖2,

where 2τ = R, that is

τ =
∑

1≤j<i≤n

K(ej ∧ ei)

and

P :=
∑

1≤i,j≤n

(
g(ej, φei)

)2

=
∑

1≤i,j≤n1

(
g(ej, φei)

)2

,

because

2g(ei, φej) = dη(ej, ei) =

(
ej

(
η(ei)

)
− ei

(
η(ej)

)
− η([ej, ei])

)
.

Therefore, if i, j ∈ {n1 + 1, . . . , n} or i ∈ {1, . . . , n1} and j ∈ {n1 + 1, . . . , n}
then g(ei, φej) = 0. now set

(18) δ := 2τ − n(n− 1)f1 − 3f2P + 2(n− 1)f3 −
n2

2
‖H‖2,

then (17) can be rewritten as

(19) n2‖H‖2 = 2(δ + ‖h‖2).

With respect to the above orthonormal frame, (19) takes the following form:( n∑
i=1

hn+1
ii

)2

= 2
(
δ +

n∑
i=1

(hn+1
ii )2 +

∑
1≤i 6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2
)
.
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If we put a1 = hn+1
11 , a2 =

∑n1

i=2 h
n+1
ii and a3 =

∑n
t=n1+1 h

n+1
tt , then the above

equation becomes

( 3∑
i=1

ai

)2

= 2
(
δ +

3∑
i=1

a2i +
∑

1≤i 6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−
∑

2≤i6=j≤n1

hn+1
ii hn+1

jj −
∑

n1+1≤i6=j≤n

hn+1
ii hn+1

jj

)
.

Thus, a1, a2, a3 satisfy the Lemma 2.1 (for n = 3), i.e.,

( 3∑
i=1

ai

)2

= 2
(
b+

3∑
i=1

a2i

)
,

with

b = δ +
∑

1≤i6=j≤n

(hn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(hr
ij)

2

−
∑

2≤i6=j≤n1

hn+1
ii hn+1

jj −
∑

n1+1≤i6=j≤n

hn+1
ii hn+1

jj .

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3. In the case
under consideration, this means

(20)
∑

1≤j<i≤n1

hn+1
jj hn+1

ii +
∑

n1+1≤j<i≤n

hn+1
jj hn+1

ii

≥ δ

2
+

∑
1≤j<i≤n

(hn+1
ji )2 +

1

2

2m+1∑
r=n+2

n∑
i,j=1

(hr
ji)

2.

Equality holds if and only if

n1∑
i=1

hn+1
ii =

n∑
j=n1+1

hn+1
jj .(21)
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From (16) and the Gauss equation, we have

n2
∆f

f
= τ −

∑
1≤j<i≤n1

K(ej ∧ ei)−
∑

n1+1≤j<i≤n

K(ej ∧ ei)

= τ − n1(n1 − 1)

2
f1 −

3

2
f2

∑
1≤i,j≤n1

(
g(ej, φei)

)2

+ (n1 − 1)f3

− n2(n2 − 1)

2
f1 −

3

2
f2

∑
n1+1≤i,j≤n

(
g(ej, φei)

)2

︸ ︷︷ ︸
0

−
2m+1∑
r=n+1

∑
1≤j<i≤n1

(
hr
iih

r
jj − (hr

ji)
2
)

−
2m+1∑
r=n+1

∑
n1+1≤j<i≤n

(
hr
iih

r
jj − (hr

ji)
2
)
.

(22)

From (20) and (22), we obtain

n2
∆f

f
≤ τ − n(n− 1)

2
f1 + n1n2f1 −

3

2
Pf2 + (n1 − 1)f3 −

δ

2

−
∑

1≤j≤n1
n1+1≤i≤n

(hn+1
ji )2 − 1

2

2m+1∑
r=n+2

n∑
i,j=1

(hr
ji)

2

+
2m+1∑
r=n+2

∑
1≤j<i≤n1

(
(hr

ji)
2 − hr

iih
r
jj

)
+

2m+1∑
r=n+2

∑
n1+1≤j<i≤n

(
(hr

ji)
2 − hr

iih
r
jj

)
,

Therefore,

n2
∆f

f
≤ τ − n(n− 1)

2
f1 + n1n2f1 −

3

2
Pf2 + (n1 − 1)f3 −

δ

2

−
2m+1∑
r=n+1

n1∑
j=1

n∑
i=n1+1

(hr
ji)

2 − 1

2

2m+1∑
r=n+2

(

n1∑
j=1

hr
jj)

2

− 1

2

2m+1∑
r=n+2

(
n∑

j=n1+1

hr
jj)

2

≤ τ − n(n− 1)

2
f1 + n1n2f1 −

3

2
Pf2 + (n1 − 1)f3 −

δ

2

=
n2

4
‖H‖2 + n1n2f1 − n2f3.

(23)
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Which implies the inequality (11).
We see that the equality sign of (23) holds if and only if

(24) hr
ji = 0 for 1 ≤ j ≤ n1, n1 + 1 ≤ i ≤ n, n+ 1 ≤ r ≤ 2n+ 1,

and

(25)

n1∑
i=1

hr
ii =

∑
j=n1+1

hr
jj = 0, n+ 2 ≤ r ≤ 2m+ 1.

Obviously (24) is equivalent to the mixed totally geodesic of the warped prod-
uct M1 ×f M2 and (21) and (25) implies n1H1 = n2H2.

The converse statement is straightforward.
b. We choose a local orthonormal frame {e1, . . . , en, en+1, . . . , e2m+1} such

that e1, . . . , en1 are tangent to M1, en1+1, . . . , en = ξ are tangent to M2 and
en+1 is parallel to H.

Use the similar computation in part (a) to get (17), in which

P :=
∑

1≤i,j≤n

(
g(ej, φei)

)2

=
∑

n1+1≤i,j≤n−1

(
g(ej, φei)

)2

,

Using (18), we have (19). Then with the same method in proof of part (a) and
using Gauss equation, we have

n2
∆f

f
= τ −

∑
1≤j<i≤n1

K(ej ∧ ei)−
∑

n1+1≤j<i≤n

K(ej ∧ ei),

= τ − n1(n1 − 1)

2
f1 −

3

2
f2

∑
1≤i,j≤n1

(
g(ej, φei)

)2

︸ ︷︷ ︸
0

+(n2 − 1)f3

− n2(n2 − 1)

2
f1 −

3

2
f2

∑
n1+1≤i,j≤n

(
g(ej, φei)

)2

−
2m+1∑
r=n+1

∑
1≤j<i≤n1

(
hr
iih

r
jj − (hr

ji)
2
)

−
2m+1∑
r=n+1

∑
n1+1≤j<i≤n

(
hr
iih

r
jj − (hr

ji)
2
)
.

(26)

Applying lemma 2.1 and doing similar computations as in the proof of part
(a), (26) leads to

(27) n2
∆f

f
≤ τ − n(n− 1)

2
f1 + n1n2f1 + (n2 − 1)f3 −

3

2
f2P − δ

2
.

Using (18), the inequality (27) becomes

n2
∆f

f
≤ n2

4
‖H‖2 + n1n2f1 − n1f3,
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i.e. the inequality is proved.
It can be proved, just similar to part (a) that the equality holds in the above

relation if and only if M1 ×f M2 is a mixed totally geodesic submanifold of M
and n1H1 = n2H2. Therefore (d) is proved.

c. We choose a local normal frame {e1, . . . , e2m+1} such that e1, . . . , en1 = ξ1
tangent to M1, en1+1, . . . , en = ξ2 tangent to M2 and en+1 parallel to H and
for any i ∈ {1, . . . , 2m+ 1} − {n1, n}, ‖ei‖ = 1.

From (9) and Gauss equation, we have

n2‖H‖2 = 2τ + ‖h‖2 −
(
n2 − 3n+ 2− 2g(ξ1, ξ1)g(ξ2, ξ2)

)
f1

+2
(
(n− 2) + (5− 2n)g(ξ1, ξ1)g(ξ2, ξ2)

)
f3(28)

−3(2P1 + P )f2.

in which

P :=
∑

1≤i,j≤n
i,j 6=n1,n

(
g(ej, φei)

)2

=
∑

1≤i,j≤n1−1

(
g(ej, φei)

)2

+
∑

n1+1≤i,j≤n

(
g(ej, φei)

)2

and

P1 := 2
n∑

j=1
j 6=n1,n

(
g(ej, φξ1)

)2

= 2
n∑

j=1
j 6=n1,n

(
g(ej, φξ2)

)2

.

We denote

δ := 2τ −
(
n2 − 3n+ 2− 2g(ξ1, ξ1)g(ξ2, ξ2)

)
f1

+2
(
(n− 2) + (5− 2n)g(ξ1, ξ1)g(ξ2, ξ2)

)
f3(29)

−3(2P1 + P )f2 −
n2

2
‖H‖2,

Then (28) can be written as (19). We use the same method as in the proof of
part (a). Using again the Gauss equation and (16), we have

n2
∆f

f
= τ −

∑
1≤j<i≤n1

K(ej ∧ ei)−
∑

n1+1≤j<i≤n

K(ej ∧ ei)

= τ −
(
n1g(ξ1, ξ1) + n2g(ξ2, ξ2) +

n2 − 3n+ 4

2
− n1n2 − 1

)
f1

+

(
n1

(
g(ξ1, ξ1)

)2

+ n2

(
g(ξ2, ξ2)

)2

+ 2g(ξ1, ξ1)g(ξ2, ξ2)− 1

)
f3

−3

( n1−1∑
j=1

(
g(ej, ξ1)

)2

+
n−1∑

j=n1+1

(
g(ej, ξ2)

)2

+
1

2
P

)
f2

−
2m+1∑
r=n+1

∑
1≤j<i≤n1

(
hr
iih

r
jj − (hr

ji)
2
)
−

2m+1∑
r=n+1

∑
n1+1≤j<i≤n

(
hr
iih

r
jj − (hr

ji)
2
)
.
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(30)

Applying lemma 2.1 and doing the similar computations as in the proof of part
(a), (30) leads to

n2
∆f

f
≤ τ −

(
n1g(ξ1, ξ1) + n2g(ξ2, ξ2) +

n2 − 3n+ 4

2
− n1n2 − 1

)
f1

+

(
n1

(
g(ξ1, ξ1)

)2

+ n2

(
g(ξ2, ξ2)

)2

+ 2g(ξ1, ξ1)g(ξ2, ξ2)− 1

)
f3

−3

( n1−1∑
j=1

(
g(ej, ξ1)

)2

+
n−1∑

j=n1+1

(
g(ej, ξ2)

)2

+
1

2
P

)
f2 −

δ

2
.

Using (28), the above inequality becomes

n2
∆f

f
≤

(
n1n2 − n1g(ξ1, ξ1)− n2g(ξ2, ξ2) + g(ξ1, ξ1)g(ξ2, ξ2)

)
f1 +

3

2
P1f2

−
(
n2

(
g(ξ1, ξ1)

)2

+ n1

(
g(ξ2, ξ2)

)2

+ 3g(ξ1, ξ1)g(ξ2, ξ2)− 1

)
f3(31)

+
n2

4
‖H‖2,

since

g(φξ1, φξ1) = g(ξ1, ξ1)−
(
η(ξ1)

)2

≤ 1.

On the other hand for j ∈ {1, . . . , n1 − 1, n1 + 1, . . . , n− 1} we have

0 ≤ g(ej − φξ1, ej − φξ1) = g(ej, ej) + g(φξ1, φξ1)− 2g(ej, φξ1)

⇒ g(ej, φξ1) ≤
1

2

(
g(ej, ej) + g(φξ1, φξ1)

)
≤ 1.

From the last inequality we have 0 ≤ P1 ≤ 2(n− 2). using (31) and Θ(f2) to
get (13). �

Corollary 3.1. Let M(f1, f2, f3) be a (2m + 1)-dimensional generalized
Sasakian space form with contact structure and M1 ×f M2 an n-dimensional
minimal warped product submanifold, such that f is a harmonic function.

a. If ξ is tangent to M1, then

(32) f3 ≤ n1f1,

b. If ξ is tangent to M2, then

(33) f3 ≤ n2f1,

c. If ξ = ξ1 + ξ2 such that ξ1 and ξ2 are nonzero at any point of M1 ×f M2

and tangent to M1 and M2 respectively, then

(34) f3 ≤
f1
A

(
g(ξ1, ξ1)− n2

)(
g(ξ2, ξ2)− n1

)
+

3

A
(n− 2)Θ(f2)
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where ni = dimMi (i=1,2), ∆ is Laplacian operator of M1 and

A :=

(
n2

(
g(ξ1, ξ1)

)2

+ n1

(
g(ξ2, ξ2)

)2

+ 3g(ξ1, ξ1)g(ξ2, ξ2)− 1

)
.

d. The equality case of (32) and (33) hold if and only if M1 ×f M2 is a
minimal mixed totally geodesic submanifold and n1H1 = n2H2, where Hi(i =
1, 2), is partial mean curvature vector.

A 6= 0 in c because 0 < g(ξ1, ξ1) < 1 and 0 < g(ξ2, ξ2) < 1 and

A = (n2 − 1)
(
g(ξ1, ξ1)

)2

+ (n1 − 1)
(
g(ξ2, ξ2)

)2

+ g(ξ1, ξ1)g(ξ2, ξ2).

Proof. H = 0 over M1×fM2, and ∆f = 0 over M1, hence this corollary follows
from Theorem 3.1. �
Corollary 3.2. Let M(f1, f2, f3) be a (2m + 1)-dimensional generalized
Sasakian space form with contact structure and M1 ×f M2 an n-dimensional
minimal warped product submanifold, such that f is an eigenfunction of Lapla-
cian on M1 with the corresponding eigenvalue λ > 0. If

a. ξ is tangent to M1, then

(35) f3 < n1f1,

b. ξ is tangent to M2, then

(36) f3 < n2f1,

c. ξ = ξ1+ ξ2 such that ξ1 and ξ2 are nonzero at any point of M1×f M2 and
tangent to M1 and M2 respectively, then

(37) f3 <
f1
A

(
g(ξ1, ξ1)− n2

)(
g(ξ2, ξ2)− n1

)
+

3

A
(n− 2)Θ(f2),

where ni = dimMi (i=1,2), ∆ is Laplacian operator of M1 and

A :=

(
n2

(
g(ξ1, ξ1)

)2

+ n1

(
g(ξ2, ξ2)

)2

+ 3g(ξ1, ξ1)g(ξ2, ξ2)− 1

)
.

Proof. If f is an eigenfunction of Laplacian on M1 with eigenvalue λ > 0 then

∆f

f
=

λf

f
= λ > 0,

therefore from Theorem 3.1, this corollary is proved. �
Corollary 3.3. Let M(f1, f2, f3) be a (2m + 1)-dimensional generalized
Sasakian space form with contact structure and M1 ×f M2 an n-dimensional
warped product submanifold and ξ = ξ1+ ξ2 such that ξ1 and ξ2 are nonzero at
any point of M1 ×f M2 and tangent to M1 and M2 respectively,

a. If g(ξ2, ξ2) → 0, then

(38)
∆f

f
≤ n2 − 1

n2

(n1f1 − f3) +
n2

4n2

‖H‖2,



WARPED PRODUCT SUBMANIFOLD IN SASAKIAN SPACE FORM 337

b. If g(ξ1, ξ1) → 0, then

(39)
∆f

f
≤ n1 − 1

n2

(n2f1 − f3) +
n2

4n2

‖H‖2,

The equality case of (38) and (39) hold if and only if M1 ×f M2 is a mixed
totally geodesic submanifold and n1H1 = n2H2, in which Hi(i = 1, 2), is partial
mean curvature vector.

Proof. By inequality (31), the proof is evident. �

Corollary 3.4. Let M(f1, f2, f3) be a (2m + 1)-dimensional generalized
Sasakian space form with contact structure and M1 ×f M2 an n-dimensional
minimal warped product submanifold and ξ = ξ1 + ξ2 such that ξ1 and ξ2 are
nonzero at any point of M1 ×f M2 and tangent to M1 and M2 respectively,

a. If g(ξ2, ξ2) → 0, then

(40)
∆f

f
≤ n2 − 1

n2

(n1f1 − f3),

b. If g(ξ1, ξ1) → 0, then

(41)
∆f

f
≤ n1 − 1

n2

(n2f1 − f3).

The equality case of (40) and (41) hold if and only if M1 ×f M2 is a mixed
totally geodesic submanifold and n1H1 = n2H2, in which Hi(i = 1, 2), is partial
mean curvature vector.

Remark 3.1. In part (a) of Corollary 3.3, if f3 ≤ n1f1 then

n2 − 1

n2

(n1f1 − f3) ≤ (n1f1 − f3),

therefore (38) reduces to (11), and if f3 ≤ n2f1 then

n1 − 1

n2

(n2f1 − f3) ≤
n1

n2

(n2f1 − f3),

therefore (39) reduces to (12).

Theorem 3.2. Let M(f1, f2, f3) be a (2m + 1)-dimensional generalized
Sasakian space form with K-contact metric structure and M1 ×f M2 an n-
dimensional warped product submanifold. If ξ is tangent to M2 then

(42) f3 ≤
n2

4n1

‖H‖2 + n2f1,

the equality case hold if and only if M1 ×f M2 is a mixed totally geodesic
submanifold and n1H1 = n2H2, where Hi(i = 1, 2), is partial mean curvature
vector.
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Proof. For any X ∈ τ(M1 ×f M2) tangent to M1, over M1 ×f M2 we have

∇Xξ =
Xf

f
ξ.

on the other hand by K-contactnes we have

0 = g(φX, ξ) = g(
Xf

f
ξ, ξ) =

Xf

f

Thus Xf = 0, therefore f is constant and ∆f = 0. From (12) and (44),
inequality (42) is proved.

The proof of the last part of theorem is similar to Theorem 3.1. �
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