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WEAKLY CYCLIC RICCI SYMMETRIC MANIFOLDS
ADMITTING SEMI-SYMMETRIC METRIC CONNECTION

A. A. SHAIKH, LOVEJOY S. K. DAS, AND SANJIB KUMAR JANA

Abstract. In this paper the definition of weakly cyclic Ricci symmetric
manifolds admitting semi-symmetric metric connection is given and its ap-
plications to the general relativity and cosmology are investigated. The
existence of such a manifold is proved by an example.

1. Introduction

The notion of weakly Ricci symmetric manifolds was introduced by Tamássy
and Binh [11]. A Riemannian manifold (Mn, g) (n > 2) is called weakly Ricci
symmetric if its Ricci tensor S of type (0, 2) is not identically zero and satisfies
the condition

(1) (∇XS)(Y, Z) = A(X)S(Y, Z) +B(Y )S(X,Z) +D(Z)S(X,Y ),

where A, B, D are 1-forms (not simultaneously zero) and ∇ denotes the opera-
tor of covariant differentiation with respect to the metric tensor g. The 1-forms
A, B and D are known as the associated 1-forms of the manifold. Such an
n-dimensional manifold is denoted by (WRS)n. As an equivalent notion of
(WRS)n, Chaki and Koley [3] introduced the notion of generalized pseudo
Ricci symmetric manifold. If in (1) the 1-form A is replaced by 2A then the
definition of a (WRS)n reduces to that of generalized pseudo Ricci symmetric
manifold by Chaki and Koley [3].

Extending the notion of (WRS)n, recently Shaikh and Jana [10] introduced
the notion of weakly cyclic Ricci symmetric manifolds and studied its geometric
properties with several non-trivial examples. A Riemannian manifold (Mn, g)
(n > 2) is called weakly cyclic Ricci symmetric manifold if its Ricci tensor S
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of type (0, 2) is not identically zero and satisfies the following:

(2) (∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

= A(X)S(Y, Z) +B(Y )S(Z,X) +D(Z)S(X, Y )

where A, B and D are 1-forms (not simultaneously zero) and ∇ denotes the
operator of covariant differentiation with respect to the metric tensor g. Such
an n-dimensional manifold is denoted by (WCRS)n. Every (WRS)n is a
(WCRS)n but not conversely as shown by several examples in [10].

The notion of semi-symmetric linear connection on a differentiable manifold
was introduced by Friedmann and Schouten [4] in 1924. Then in 1932 Hayden
[5] introduced the idea of metric connection with torsion on a Riemannian
manifold. A systematic study of the semi-symmetric metric connection on a
Riemannian manifold has been given by K. Yano in 1970 [12].

Semi-symmetric metric connection plays an important role in the study of
Riemannian manifolds. There are various physical problems involving the
semi-symmetric metric connection. For example, if a man is moving on the
surface of the earth always facing one definite point, say Jerusalem or Mekka
or the North Pole, then this displacement is semi-symmetric and metric [9,
p. 143]. Again during the mathematical congress in Moscow in 1934 one
evening mathematicians invented the ‘Moscow displacement’. The streets of
Moscow are approximately straight lines through the Kremlin and concentric
circles around it. If a person walk in the street always facing the Kremlin,
then this displacement is semi-symmetric and metric [9, p. 143].

The object of the present paper is to study a (WCRS)n admitting a semi-
symmetric metric connection. Section 2 is concerned with preliminaries and the
definition of weakly cyclic Ricci symmetric manifolds admitting semi-symmetric

metric connection (briefly [(WCRS)n, ∇̃]) is given.
In general relativity the matter content of the spacetime is described by

the energy-momentum tensor T which is to be determined from the physical
considerations dealing with the distribution of matter and energy. Since the
matter content of the universe is assumed to behave like a perfect fluid in the
standard cosmological models, the physical motivation for studying Lorentzian
manifolds is the assumption that a gravitational field may be effectively mod-
eled by some Lorentzian metric defined on a suitable four dimensional manifold
M . The Einstein equations are fundamental in the construction of cosmological
models which imply that the matter determines the geometry of the spacetime
and conversely the motion of matter is determined by the metric tensor of the
space which is non-flat.

In section 3 of the paper we investigate the applications of [(WCRS)n, ∇̃]
to the general relativity and cosmology. It is shown that a viscous fluid space-
time obeying Einstein’s equation with a cosmological constant is a connected

Lorentzian [(WCRS)4, ∇̃]. Consequently [(WCRS)4, ∇̃] can be viewed as a
model of the viscous fluid spacetime. Also it is observed that in a viscous fluid
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[(WCRS)4, ∇̃] spacetime none of the isotropic pressure and energy density can
be a constant and the matter content of the spacetime is a non-thermalised
fluid under a certain condition.

The existence of (WCRS)n is given in [10] by several examples. Hence a

natural question arises, does there exist a [(WCRS)n, ∇̃]? In section 4 of the
paper, the existence theorem of such a manifold is ensured by an example with
a suitable metric.

2. Preliminaries

Let (Mn, g) be an n-dimensional Riemannian manifold of class C∞ with the
metric tensor g and ∇ be the Riemannian connection of the manifold (Mn, g).

A linear connection ∇̃ on (Mn, g) is said to be semi-symmetric [4] if the torsion

tensor τ of the connection ∇̃ satisfies

(3) τ(X, Y ) = α(Y )X − α(X)Y

for any vector field X, Y on M and α is a 1-form associated with the torsion

tensor τ of the connection ∇̃ given by

α(X) = g(X, ρ),

ρ being the vector field associated with the 1-form α. The 1-form α is called
the associated 1-form of the semi-symmetric connection and the vector field
ρ is called the associated vector field of the connection. A semi-symmetric

connection ∇̃ is called a semi-symmetric metric connection [5] if in addition it
satisfies

(4) ∇̃g = 0.

The relation between the semi-symmetric metric connection ∇̃ and the Rie-
mannian connection ∇ of (Mn, g) is given by [12]

(5) ∇̃XY = ∇XY + α(Y )X − g(X, Y )ρ.

In particular, if the 1-form α vanishes identically then a semi-symmetric metric
connection reduces to the Riemannian connection. The covariant differentia-
tion of a 1-form ω with respect to ∇̃ is given by [12]

(∇̃Xω)(Y ) = (∇Xω)(Y ) + ω(X)α(Y )− ω(ρ)g(X, Y ).

If R and R̃ are respectively the curvature tensor of the Levi-Civita connection

∇ and the semi-symmetric metric connection ∇̃ then we have [12]

(6) R̃(X, Y )Z = R(X, Y )Z − P (Y, Z)X

+ P (X,Z)Y − g(Y, Z)LX + g(X,Z)LY,

where P is a tensor field of type (0, 2) given by

(7) P (X, Y ) = g(LX, Y ) = (∇Xα)(Y )− α(X)α(Y ) +
1

2
α(ρ)g(X, Y )
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for any vector field X and Y . From (6) it follows that

(8) S̃(Y, Z) = S(Y, Z)− (n− 2)P (Y, Z)− ag(Y, Z),

where S̃ and S denote respectively the Ricci tensor with respect to ∇̃ and
∇, a = traceP . The tensor P of type (0, 2) given in (7) is not symmetric

in general and hence from (8) it follows that the Ricci tensor S̃ of the semi-

symmetric metric connection ∇̃ is not so. But if we consider that the 1-form
α, associated with the torsion tensor τ , is closed then it can be easily shown
that the relation

(∇Xα)(Y ) = (∇Y α)(X) for all vector fields X, Y

holds and hence the tensor P (X,Y ) is symmetric. Consequently, the Ricci

tensor S̃ is symmetric. Conversely, if P (X, Y ) is symmetric then from (7) it
follows that the 1-form α is closed. This leads to the following:

Proposition 2.1 ([1]). Let (Mn, g) (n > 2) be a Riemannian manifold admit-

ting a semi-symmetric metric connection ∇̃. Then the Ricci tensor S̃ of ∇̃ is
symmetric if and only if the 1-form α, associated with the torsion tensor τ , is
closed.

Contracting (8) with respect to Y and Z, it can be easily found that

(9) r̃ = r − 2(n− 1)a,

where r̃ and r denote respectively the scalar curvature with respect to ∇̃ and
∇.

Definition 2.1. A Riemannian manifold (Mn, g) (n > 2) is called weakly cyclic
Ricci symmetric manifold admitting semi-symmetric metric connection if its

Ricci tensor S̃ of type (0, 2) is not identically zero and satisfies the condition

(10) (∇̃X S̃)(Y, Z) + (∇̃Y S̃)(Z,X) + (∇̃ZS̃)(X,Y )

= Ã(X)S̃(Y, Z) + B̃(Y )S̃(Z,X) + D̃(Z)S̃(X, Y ),

where Ã, B̃, D̃ are 1-forms (not simultaneously zero) and ∇̃ denotes the semi-
symmetric metric connection.

The 1-forms Ã, B̃ and D̃ are known as the associated 1-forms of the manifold.

Such an n-dimensional manifold is denoted by [(WCRS)n, ∇̃].
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In view of (5) and (8), it follows from (10) that

(∇XS)(Y, Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

− [2α(X) + Ã(X)]S(Y, Z)− [2α(Y ) + B̃(Y )]S(X,Z)

− [2α(Z) + D̃(Z)]S(X, Y )

= (n− 2)[(∇XP )(Y, Z) + (∇Y P )(Z,X) + (∇ZP )(X, Y )

− {2α(X) + Ã(X)}P (Y, Z)− {2α(Y ) + B̃(Y )}P (X,Z)

− {2α(Z) + D̃(Z)}P (X, Y ) + {P (ρ, Z) + P (Z, ρ)}g(X, Y )

+ {P (ρ,X) + P (X, ρ)}g(Y, Z) + {P (ρ, Y ) + P (Y, ρ)}g(X,Z)]

− {2α(QX) + Ã(X)− da(X)}g(Y, Z)

− {2α(QY ) + B̃(Y )− da(Y )}g(X,Z)

− {2α(QZ) + D̃(Z)− da(Z)}g(X, Y ),

(11)

where Q is the Ricci operator, i.e., S(X, Y ) = g(QX, Y ).
In particular, if the 1-form α vanishes identically, then (11) reduces to (2)

with Ã = A, B̃ = B and D̃ = D. Hence the manifold (WCRS)n is a particular

case of [(WCRS)n, ∇̃]. Also the manifold (WCRS)n could be a [(WCRS)n, ∇̃]

when it admits a semi-symmetric metric connection ∇̃ different from the Rie-
mannian connection ∇.

We now prove the following Lemma.

Lemma 2.1. If in a [(WCRS)n, ∇̃] the 1-form α, associated with the torsion

tensor τ , is closed then its Ricci tensor S̃ is of the form:

(12) S̃ = r̃γ ⊗ γ,

where γ is a non-zero 1-form defined by γ(X) = g(X,µ), µ being a unit vector
field.

Proof. Interchanging Y and Z in (10) we obtain

(∇̃X S̃)(Z, Y ) + (∇̃ZS̃)(Y,X) + (∇̃Y S̃)(X,Z)

= Ã(X)S̃(Z, Y ) + B̃(Z)S̃(Y,X) + D̃(Y )S̃(X,Z).

Since the 1-form α, associated with the torsion tensor τ , is closed, from Propo-

sition 2.1 it follows that the Ricci tensor S̃ is symmetric. Subtracting the last
relation from (10) we get

[B̃(Y )− D̃(Y )]S̃(X,Z) = [B̃(Z)− D̃(Z)]S̃(X,Y ),

where the symmetry property of S̃ has been used.

Let us consider Ẽ(X) = g(X, ν) = B̃(X) − D̃(X) for all vector fields X

and ν is a vector field associated with the 1-form Ẽ. Then the above relation



312 A. A. SHAIKH, LOVEJOY S. K. DAS, AND SANJIB KUMAR JANA

reduces to

(13) Ẽ(Y )S̃(Z,X) = Ẽ(Z)S̃(X, Y ).

Contraction of (13) with respect to X and Z yields

(14) r̃Ẽ(Y ) = Ẽ(Q̃Y ),

where Q̃ is the Ricci operator associated with the Ricci tensor S̃, i.e., S̃(X, Y ) =

g(Q̃X, Y ). Also from (13) we have

Ẽ(ν)S̃(X, Y ) = Ẽ(Y )S̃(X, ν) = Ẽ(Y )g(Q̃X, ν) = Ẽ(Y )Ẽ(Q̃X),

which, in view of (14), yields

(15) S̃(X, Y ) =
r̃

Ẽ(ν)
Ẽ(X)Ẽ(Y ) = r̃ γ(X)γ(Y ),

where γ(X) = g(X,µ) = 1√
Ẽ(ν)

Ẽ(X), µ being a unit vector field associated

with the 1-form γ. �
Using (12) and (9) in (8) we obtain

(16) S(Y, Z) = ag(Y, Z) + [r − 2(n− 1)a]γ(Y )γ(Z) + (n− 2)P (Y, Z),

provided that the 1-form α, associated with the torsion tensor τ , is closed.
A non-zero vector V on a manifold M is said to be timelike (resp., non-

spacelike, null, spacelike) if it satisfies g(V, V ) < 0 (resp. ≤ 0, = 0, > 0)([2],
[8]).

Since µ is a unit vector field on the Riemannian manifold [(WCRS)n, ∇̃]
=M with metric tensor g, it can be easily shown [8, p. 148] that g̃ = g−2γ⊗γ
is a Lorentz metric on M . Also, µ becomes timelike so the resulting Lorentz
manifold is time-orientable.

3. General relativistic viscous fluid [(WCRS)4, ∇̃] spacetime

A viscous fluid spacetime is a connected Lorentz manifold (M4, g) with sig-
nature (−,+,+,+). In general relativity the key role is played by Einstein’s
equation

(17) S(X,Y )− r

2
g(X, Y ) + λg(X, Y ) = kT (X,Y )

for all vector fields X, Y , where S is the Ricci tensor of type (0, 2), r is
the scalar curvature, λ is the cosmological constant, k is the gravitational
constant and T is the energy-momentum tensor of type (0, 2). Let us consider
the energy-momentum tensor T of a viscous fluid spacetime to the following
form [7]

(18) T (X,Y ) = pg(X, Y ) + (σ + p)γ(X)γ(Y ) + P (X,Y )

where σ, p are the energy density and isotropic pressure respectively and P
denotes the anisotropic pressure tensor of the fluid, µ is the unit timelike vector
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field, called flow vector field of the fluid associated with the 1-form γ given by
g(X,µ) = γ(X) for all X. Then by virtue of (18), (17) can be written as

(19) S(X, Y ) =
(r
2
+ kp− λ

)
g(X,Y ) + k(σ + p)γ(X)γ(Y ) + kP (X, Y ),

which, in view of (16), shows that the spacetime under consideration is a

[(WCRS)4, ∇̃] with µ as the unit timelike flow vector field of the fluid and P
as the anisotropic pressure tensor. Hence we can state the following:

Theorem 3.1. A viscous fluid spacetime obeying Einstein’s equation with a

cosmological constant is a connected Lorentzian [(WCRS)4, ∇̃] with µ as the
flow vector field of the fluid and P as the anisotropic pressure tensor, provided
that the 1-form α, associated with the torsion tensor τ , is closed.

Now by virtue of (19), (16) yields

(20)
(r
2
+ kp− λ− a

)
g(X,Y ) + (kσ + kp+ 6a− r)γ(X)γ(Y )

+ (k − 2)P (X, Y ) = 0.

Setting X = Y = µ in (20) we obtain by virtue of (9) that

(21) σ =
1

2k
[3r̃ − 2λ+ 4a− 2(k − 2)b],

where b = P (µ, µ). Again contracting (20) we find by virtue of (9) that

(22) p =
1

6k
[6λ− 3r̃ − 2(k + 4)a− 2(k − 2)b].

This leads to the following theorem.

Theorem 3.2. In a viscous fluid [(WCRS)4, ∇̃] spacetime obeying Einstein’s
equation with a cosmological constant λ none of the isotropic pressure and
energy density can be a constant, provided that the 1-form α, associated with
the torsion tensor τ corresponding to the semi-symmetric metric connection

∇̃, is closed.

Now since σ > 0 and p > 0, we have from (21) and (22) that

λ <
3r̃ + 4a− 2(k − 2)b

2
and λ >

3r̃ + 2(k + 4)a+ 2(k − 2)b

6

and hence

(23)
3r̃ + 2(k + 4)a+ 2(k − 2)b

6
< λ <

3r̃ + 4a− 2(k − 2)b

2

and

(24) r̃ >
k − 2

3
(a+ 4b).

This leads to the following theorem.
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Theorem 3.3. In a viscous fluid [(WCRS)4, ∇̃] spacetime obeying Einstein’s
equation, the cosmological constant λ satisfies the relation (23) and the scalar
curvature r̃ satisfies the relation (24), provided that the 1-form α, associated
with the torsion tensor τ corresponding to the semi-symmetric metric connec-

tion ∇̃, is closed.

We now discuss whether a viscous fluid [(WCRS)4, ∇̃] spacetime with µ as
the unit timelike flow vector field can admit heat flux or not. Therefore, if
possible, let the energy-momentum tensor T be of the following form [7]

T (X,Y ) = pg(X, Y ) + (σ + p)γ(X)γ(Y ) + γ(X)η(Y ) + γ(Y )η(X),

where η(X) = g(X,V ) for all vector fields X; V being the heat flux vector
field ; σ, p are the energy density and isotropic pressure respectively. Thus we
have g(µ, V ) = 0, i.e., η(µ) = 0. Hence by virtue of the last relation, (9) and
(16), (17) yields

(25) 2P (X, Y ) +

(
λ− r̃

2
− kp− 2a

)
g(X, Y ) + [r̃ − k(p+ σ)]γ(X)γ(Y )

− k[γ(X)η(Y ) + γ(Y )η(X)] = 0.

Setting Y = µ in (25) we obtain

(26) 2P (X,µ) +

(
λ− 3

2
r̃ + kσ − 2a

)
γ(X) + kη(X) = 0.

Putting X = µ in (26) we obtain

2b−
(
λ− 3

2
r̃ + kσ − 2a

)
= 0.

Using the last relation in (26) we obtain

(27) η(X) = −2

k
[P (X,µ) + bγ(X)], sincek 6= 0.

Thus we have the following theorem.

Theorem 3.4. A viscous fluid [(WCRS)4, ∇̃] spacetime obeying Einstein’s
equation with a cosmological constant λ admits heat flux given by (27), provided
that P (X,µ) + bγ(X) 6= 0 for all X and the 1-form α, associated with the

torsion tensor τ corresponding to the semi-symmetric metric connection ∇̃, is
closed.

From (27) it follows that

V = −2

k
(N + bI)µ,

where P (X, Y ) = g(NX, Y ) for all vector fields X, Y . This implies that
V = 0 if and only if −b is the eigenvalue of P corresponding to the eigenvector
µ. Hence we can state the following theorem.
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Theorem 3.5. A viscous fluid [(WCRS)4, ∇̃] spacetime, with closed 1-form
α associated with the torsion tensor τ corresponding to the semi-symmetric

metric connection ∇̃, can not admit heat flux if and only if −b is the eigenvalue
of P corresponding to the eigenvector µ.

4. Example of [(WCRS)n, ∇̃]

This section deals with an example of [(WCRS)n, ∇̃].

Example. Let M5 = R5 be a manifold endowed with the metric

(28) ds2 = gijdx
idxj = ex

1

[(dx1)2 + (dx2)2 + ex
2

(dx3)2]

+ (dx4)2 + (dx5)2, (i, j = 1, 2, . . . , 5).

Then the only non-vanishing components of the Christoffel symbols are

Γ1
11 =

1

2
= Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 = −Γ1

22 = Γ3
23 = Γ3

32, Γ
1
33 = −1

2
ex

2

= Γ2
33.

Using the above relations, we can find the non-vanishing components of the
Ricci tensor and their covariant derivatives are as follows:

S22 =
1

2
,

S33 =
1

2
ex

2

,

S22,1 = −1

2
,

S33,1 = −1

2
ex

2

,

S12,2 = −1

4
= S21,2,

S13,3 = −1

4
ex

2

= S31,3,

S23,3 = −1

4
ex

2

= S32,3,

(29)

where ‘,’ denotes the covariant differentiation with respect to the Levi-Civita
connection ∇ and Sij denote the components of the Ricci tensor S in terms
of local coordinate system. It can be easily shown that the scalar curvature of
the manifold is r = e−x1

, which is non-vanishing and non-constant. Therefore
(M5, g) is a Riemannian manifold of non-vanishing scalar curvature. We shall
now show that this M5 is a (WCRS)5, i.e., it satisfies the defining condition
(2). Let us now consider the associated 1-forms as follows:

(30) Ai = Bi = Di =

{
−2 for i = 1,

0 otherwise,
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where Ai, Bi andDi are the components of the 1-forms A, B andD respectively
in terms of local coordinate system. In terms of local coordinate system, (2)
can be written as follows:

(31) Sij,k + Sjk,i + Ski,j = AkSij +BiSjk +DjSki, i, j, k = 1, 2, . . . , 5.

If i = j = 2 and k = 1, then by virtue of (29) and (30) we get the following
relations for the right hand side (R.H.S.) and left hand side (L.H.S.) of (31):

R.H.S. of (31) = A1S22 +B2S12 +D2S21

= −1

= S22,1 + S12,2 + S21,2

= L.H.S. of (31).

Hence (31) holds for i = j = 2 and k = 1. For other values of i, j and k,
in a similar manner it can be shown that the relation (31) is true. Therefore,
(M5, g) is a (WCRS)5 which is neither Ricci recurrent nor (WRS)5.

We shall now show that the manifold under consideration is a [(WCRS)5, ∇̃],

where ∇̃ is the linear connection determined by (5) and is different to the Levi-
Civita connection ∇. Also it may be mentioned that the statement holds for a

connection ∇̃ to be specified later on. If, in terms of local coordinate system,

the components of the connection ∇ and ∇̃ are respectively denoted by Γi
jk

and Γ̃i
jk, then the relation (5) can be written as

(32) Γ̃i
jk = Γi

jk + αjδ
i
k − αkδ

i
j.

We now define the 1-form α as follows:

(33) α(∂i) = αi =

{
ψ(x1) for i = 1,

0 otherwise,

where ∂i = ∂
∂xi at any point x ∈ M and ψ is a continuously differentiable

function of x1 defined over the interval [l,m]. We now determine ψ precisely

so that the equation (10) is satisfied for the manifold [(WCRS)5, ∇̃] under the
metric given by (28). As the above process is same with the determination of α
completely, hence the construction of our example will be completed. In view
of (7), (32) and (33) we obtain the non-vanishing components of the Christoffel

symbol Γ̃i
jk and Pij as follows:

(34)

Γ̃1
11 =

1

2
= Γ̃3

23 = Γ̃3
32 = −Γ̃1

22, Γ̃
2
12 =

1

2
+ ψ = Γ̃3

13,

Γ̃2
21 =

1

2
− ψ = Γ̃3

31, Γ̃
1
33 = −1

2
ex

2

= Γ̃2
33,

Γ̃4
14 = ψ = −Γ̃4

41, Γ̃
5
15 = ψ = −Γ̃5

51,

P11 = ψ̇ − 1

2
ψ − ψ2
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where ‘.’ denotes the total differentiation with respect to x1. In view of (8),

(29) and (34) we get the non-zero components of the Ricci tensor S̃ij as follows:

(35)

(a) S̃11 = −(ex
1
+ 3)(ψ̇ − 1

2
ψ − ψ2),

(b) S̃22 =
1
2
− ex

1
(ψ̇ − 1

2
ψ − ψ2),

(c) S̃33 =
1
2
ex

2 − ex
1+x2

(ψ̇ − 1
2
ψ − ψ2),

(d) S̃44 = −(ψ̇ − 1
2
ψ − ψ2),

(e) S̃55 = −(ψ̇ − 1
2
ψ − ψ2)

and consequently we obtain

(36)

(a) S̃11,1 = 3(ψ̇ − 1
2
ψ − ψ2)− (ex

1
+ 3)(ψ̈ − 1

2
ψ̇ − 2ψψ̇),

(b) S̃12,2 =
1
2
ψ − 1

4
− (3

2
+ ψex

1
)(ψ̇ − 1

2
ψ − ψ2),

(c) S̃21,2 = −1
2
ψ − 1

4
− (3

2
− ψex

1
)(ψ̇ − 1

2
ψ − ψ2),

(d) S̃13,3 = ex
2
[1
2
ψ − 1

4
− (3

2
+ ψex

1
)(ψ̇ − 1

2
ψ − ψ2)],

(e) S̃31,3 = −ex2
[1
2
ψ + 1

4
+ (3

2
− ψex

1
)(ψ̇ − 1

2
ψ − ψ2)],

(f) S̃14,4 = −ψ(ψ̇ − 1
2
ψ − ψ2),

(g) S̃41,4 = ψ(ψ̇ − 1
2
ψ − ψ2),

(h) S̃15,5 = −ψ(ψ̇ − 1
2
ψ − ψ2),

(i) S̃51,5 = ψ(ψ̇ − 1
2
ψ − ψ2),

(j) S̃22,1 = −1
2
− ex

1
(ψ̈ − 1

2
ψ̇ − 2ψψ̇),

(k) S̃33,1 = −1
2
ex

2 − ex
1+x2

(ψ̈ − 1
2
ψ̇ − 2ψψ̇),

(l) S̃44,1 = −(ψ̈ − 1
2
ψ̇ − 2ψψ̇),

(m) S̃55,1 = −(ψ̈ − 1
2
ψ̇ − 2ψψ̇),

where ‘,’ denotes the covariant differentiation with respect to the semi-symmetric

metric connection ∇̃ and ‘.’ denotes the total differentiation. We shall now
show that our considered manifold M5 with the metric given by (28) and ∇̃
for ψ verifying (36) is a [(WCRS)5, ∇̃], i.e., it satisfies (10). In terms of local

coordinate system, we consider the components of the 1-forms Ã, B̃ and D̃ as
follows:

(37) Ãi = B̃i = D̃i =

{
Ṗ11

P11
for i = 1

0 otherwise,

at any point x ∈ M , where Pij(i, j = 1, 2, . . . , 5) are the components of the
tensor P defined in (7). In terms of local coordinate system, the equation (10)
can be written as follows:

(38) S̃ij,k + S̃jk,i + S̃ki,j = ÃkS̃ij + B̃iS̃jk + D̃jS̃ki, i, j, k = 1, 2, . . . , 5.

In view of (35)-(37), (38) reduces to the following ordinary differential equa-
tion:

(39) ψ̇ − 1

2
ψ − ψ2 +

6ex
1
+ 17

4(ex1 + 3)
= 0,
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which is the generalized Riccati’s equation [6, p. 23]. Now applying the trans-

formation ψ = − u̇(x1)
u(x1)

in (39) we obtain

(40) ü− 1

2
u̇− 6ex

1
+ 17

4(ex1 + 3)
u = 0.

Further taking t = e−x1
in (40), we get

(41) t
d2u

dt2
+

3

2t

du

dt
+

6 + 17t

4(1 + 3t)t2
u = 0,

which is the Sturm-Liouville equation. Here t = 0 is the regular singular point.
Hence to obtain the general solution of (41) near the regular singular point
t = 0 we use the Frobenius method [6, p. 396]. Using this method we obtain
the series solution of (41) as

u =
∞∑

m=0

(cmt
m+1 + dmt

m− 3
2 ),

where the values of cm and dm in terms of c0 and d0 respectively are obtained
from the following equations

cm(2m
2 + 5m+ 6)− 1

6

m−1∑
j=0

(−3)m−jcj = 0,

dm(2m
2 − 5m+ 6)− 1

6

m−1∑
j=0

(−3)m−jdj = 0

and c0, d0 are arbitrary non-zero constants such that c0 6= d0. Thus in terms
of x1, we obtain the value of u as follows:

(42) u =
∞∑

m=0

[
cme

−(m+1)x1

+ dme
−(m− 3

2
)x1

]
.

In view of (42), the general solution of (40) is obtained as

(43) ψ(x1) = −

∞∑
m=0

[
(m+ 1)cme

−(m+1)x1

+

(
m− 3

2

)
dme

−(m− 3
2
)x1

]
∞∑

m=0

[cme
−mx1

+ dme
−(m− 5

2
)x1

]

.

This completes the determination of ψ, i.e., the coefficients of the connection

and hence our considered manifold is a [(WCRS)5, ∇̃]. Thus we can state the
following theorem.
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Theorem 4.1. Let (M5, g) be the Riemannian manifold equipped with the
metric given by

(44) ds2 = gijdx
idxj = ex

1

[(dx1)2 + (dx2)2 + ex
2

(dx3)2] + (dx4)2 + (dx5)2,

(i, j = 1, 2, . . . , 5)

and ∇̃ with ψ given by (43). Then (M5, g) is a [(WCRS)5, ∇̃].

We now investigate the solution of ψ(x1) in (43)) such that ψ(x1) is contin-
uous in the interval [l,m] for some choice of l and m. We take a particular
solution of (40) for which we have assumed c0 = −1 and d0 = 1. We now draw
the graph of the particular solution of (40) as follows: Here we observe that
the function ψ = ψ(x1) has the apparent vertical asymptotes near x1 = 8.4,
corresponding to a zero of the denominator of ψ(x1). Thus for this particular
solution, the interval of continuity of ψ(x1) can be taken as any closed interval
excluding the points where ψ(x1) has vertical asymptotes, for example [l,m]
such that 8.2 < l < m < 8.5.

Therefore, we have completely determined ψ(x1) as well as the coefficients
of the semi-symmetric metric connection such that the defining condition (10))
holds for the considered metric given in (28).
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The metric g on the manifold M5 = R3 ×R2 is a product of the metric

(45) g1 = ex
1

[(dx1)2 + (dx2)2 + ex
2

(dx3)2]

on R3 by the flat metric g2 = (dx4)2 + (dx5)2 on R2. Proceeding as in the
above, it can be shown that the manifold M3 = (R3, g1) is a (WCRS)3.

In a similar manner, as in the above, we obtain the non-vanishing compo-

nents of the Ricci tensor S̃ij as follows:

(46)

(a) S̃11 = −(ex
1
+ 1)(ψ̇ − 1

2
ψ − ψ2),

(b) S̃22 =
1
2
− ex

1
(ψ̇ − 1

2
ψ − ψ2),

(c) S̃33 =
1
2
ex

2 − ex
1+x2

(ψ̇ − 1
2
ψ − ψ2)

and consequently we obtain

(47)

(a) S̃11,1 = ψ̇ − 1
2
ψ − ψ2 − (ex

1
+ 1)(ψ̈ − 1

2
ψ̇ − 2ψψ̇),

(b) S̃12,2 =
1
2
ψ − 1

4
− (1

2
+ ψex

1
)(ψ̇ − 1

2
ψ − ψ2),

(c) S̃21,2 = −1
2
ψ − 1

4
− (1

2
− ψex

1
)(ψ̇ − 1

2
ψ − ψ2),

(d) S̃13,3 = ex
2
[1
2
ψ − 1

4
− (1

2
+ ψex

1
)(ψ̇ − 1

2
ψ − ψ2)],

(e) S̃31,3 = −ex2
[1
2
ψ + 1

4
+ (1

2
− ψex

1
)(ψ̇ − 1

2
ψ − ψ2)],

(f) S̃22,1 = −1
2
− ex

1
(ψ̈ − 1

2
ψ̇ − 2ψψ̇),

(h) S̃33,1 = −1
2
ex

2 − ex
1+x2

(ψ̈ − 1
2
ψ̇ − 2ψψ̇),

where ‘,’ denotes the covariant differentiation with respect to the semi-symmetric

metric connection ∇̃ and ‘.’ denotes the total differentiation. In terms of local
coordinate system, we consider the components of the 1-forms Ã, B̃ and D̃ as
follows:

(48) Ãi = B̃i = D̃i =

{
2(e3x

1
+2e2x

1
+ex

1−1)

(1−e2x
1
)(ex

1
+2)

for i = 1

0 otherwise,

at any point x ∈ M . In terms of local coordinate system, the equation (10)
can be written as follows:

(49) S̃ij,k + S̃jk,i + S̃ki,j = ÃkS̃ij + B̃iS̃jk + D̃jS̃ki, i, j, k = 1, 2, 3.

In view of (46)–(48), (49) reduces to the following ordinary differential equa-
tion:

(ex
1

+ 1)(ψ̈ − 1

2
ψ̇ − 2ψψ̇) + (2ex

1

+ 1)(ψ̇ − 1

2
ψ − ψ2)[1 + 2(ψ̇ − 1

2
ψ − ψ2)] = 0,

which, on integration, gives the following first order non-linear ordinary differ-
ential equation:

(50) ψ̇ − 1

2
ψ − ψ2 − 1

cex1(ex1 + 1)− 2
= 0,
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where c is an arbitrary constant. Now if we assume c = 1 and apply the
transformation ψ = −tdu

dt
where t = ex

1
, then from the last equation we obtain

(51)
d2u

dt2
+

1

2t

du

dt
+

1

t2(t2 + t− 2)
u = 0,

which is the Sturm-Liouville equation. Proceeding as in the above we find the
general solution of (51) near the regular singular point t = 0 as

u =
∞∑

m=0

(cmt
m+1 + dmt

m− 1
2 ),

where the values of cm and dm in terms of c0 and d0 respectively are obtained
from the following equations

2m(2m+ 3)cm −m(2m− 1)cm−1 − (m− 1)(2m− 3)cm−2 = 0, c1 =
1

10
c0

2m(2m− 3)dm − (m− 2)(2m− 3)dm−1 − (m− 3)(2m− 5)dm−2 = 0,

d1 = −1

2
d0, m ≥ 2,

c0, d0 are arbitrary non-zero constants such that c0 6= d0. Thus in terms of x1,
we obtain the value of u as follows:

(52) u =
∞∑

m=0

[
cme

(m+1)x1

+ dme
(m− 1

2
)x1

]
.

In view of (52), the general solution of (50)) is obtained as

(53) ψ(x1) = −

∞∑
m=0

[
(m+ 1)cme

(m+1)x1

+

(
m− 1

2

)
dme

(m− 1
2
)x1

]
∞∑

m=0

[cme
(m+1)x1

+ dme
(m− 1

2
)x1

]

.

This completes the determination of ψ, i.e., the coefficients of the connection

and hence our considered manifold is a [(WCRS)3, ∇̃]. Thus we can state the
followingtheorem.

Theorem 4.2. Let M3 = (R3, g1) be the Riemannian manifold equipped with
the metric given by

ds2 = gijdx
idxj = ex

1

[(dx1)2 + (dx2)2 + ex
2

(dx3)2], (i, j = 1, 2, 3)

and ∇̃ with ψ given by (53). Then (M3, g) is a [(WCRS)3, ∇̃].

We now investigate the solution of ψ(x1) in (53) such that ψ(x1) is contin-
uous in the interval [l,m] for some choice of l and m. Assuming c0 = −1 and
d0 = 1 we now draw the graph of the particular solution of (50) as follows:
Here we observe that the function ψ = ψ(x1) has the apparent vertical asymp-
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totes near x1 = 0.0, corresponding to a zero of the denominator of ψ(x1). Thus
for this particular solution, the interval of continuity of ψ(x1) can be taken as
any closed interval excluding the points where ψ(x1) has vertical asymptotes,
for example [l,m] such that 0 < l < m < 0.1.

Therefore, we have completely determined ψ(x1) as well as the coefficients
of the semi-symmetric metric connection such that the defining condition (10)
holds for the considered metric given in (45).

Therefore, the result of Theorem 4.1 is also valid for the manifold M3 =
(R3, g1) as shown in the Theorem 4.2.
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Übertragungen. Math. Z., 21(1):211–223, 1924.
[5] H. Hayden. Sub-spaces of a space with torsion. Proc. Lond. Math. Soc., II. Ser., 34:27–

50, 1932.
[6] E. L. Ince. Ordinary Differential Equations. Dover Publications, New York, 1944.
[7] M. Novello and M. J. Reboucas. The stability of a rotating universe. The Astrophysics

Journal, 225:719–724, 1978.
[8] B. O’Neill. Semi-Riemannian geometry, volume 103 of Pure and Applied Mathematics.

Academic Press Inc. [Harcourt Brace Jovanovich Publishers], New York, 1983. With
applications to relativity.

[9] J. A. Schouten. Ricci-calculus. An introduction to tensor analysis and its geometrical
applications. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellun-
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