WARPED PRODUCT SUBMANIFOLD IN GENERALIZED SASAKIAN SPACE FORM

FERESHTEH MALEK AND VAHID NEJADAKBARY

Abstract

In 2002, K. Matsumoto and I. Mihai established sharp inequalities for some warped product submanifolds in Sasakian space forms. A. Olteanu, established one of these inequalities for Legendrian warped product submanifolds in generalized Sasakian space forms.

In the present paper, we generalize another inequalities for warped product submanifolds in generalized Sasakian space forms with contact structure.

1. Introduction

Let $\left(M_{1}, g_{1}\right)$ and $\left(M_{2}, g_{2}\right)$ be two Rimannian manifolds and f a positive differentiable function on M_{1}. the warped product of M_{1} and M_{2} is the Riemannian manifold

$$
M_{1} \times_{f} M_{2}=\left(M_{1} \times M_{2}, g\right),
$$

where $g=g_{1}+f^{2} g_{2}, f$ is called the warped function (see, for instance, [3] and [4]).

Let $x: M_{1} \times_{f} M_{2} \longrightarrow \bar{M}^{m}$ be an isometric immersion. We denote by h the second fundamental form of x. The immersion x is said to be Mixed totally geodesic if $h(X, Y)=0$, for any vector fields X and Y tangent to M_{1} and M_{2}, respectively.

In the following theorems, K. Matsumoto and I. Mihai established the sharp inequalities between the warped function of some warped product submanifolds in the Sasakian space form and the squared mean curvature, see [5].

Theorem 1.1. Let x be a C-totally real isometric immersion of n-dimensional warped product $M_{1} \times_{f} M_{2}$ into a $(2 m+1)$-dimensional Sasakian space form

[^0]$\bar{M}(c)$ then
\[

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3}{4}, \tag{1}
\end{equation*}
$$

\]

where $n_{i}=\operatorname{dim} M_{i}(i=1,2)$, and Δ is the Laplacian operator of M_{1}. Moreover, the equality case of (1) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where H and $H_{i}(i=1,2)$ are the mean curvature vector and partial mean curvature vectors, respectively.
Theorem 1.2. Let $\bar{M}(c)$ be a $(2 m+1)$-dimensional Sasakian space form and $M_{1} \times{ }_{f} M_{2}$ an n-dimensional warped product submanifold, such that ξ is tangent to M_{1}. then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} \frac{c+3}{4}-\frac{c-1}{4} \tag{2}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}(i=1,2)$, and Δ is the Laplacian operator of M_{1}. Moreover, the equality case of (2) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where H and $H_{i}(i=1,2)$ are the mean curvature vector and partial mean curvature vectors, respectively.

In the following theorem Olteanu established a sharp relationship between the warped function of the Legendrian warped product submanifold in the generalized Sasakian space form and the squared mean curvature (see [7]).
Theorem 1.3. Let x be a Legendrian isometric immersion of an n-dimentional warped product $M_{1} \times{ }_{f} M_{2}$ into a (2n+1)-dimentional generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} f_{1} \tag{3}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}(i=1,2)$, and Δ is the Laplacian operator of M_{1}. Moreover, the equality case of (3) holds if and only if x is a mixed totally geodesic immersion and $n_{1} H_{1}=n_{2} H_{2}$, where H and $H_{i}(i=1,2)$ are the mean curvature vector and partial mean curvature vectors, respectively.

In this paper we are going to generalize another inequalities, by establishing the sharp relationships between the warped function of the warped product submanifolds in the generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with contact structure and the squared mean curvature such that structure vector field of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is tangent to these submanifolds.

2. Preliminaries

In this section, we recall some definitions and basic formulas which we will use later.

A $(2 n+1)$-dimensional Riemannian manifold (\bar{M}, g) is said to be almost contact metric if there exist on \bar{M} a (1,1)-tensor field ϕ, a vector field ξ (is
called the structure vector field) and a 1-form η such that $\eta(\xi)=1, \phi^{2}(X)=$ $-X+\eta(X) \xi$ and $g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y)$ for any vector fields X, Y on \bar{M}. Also, it can be simply proved that in an almost contact metric manifold we have $\phi \xi=0$ and $\eta \circ \phi=0$ (see for instance [1]). We denote an almost contact metric manifold by $(\bar{M}, \phi, \xi, \eta, g)$.

If in an almost contact manifold $(\bar{M}, \phi, \xi, \eta, g)$,

$$
2 \Phi(X, Y)=d \eta(X, Y)
$$

where $\Phi(X, Y)=g(Y, \phi X)$, then $(\bar{M}, \phi, \xi, \eta, g)$ is called the contact metric manifold. A contact metric manifold is called the K-contact metric manifold if the structure vector field be a killing vector field, it is easy to see that in K-contact metric manifold, we have

$$
\nabla_{X} \xi=\phi X
$$

in which $X \in \tau(\bar{M})$.
If in an almost contact metric manifold ($\bar{M}, \phi, \xi, \eta, g$),

$$
\left(\nabla_{X} \phi\right)(Y)=\eta(Y) X-g(X, Y) \xi
$$

then we call $(\bar{M}, \phi, \xi, \eta, g)$ is the Sasakian manifold. It is easy to see that a Sasakian manifold is contact metric manifold.

Let $(\bar{M}, \phi, \xi, \eta, g)$ be an almost contact manifold. If $\pi_{p} \subset T_{p} \bar{M}$ is generated by $\{X, \phi X\}$ where $0 \neq X \in T_{p} \bar{M}$ is normal to ξ_{p}, is called the ϕ-section of \bar{M} at p and $K\left(\pi_{p}\right)$ is ϕ-sectional curvature. If in a Sasakian manifold, there exist $c \in \Re$ such that for any $p \in \bar{M}, K\left(\pi_{p}\right)=c$ then we call \bar{M} is the Sasakian space form and denote it by $\bar{M}(c)$. In [6] we see that in a Sasakian space form $\bar{M}(c)$, the curvature tensor is

$$
\begin{aligned}
\bar{R}(X, Y) Z= & \frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\} \\
& +\frac{c-1}{4}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
& -g(Y, Z) \eta(X) \xi\} .
\end{aligned}
$$

Almost contact manifolds are said to be Generalized Sasakian space form if

$$
\begin{align*}
\bar{R}(X, Y) Z= & f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
& +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} \\
& +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \tag{4}\\
& -g(Y, Z) \eta(X) \xi\}
\end{align*}
$$

where f_{1}, f_{2}, f_{3} are differentiable functions on \bar{M} and we denote this kind of manifold by $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. It is clear that a Sasakian space form is a generalized Sasakian space form, but the converse is not necessarily true.

Let M^{n} be a submanifold of $\bar{M}^{2 m+1}$ and h is the second fundamental form of M and \bar{R} and R are the curvature tensors of \bar{M} and M respectively. The Gauss equation is given by
(5) $\bar{R}(X, Y, Z, W)=R(X, Y, Z, W)$

$$
+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
$$

for any vector fields X, Y, Z, W on M.
Let

$$
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right),
$$

be the mean curvature vector field of M, in which $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ is a local orthonormal frame for \bar{M} such the e_{1}, \ldots, e_{n} are tangent to M. Thus,

$$
\begin{equation*}
n^{2}\|H\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{i}\right), h\left(e_{j}, e_{j}\right)\right) \tag{6}
\end{equation*}
$$

As, it is known, M is said to be minimal if H vanishes identically. Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m+1\} \text {, } \tag{7}
\end{equation*}
$$

the coefficients of the second fundamental form h with respect to $\left\{e_{1}, \ldots, e_{n}, \ldots, e_{2 m+1}\right\}$, and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{8}
\end{equation*}
$$

Now, by (6) and (8), the Gauss equation can be rewritten as follows:

$$
\begin{equation*}
\sum_{1 \leq i, j \leq n} \bar{R}_{m}\left(e_{j}, e_{i}, e_{i}, e_{j}\right)=R-n^{2}\|H\|^{2}+\|h\|^{2} . \tag{9}
\end{equation*}
$$

in which R is the scalar curvature of M.
Let M^{n} be a Riemannian manifold and $\left\{e_{1}, \ldots, e_{n}\right\}$ be a local orthonormal frame of M. For a differentiable function f on M, the Laplacian Δf of f is defined by

$$
\begin{equation*}
\Delta f=\sum_{j=1}^{n}\left(\left(\nabla_{e_{j}} e_{j}\right) f-e_{j}\left(e_{j} f\right)\right) \tag{10}
\end{equation*}
$$

We recall the following result of B. Y. Chen for later use.
Lemma 2.1 ([2]). Let $n \geq 2$ and a_{1}, \ldots, a_{n} and b are real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n} .
$$

3. Warped product submanifolds tangent to the structure VECTOR FIELD

In this section, we investigate warped product submanifold $M=M_{1} \times{ }_{f} M_{2}$ tangent to the structure vector field ξ in a generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ with contact structure.

We distinguish the following three cases:
(a) ξ tangent to M_{1};
(b) ξ tangent to M_{2};
(c) $\xi=\xi_{1}+\xi_{2}$ such that ξ_{1} and ξ_{2} are nonzero at any point of M and tangent to M_{1} and M_{2} respectively.

Theorem 3.1. Let $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 m+1)$-dimensional generalized Sasakian space form with contact structure and $M_{1} \times{ }_{f} M_{2}$ an n-dimensional warped product submanifold of \bar{M}.
a. If ξ is tangent to M_{1}, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} f_{1}-f_{3} \tag{11}
\end{equation*}
$$

b. If ξ is tangent to M_{2}, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n^{2}}{4 n_{2}}\|H\|^{2}+n_{1} f_{1}-\frac{n_{1}}{n_{2}} f_{3}, \tag{12}
\end{equation*}
$$

c. If $\xi=\xi_{1}+\xi_{2}$ such that ξ_{1} and ξ_{2} are nonzero at any point of $M_{1} \times{ }_{f} M_{2}$ and tangent to M_{1} and M_{2} respectively, then

$$
\begin{align*}
n_{2} \frac{\Delta f}{f} \leq & \left(n_{2}-g\left(\xi_{1}, \xi_{1}\right)\right)\left(n_{1}-g\left(\xi_{2}, \xi_{2}\right)\right) f_{1} \\
& -\left(n_{2}\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+n_{1}\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+3 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)-1\right) f_{3} \tag{13}\\
& +3(n-2) \Theta\left(f_{2}\right)+\frac{n^{2}}{4}\|H\|^{2}
\end{align*}
$$

in which for any $x \in M_{1} \times M_{2}$

$$
\Theta\left(f_{2}\right)(x):= \begin{cases}f_{2}(x), & f_{2}(x)>0, \\ 0, & f_{2}(x) \leq 0\end{cases}
$$

and $n_{i}=\operatorname{dim} M_{i}(i=1,2)$ and Δ is the Laplacian operator of M_{1}.
d. The equality in (11) and (12) hold if and only if $M_{1} \times_{f} M_{2}$ is a mixed totally geodesic submanifold of \bar{M} and $n_{1} H_{1}=n_{2} H_{2}$, where H and $H_{i}(i=1,2)$ are the mean curvature vector and partial mean curvature vectors, respectively.

Proof. a. Let $M_{1} \times{ }_{f} M_{2}$ be a warped product submanifold of a generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$.

Since $M_{1} \times_{f} M_{2}$ is a warped product, it is easily seen that

$$
\begin{equation*}
\nabla_{X} Z=\nabla_{Z} X=\frac{1}{f}(X f) Z \tag{14}
\end{equation*}
$$

for any vector fields X and Z tangent to M_{1} and M_{2}, respectively (see [8]). If X and Z are orthonormal vector fields, then the sectional curvature $K(X \wedge Z)$ of the plane section spanned by X and Z is given by

$$
\begin{equation*}
K(X \wedge Z)=g\left(\nabla_{Z} \nabla_{X} X-\nabla_{X} \nabla_{Z} X, Z\right)=\frac{1}{f}\left(\left(\nabla_{X} X\right) f-X^{2} f\right) \tag{15}
\end{equation*}
$$

We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m+1}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}=\xi$ are tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}$ are tangent to M_{2} and e_{n+1} is parallel to H. Then using (14), we have

$$
\begin{equation*}
\frac{\Delta f}{f}=\sum_{j=1}^{n_{1}} K\left(e_{j} \wedge e_{s}\right) \tag{16}
\end{equation*}
$$

for each $s \in\left\{n_{1}+1, \ldots, n\right\}$. From (4) and (9) we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau-n(n-1) f_{1}+2(n-1) f_{3}-3 f_{2} P+\|h\|^{2} \tag{17}
\end{equation*}
$$

where $2 \tau=R$, that is

$$
\tau=\sum_{1 \leq j<i \leq n} K\left(e_{j} \wedge e_{i}\right)
$$

and

$$
P:=\sum_{1 \leq i, j \leq n}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}=\sum_{1 \leq i, j \leq n_{1}}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2},
$$

because

$$
2 g\left(e_{i}, \phi e_{j}\right)=d \eta\left(e_{j}, e_{i}\right)=\left(e_{j}\left(\eta\left(e_{i}\right)\right)-e_{i}\left(\eta\left(e_{j}\right)\right)-\eta\left(\left[e_{j}, e_{i}\right]\right)\right)
$$

Therefore, if $i, j \in\left\{n_{1}+1, \ldots, n\right\}$ or $i \in\left\{1, \ldots, n_{1}\right\}$ and $j \in\left\{n_{1}+1, \ldots, n\right\}$ then $g\left(e_{i}, \phi e_{j}\right)=0$. now set

$$
\begin{equation*}
\delta:=2 \tau-n(n-1) f_{1}-3 f_{2} P+2(n-1) f_{3}-\frac{n^{2}}{2}\|H\|^{2} \tag{18}
\end{equation*}
$$

then (17) can be rewritten as

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) \tag{19}
\end{equation*}
$$

With respect to the above orthonormal frame, (19) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left(\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right) .
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n_{1}} h_{i i}^{n+1}$ and $a_{3}=\sum_{t=n_{1}+1}^{n} h_{t t}^{n+1}$, then the above equation becomes

$$
\begin{aligned}
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(\delta+\sum_{i=1}^{3} a_{i}^{2}+\right. & \sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
& \left.-\sum_{2 \leq i \neq j \leq n_{1}} h_{i i}^{n+1} h_{j j}^{n+1}-\sum_{n_{1}+1 \leq i \neq j \leq n} h_{i i}^{n+1} h_{j j}^{n+1}\right) .
\end{aligned}
$$

Thus, a_{1}, a_{2}, a_{3} satisfy the Lemma 2.1 (for $n=3$), i.e.,

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right)
$$

with

$$
\begin{aligned}
b=\delta+\sum_{1 \leq i \neq j \leq n}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m+1} & \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} \\
& -\sum_{2 \leq i \neq j \leq n_{1}} h_{i i}^{n+1} h_{j j}^{n+1}-\sum_{n_{1}+1 \leq i \neq j \leq n} h_{i i}^{n+1} h_{j j}^{n+1} .
\end{aligned}
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$. In the case under consideration, this means

$$
\begin{align*}
& \sum_{1 \leq j<i \leq n_{1}} h_{j j}^{n+1} h_{i i}^{n+1}+\sum_{n_{1}+1 \leq j<i \leq n} h_{j j}^{n+1} h_{i i}^{n+1} \tag{20}\\
& \geq \frac{\delta}{2}+\sum_{1 \leq j<i \leq n}\left(h_{j i}^{n+1}\right)^{2}+\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{j i}^{r}\right)^{2} .
\end{align*}
$$

Equality holds if and only if

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{n+1}=\sum_{j=n_{1}+1}^{n} h_{j j}^{n+1} \tag{21}
\end{equation*}
$$

From (16) and the Gauss equation, we have

$$
\begin{align*}
n_{2} \frac{\Delta f}{f}= & \tau-\sum_{1 \leq j<i \leq n_{1}} K\left(e_{j} \wedge e_{i}\right)-\sum_{n_{1}+1 \leq j<i \leq n} K\left(e_{j} \wedge e_{i}\right) \\
= & \tau-\frac{n_{1}\left(n_{1}-1\right)}{2} f_{1}-\frac{3}{2} f_{2} \sum_{1 \leq i, j \leq n_{1}}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}+\left(n_{1}-1\right) f_{3} \\
& -\frac{n_{2}\left(n_{2}-1\right)}{2} f_{1}-\underbrace{\frac{3}{2} f_{2} \sum_{n_{1}+1 \leq i, j \leq n}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}}_{0} \tag{22}\\
& -\sum_{r=n+1}^{2 m+1} \sum_{1 \leq j<i \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{j i}^{r}\right)^{2}\right) \\
& -\sum_{r=n+1}^{2 m+1} \sum_{n_{1}+1 \leq j<i \leq n}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{j i}^{r}\right)^{2}\right) .
\end{align*}
$$

From (20) and (22), we obtain

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f} \leq & \tau-\frac{n(n-1)}{2} f_{1}+n_{1} n_{2} f_{1}-\frac{3}{2} P f_{2}+\left(n_{1}-1\right) f_{3}-\frac{\delta}{2} \\
& -\sum_{\substack{1 \leq j \leq n_{1} \\
n_{1}+1 \leq i \leq n}}\left(h_{j i}^{n+1}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1} \sum_{i, j=1}^{n}\left(h_{j i}^{r}\right)^{2} \\
& +\sum_{r=n+2}^{2 m+1} \sum_{1 \leq j<i \leq n_{1}}\left(\left(h_{j i}^{r}\right)^{2}-h_{i i}^{r} h_{j j}^{r}\right) \\
& +\sum_{r=n+2}^{2 m+1} \sum_{n_{1}+1 \leq j<i \leq n}\left(\left(h_{j i}^{r}\right)^{2}-h_{i i}^{r} h_{j j}^{r}\right)
\end{aligned}
$$

Therefore,

$$
\begin{align*}
n_{2} \frac{\Delta f}{f} \leq & \tau-\frac{n(n-1)}{2} f_{1}+n_{1} n_{2} f_{1}-\frac{3}{2} P f_{2}+\left(n_{1}-1\right) f_{3}-\frac{\delta}{2} \\
& -\sum_{r=n+1}^{2 m+1} \sum_{j=1}^{n_{1}} \sum_{i=n_{1}+1}^{n}\left(h_{j i}^{r}\right)^{2}-\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{j=1}^{n_{1}} h_{j j}^{r}\right)^{2} \\
& -\frac{1}{2} \sum_{r=n+2}^{2 m+1}\left(\sum_{j=n_{1}+1}^{n} h_{j j}^{r}\right)^{2} \tag{23}\\
\leq & \tau-\frac{n(n-1)}{2} f_{1}+n_{1} n_{2} f_{1}-\frac{3}{2} P f_{2}+\left(n_{1}-1\right) f_{3}-\frac{\delta}{2} \\
= & \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} f_{1}-n_{2} f_{3} .
\end{align*}
$$

Which implies the inequality (11).
We see that the equality sign of (23) holds if and only if

$$
\begin{equation*}
h_{j i}^{r}=0 \text { for } 1 \leq j \leq n_{1}, n_{1}+1 \leq i \leq n, n+1 \leq r \leq 2 n+1, \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i=1}^{n_{1}} h_{i i}^{r}=\sum_{j=n_{1}+1} h_{j j}^{r}=0, \quad n+2 \leq r \leq 2 m+1 \tag{25}
\end{equation*}
$$

Obviously (24) is equivalent to the mixed totally geodesic of the warped product $M_{1} \times_{f} M_{2}$ and (21) and (25) implies $n_{1} H_{1}=n_{2} H_{2}$.

The converse statement is straightforward.
b. We choose a local orthonormal frame $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m+1}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}$ are tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}=\xi$ are tangent to M_{2} and e_{n+1} is parallel to H.

Use the similar computation in part (a) to get (17), in which

$$
P:=\sum_{1 \leq i, j \leq n}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}=\sum_{n_{1}+1 \leq i, j \leq n-1}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}
$$

Using (18), we have (19). Then with the same method in proof of part (a) and using Gauss equation, we have

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f}= & \tau-\sum_{1 \leq j<i \leq n_{1}} K\left(e_{j} \wedge e_{i}\right)-\sum_{n_{1}+1 \leq j<i \leq n} K\left(e_{j} \wedge e_{i}\right) \\
= & \tau-\frac{n_{1}\left(n_{1}-1\right)}{2} f_{1}-\underbrace{\frac{3}{2} f_{2} \sum_{1 \leq i, j \leq n_{1}}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}}_{0}+\left(n_{2}-1\right) f_{3} \\
& -\frac{n_{2}\left(n_{2}-1\right)}{2} f_{1}-\frac{3}{2} f_{2} \sum_{n_{1}+1 \leq i, j \leq n}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2} \\
& -\sum_{r=n+1}^{2 m+1} \sum_{1 \leq j<i \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{j i}^{r}\right)^{2}\right) \\
& -\sum_{r=n+1}^{2 m+1} \sum_{n_{1}+1 \leq j<i \leq n}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{j i}^{r}\right)^{2}\right) .
\end{aligned}
$$

Applying lemma 2.1 and doing similar computations as in the proof of part (a), (26) leads to

$$
\begin{equation*}
n_{2} \frac{\Delta f}{f} \leq \tau-\frac{n(n-1)}{2} f_{1}+n_{1} n_{2} f_{1}+\left(n_{2}-1\right) f_{3}-\frac{3}{2} f_{2} P-\frac{\delta}{2} . \tag{27}
\end{equation*}
$$

Using (18), the inequality (27) becomes

$$
n_{2} \frac{\Delta f}{f} \leq \frac{n^{2}}{4}\|H\|^{2}+n_{1} n_{2} f_{1}-n_{1} f_{3}
$$

i.e. the inequality is proved.

It can be proved, just similar to part (a) that the equality holds in the above relation if and only if $M_{1} \times_{f} M_{2}$ is a mixed totally geodesic submanifold of \bar{M} and $n_{1} H_{1}=n_{2} H_{2}$. Therefore (d) is proved.
c. We choose a local normal frame $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ such that $e_{1}, \ldots, e_{n_{1}}=\xi_{1}$ tangent to $M_{1}, e_{n_{1}+1}, \ldots, e_{n}=\xi_{2}$ tangent to M_{2} and e_{n+1} parallel to H and for any $i \in\{1, \ldots, 2 m+1\}-\left\{n_{1}, n\right\},\left\|e_{i}\right\|=1$.

From (9) and Gauss equation, we have

$$
\begin{align*}
n^{2}\|H\|^{2}= & 2 \tau+\|h\|^{2}-\left(n^{2}-3 n+2-2 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)\right) f_{1} \\
& +2\left((n-2)+(5-2 n) g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)\right) f_{3} \tag{28}\\
& -3\left(2 P_{1}+P\right) f_{2} .
\end{align*}
$$

in which

$$
P:=\sum_{\substack{1 \leq i, j \leq n \\ i, j \neq n_{1}, n}}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}=\sum_{1 \leq i, j \leq n_{1}-1}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}+\sum_{n_{1}+1 \leq i, j \leq n}\left(g\left(e_{j}, \phi e_{i}\right)\right)^{2}
$$

and

$$
P_{1}:=2 \sum_{\substack{j=1 \\ j \neq n_{1}, n}}^{n}\left(g\left(e_{j}, \phi \xi_{1}\right)\right)^{2}=2 \sum_{\substack{j=1 \\ j \neq n_{1}, n}}^{n}\left(g\left(e_{j}, \phi \xi_{2}\right)\right)^{2} .
$$

We denote

$$
\begin{align*}
\delta:= & 2 \tau-\left(n^{2}-3 n+2-2 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)\right) f_{1} \\
& +2\left((n-2)+(5-2 n) g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)\right) f_{3} \tag{29}\\
& -3\left(2 P_{1}+P\right) f_{2}-\frac{n^{2}}{2}\|H\|^{2},
\end{align*}
$$

Then (28) can be written as (19). We use the same method as in the proof of part (a). Using again the Gauss equation and (16), we have

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f}= & \tau-\sum_{1 \leq j<i \leq n_{1}} K\left(e_{j} \wedge e_{i}\right)-\sum_{n_{1}+1 \leq j<i \leq n} K\left(e_{j} \wedge e_{i}\right) \\
= & \tau-\left(n_{1} g\left(\xi_{1}, \xi_{1}\right)+n_{2} g\left(\xi_{2}, \xi_{2}\right)+\frac{n^{2}-3 n+4}{2}-n_{1} n_{2}-1\right) f_{1} \\
& +\left(n_{1}\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+n_{2}\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+2 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)-1\right) f_{3} \\
& -3\left(\sum_{j=1}^{n_{1}-1}\left(g\left(e_{j}, \xi_{1}\right)\right)^{2}+\sum_{j=n_{1}+1}^{n-1}\left(g\left(e_{j}, \xi_{2}\right)\right)^{2}+\frac{1}{2} P\right) f_{2} \\
& -\sum_{r=n+1}^{2 m+1} \sum_{1 \leq j<i \leq n_{1}}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{j i}^{r}\right)^{2}\right)-\sum_{r=n+1}^{2 m+1} \sum_{n_{1}+1 \leq j<i \leq n}\left(h_{i i}^{r} h_{j j}^{r}-\left(h_{j i}^{r}\right)^{2}\right) .
\end{aligned}
$$

Applying lemma 2.1 and doing the similar computations as in the proof of part (a), (30) leads to

$$
\begin{aligned}
n_{2} \frac{\Delta f}{f} \leq & \tau-\left(n_{1} g\left(\xi_{1}, \xi_{1}\right)+n_{2} g\left(\xi_{2}, \xi_{2}\right)+\frac{n^{2}-3 n+4}{2}-n_{1} n_{2}-1\right) f_{1} \\
& +\left(n_{1}\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+n_{2}\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+2 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)-1\right) f_{3} \\
& -3\left(\sum_{j=1}^{n_{1}-1}\left(g\left(e_{j}, \xi_{1}\right)\right)^{2}+\sum_{j=n_{1}+1}^{n-1}\left(g\left(e_{j}, \xi_{2}\right)\right)^{2}+\frac{1}{2} P\right) f_{2}-\frac{\delta}{2}
\end{aligned}
$$

Using (28), the above inequality becomes

$$
\begin{align*}
n_{2} \frac{\Delta f}{f} \leq & \left(n_{1} n_{2}-n_{1} g\left(\xi_{1}, \xi_{1}\right)-n_{2} g\left(\xi_{2}, \xi_{2}\right)+g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)\right) f_{1}+\frac{3}{2} P_{1} f_{2} \\
& -\left(n_{2}\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+n_{1}\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+3 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)-1\right) f_{3} \tag{31}\\
& +\frac{n^{2}}{4}\|H\|^{2}
\end{align*}
$$

since

$$
g\left(\phi \xi_{1}, \phi \xi_{1}\right)=g\left(\xi_{1}, \xi_{1}\right)-\left(\eta\left(\xi_{1}\right)\right)^{2} \leq 1
$$

On the other hand for $j \in\left\{1, \ldots, n_{1}-1, n_{1}+1, \ldots, n-1\right\}$ we have

$$
\begin{aligned}
0 \leq g\left(e_{j}\right. & \left.-\phi \xi_{1}, e_{j}-\phi \xi_{1}\right)=g\left(e_{j}, e_{j}\right)+g\left(\phi \xi_{1}, \phi \xi_{1}\right)-2 g\left(e_{j}, \phi \xi_{1}\right) \\
& \Rightarrow g\left(e_{j}, \phi \xi_{1}\right) \leq \frac{1}{2}\left(g\left(e_{j}, e_{j}\right)+g\left(\phi \xi_{1}, \phi \xi_{1}\right)\right) \leq 1
\end{aligned}
$$

From the last inequality we have $0 \leq P_{1} \leq 2(n-2)$. using (31) and $\Theta\left(f_{2}\right)$ to get (13).
Corollary 3.1. Let $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 m+1)$-dimensional generalized Sasakian space form with contact structure and $M_{1} \times_{f} M_{2}$ an n-dimensional minimal warped product submanifold, such that f is a harmonic function.
a. If ξ is tangent to M_{1}, then

$$
\begin{equation*}
f_{3} \leq n_{1} f_{1} \tag{32}
\end{equation*}
$$

b. If ξ is tangent to M_{2}, then

$$
\begin{equation*}
f_{3} \leq n_{2} f_{1} \tag{33}
\end{equation*}
$$

c. If $\xi=\xi_{1}+\xi_{2}$ such that ξ_{1} and ξ_{2} are nonzero at any point of $M_{1} \times{ }_{f} M_{2}$ and tangent to M_{1} and M_{2} respectively, then

$$
\begin{equation*}
f_{3} \leq \frac{f_{1}}{A}\left(g\left(\xi_{1}, \xi_{1}\right)-n_{2}\right)\left(g\left(\xi_{2}, \xi_{2}\right)-n_{1}\right)+\frac{3}{A}(n-2) \Theta\left(f_{2}\right) \tag{34}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}(i=1,2), \Delta$ is Laplacian operator of M_{1} and

$$
A:=\left(n_{2}\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+n_{1}\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+3 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)-1\right)
$$

d. The equality case of (32) and (33) hold if and only if $M_{1} \times_{f} M_{2}$ is a minimal mixed totally geodesic submanifold and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}(i=$ 1,2), is partial mean curvature vector.
$A \neq 0$ in c because $0<g\left(\xi_{1}, \xi_{1}\right)<1$ and $0<g\left(\xi_{2}, \xi_{2}\right)<1$ and

$$
A=\left(n_{2}-1\right)\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+\left(n_{1}-1\right)\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)
$$

Proof. $H=0$ over $M_{1} \times{ }_{f} M_{2}$, and $\Delta f=0$ over M_{1}, hence this corollary follows from Theorem 3.1.

Corollary 3.2. Let $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 m+1)$-dimensional generalized Sasakian space form with contact structure and $M_{1} \times_{f} M_{2}$ an n-dimensional minimal warped product submanifold, such that f is an eigenfunction of Laplacian on M_{1} with the corresponding eigenvalue $\lambda>0$. If
a. ξ is tangent to M_{1}, then

$$
\begin{equation*}
f_{3}<n_{1} f_{1}, \tag{35}
\end{equation*}
$$

b. ξ is tangent to M_{2}, then

$$
\begin{equation*}
f_{3}<n_{2} f_{1}, \tag{36}
\end{equation*}
$$

c. $\xi=\xi_{1}+\xi_{2}$ such that ξ_{1} and ξ_{2} are nonzero at any point of $M_{1} \times{ }_{f} M_{2}$ and tangent to M_{1} and M_{2} respectively, then

$$
\begin{equation*}
f_{3}<\frac{f_{1}}{A}\left(g\left(\xi_{1}, \xi_{1}\right)-n_{2}\right)\left(g\left(\xi_{2}, \xi_{2}\right)-n_{1}\right)+\frac{3}{A}(n-2) \Theta\left(f_{2}\right), \tag{37}
\end{equation*}
$$

where $n_{i}=\operatorname{dim} M_{i}(i=1,2), \Delta$ is Laplacian operator of M_{1} and

$$
A:=\left(n_{2}\left(g\left(\xi_{1}, \xi_{1}\right)\right)^{2}+n_{1}\left(g\left(\xi_{2}, \xi_{2}\right)\right)^{2}+3 g\left(\xi_{1}, \xi_{1}\right) g\left(\xi_{2}, \xi_{2}\right)-1\right)
$$

Proof. If f is an eigenfunction of Laplacian on M_{1} with eigenvalue $\lambda>0$ then

$$
\frac{\Delta f}{f}=\frac{\lambda f}{f}=\lambda>0
$$

therefore from Theorem 3.1, this corollary is proved.
Corollary 3.3. Let $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 m+1)$-dimensional generalized Sasakian space form with contact structure and $M_{1} \times_{f} M_{2}$ an n-dimensional warped product submanifold and $\xi=\xi_{1}+\xi_{2}$ such that ξ_{1} and ξ_{2} are nonzero at any point of $M_{1} \times_{f} M_{2}$ and tangent to M_{1} and M_{2} respectively,
a. If $g\left(\xi_{2}, \xi_{2}\right) \rightarrow 0$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n_{2}-1}{n_{2}}\left(n_{1} f_{1}-f_{3}\right)+\frac{n^{2}}{4 n_{2}}\|H\|^{2}, \tag{38}
\end{equation*}
$$

b. If $g\left(\xi_{1}, \xi_{1}\right) \rightarrow 0$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n_{1}-1}{n_{2}}\left(n_{2} f_{1}-f_{3}\right)+\frac{n^{2}}{4 n_{2}}\|H\|^{2} \tag{39}
\end{equation*}
$$

The equality case of (38) and (39) hold if and only if $M_{1} \times_{f} M_{2}$ is a mixed totally geodesic submanifold and $n_{1} H_{1}=n_{2} H_{2}$, in which $H_{i}(i=1,2)$, is partial mean curvature vector.

Proof. By inequality (31), the proof is evident.
Corollary 3.4. Let $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 m+1)$-dimensional generalized Sasakian space form with contact structure and $M_{1} \times_{f} M_{2}$ an n-dimensional minimal warped product submanifold and $\xi=\xi_{1}+\xi_{2}$ such that ξ_{1} and ξ_{2} are nonzero at any point of $M_{1} \times{ }_{f} M_{2}$ and tangent to M_{1} and M_{2} respectively,
a. If $g\left(\xi_{2}, \xi_{2}\right) \rightarrow 0$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n_{2}-1}{n_{2}}\left(n_{1} f_{1}-f_{3}\right), \tag{40}
\end{equation*}
$$

b. If $g\left(\xi_{1}, \xi_{1}\right) \rightarrow 0$, then

$$
\begin{equation*}
\frac{\Delta f}{f} \leq \frac{n_{1}-1}{n_{2}}\left(n_{2} f_{1}-f_{3}\right) \tag{41}
\end{equation*}
$$

The equality case of (40) and (41) hold if and only if $M_{1} \times_{f} M_{2}$ is a mixed totally geodesic submanifold and $n_{1} H_{1}=n_{2} H_{2}$, in which $H_{i}(i=1,2)$, is partial mean curvature vector.

Remark 3.1. In part (a) of Corollary 3.3, if $f_{3} \leq n_{1} f_{1}$ then

$$
\frac{n_{2}-1}{n_{2}}\left(n_{1} f_{1}-f_{3}\right) \leq\left(n_{1} f_{1}-f_{3}\right),
$$

therefore (38) reduces to (11), and if $f_{3} \leq n_{2} f_{1}$ then

$$
\frac{n_{1}-1}{n_{2}}\left(n_{2} f_{1}-f_{3}\right) \leq \frac{n_{1}}{n_{2}}\left(n_{2} f_{1}-f_{3}\right),
$$

therefore (39) reduces to (12).
Theorem 3.2. Let $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ be a $(2 m+1)$-dimensional generalized Sasakian space form with K-contact metric structure and $M_{1} \times_{f} M_{2}$ an n dimensional warped product submanifold. If ξ is tangent to M_{2} then

$$
\begin{equation*}
f_{3} \leq \frac{n^{2}}{4 n_{1}}\|H\|^{2}+n_{2} f_{1} \tag{42}
\end{equation*}
$$

the equality case hold if and only if $M_{1} \times_{f} M_{2}$ is a mixed totally geodesic submanifold and $n_{1} H_{1}=n_{2} H_{2}$, where $H_{i}(i=1,2)$, is partial mean curvature vector.

Proof. For any $X \in \tau\left(M_{1} \times_{f} M_{2}\right)$ tangent to M_{1}, over $M_{1} \times_{f} M_{2}$ we have

$$
\nabla_{X} \xi=\frac{X f}{f} \xi
$$

on the other hand by K-contactnes we have

$$
0=g(\phi X, \xi)=g\left(\frac{X f}{f} \xi, \xi\right)=\frac{X f}{f}
$$

Thus $X f=0$, therefore f is constant and $\Delta f=0$. From (12) and (44), inequality (42) is proved.

The proof of the last part of theorem is similar to Theorem 3.1.

References

[1] D. E. Blair. Contact manifolds in Riemannian geometry. Lecture Notes in Mathematics, Vol. 509. Springer-Verlag, Berlin, 1976.
[2] B.-Y. Chen. Some pinching and classification theorems for minimal submanifolds. Arch. Math. (Basel), 60(6):568-578, 1993.
[3] B.-Y. Chen. Geometry of warped products as Riemannian submanifolds and related problems. Soochow J. Math., 28(2):125-156, 2002.
[4] B.-Y. Chen. On isometric minimal immersions from warped products into real space forms. Proc. Edinb. Math. Soc. (2), 45(3):579-587, 2002.
[5] K. Matsumoto and I. Mihai. Warped product submanifolds in Sasakian space forms. SUT J. Math., 38(2):135-144, 2002.
[6] K. Ogiue. On almost contact manifolds admitting axiom of planes or axiom of free mobility. Kōdai Math. Sem. Rep., 16:223-232, 1964.
[7] A. Olteanu. Legendrian warped product submanifolds in generalized Sasakian space forms. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 25(1):137-144, 2009.
[8] B. O'Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics. Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983. With applications to relativity.

Received August 11, 2010.

Faculty of Science,
K.n. Toosi University of Technology,
P.O.BOX 16315-1618,

Tehran,
Iran
E-mail address: malek@kntu.ac.ir
E-mail address: vahid.nej@gmail.com

[^0]: 2010 Mathematics Subject Classification. Primary 53C40; Secondary 53C25.
 Key words and phrases. warped product, Laplacian, mean curvature, Legendrian submanifold, generalized Sasakian space form.

