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FIXED POINT THEOREMS FOR A GENERAL CLASS OF
ALMOST CONTRACTIONS IN METRIC SPACES

GBENGA AKINBO AND OLUWATOSIN MEWOMO

Abstract. In this paper, we prove the existence of fixed points and com-
mon fixed points for a general class of almost contraction mappings in metric
spaces. This class of almost contractions is an extension and generalization
of several contractive conditions in the literature. Our main results are
established without forcing the metric space to be complete.

1. Introduction

Let (X, d) be a complete metric space. A self-mapping T of X with

(1.1) d(Tx, Ty) ≤ ad(x, y) for all x, y ∈ X,

where a is a constant satisfying 0 ≤ a < 1, is called a contraction. The popular
Banach’s contraction principle, which is one of the most important results in
non-linear analysis, states that any contraction mapping T : X → X has a
unique fixed point in X; and that the Picard iteration {xn}∞n=0 defined by
xn+1 = Txn, n = 0, 1, 2, . . . converges to the unique fixed point.

As beautiful as the Banach’s contraction principle is, one setback suffered
by the theorem is that the contractive condition (1.1) implies that T must be
continuous on X. A series of fruitful efforts have been made, over the years,
to address this setback. Several weaker contractive conditions were introduced
which do not force T to be continuous on X. In 1968, Kannan [14] replaced
(1.1) with the following: there exists a constant b ∈ [0, 1

2
) such that

(1.2) d(Tx, Ty) ≤ b(d(x, Tx) + d(y, Ty))for all x, y ∈ X.

A similar condition to (1.2) was given in 1972 by Chatterjea [11] as follows.

(1.3) d(Tx, Ty) ≤ c(d(x, Ty) + d(y, Tx)) for all x, y ∈ X,

where constant c satisfies c ∈ [0, 1
2
).

Several other results abound in the literature which are devoted to obtaining
fixed points without necessarily requiring the continuity of T . For more on

2010 Mathematics Subject Classification. 47H10, 54H25.
Key words and phrases. A-contractions, almost A-contractions, arbitrary metric space.

299



300 GBENGA AKINBO AND OLUWATOSIN MEWOMO

these various earlier definitions of contractive mappings, the reader may see
[3], [8] [19] and others.

One of such classes of contractions, introduced by V. Berinde in [6], which is
of interest to us in this paper is the almost contractions. T : X → X is said to
be an almost contraction if there exists a constant δ ∈ [0, 1) and some L ≥ 0
such that

(1.4) d(Tx, Ty) ≤ δ · d(x, y) + Ld(y, Tx) for all x, y ∈ X,

It is well known that an almost contraction needs not have a unique fixed
point. For example, if (X, d) is the closed unit interval [0, 1] with the usual
metric, and T is the identity map on X, the condition (1.4) above is clearly
satisfied whenever L ≥ 1− δ but the fixed point set of T is the entire interval
[0, 1].

A detailed study of almost contractions can be found in [17]. Interested
reader may also see Berinde [4, 5, 6, 7, 8] and Osilike [16] for various conver-
gence and stability results obtained using the class of almost contractions and
its weaker forms.

In this paper, we shall establish fixed point results involving a general class
of almost contractions in metric spaces.

2. Preliminary results

In 2008, Akram, Zafar and Siddiqui[2] introduced a general class of contrac-
tions called A-contractions. They gave the following definition.

Let R+ denote the set of all nonnegative real numbers and A the set of all
functions α : R3

+ → R+ satisfying the following conditions.

(i) α is continuous on the set R3
+

(ii) a ≤ kb for some k ∈ [0, 1) whenever a ≤ α(a, b, b) or a ≤ α(b, a, b) or
a ≤ α(b, b, a) for all a, b ∈ R+.

Definition 1. A self-mapping T of a metric space X is said to be an A-
contraction if it satisfies

(2.1) d(Tx, Ty) ≤ α(d(x, y), d(x, Tx), d(y, Ty))

for all x, y ∈ X and some α ∈ A.

The authors demonstrated how the A-contractions is a proper super class
of several other existing classes of contractions. They obtained a unique fixed
point in a complete metric space X and showed that the Picard iteration
converges to the unique fixed point.

From the foregoing, it becomes natural to define a class of almost A-
contractions by replacing condition (2.1) in Definition 1 above with (2.2) in
the following.
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Definition 2. A self-mapping T of a metric spaceX is an almostA-contraction
if for some α ∈ A and a constant L ≥ 0, the following condition is satisfied:

(2.2) d(Tx, Ty) ≤ α(d(x, y), d(x, Tx), d(y, Ty)) + Ld(y, Tx) for all x, y ∈ X.

Theorem 1. Let T be an almost A-contraction on a complete metric space X.
Then

(i) T has a fixed point in X;
(ii) For any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 = Txn, n =

0, 1, 2, . . . converges to some fixed point u of T;
(iii) The following estimate holds

(2.3) d(xn, u) ≤
kn

1− k
d(x0, x1), n = 0, 1, 2, . . .

for some k ∈ [0, 1).

Proof. For any x0 ∈ X, since T is an almost A-contraction, there exist α ∈ A
and a constant L ≥ 0 such that, with x = xn−1 and y = xn, (2.2) gives

d(xn, xn+1) = d(Txn−1, Txn)

≤ α(d(xn−1, xn), d(xn−1, Txn−1), d(xn, Txn)) + Ld(xn, Txn−1)

= α(d(xn−1, xn), d(xn−1, xn), d(xn, xn+1))

This implies that

d(xn, xn+1) ≤ kd(xn−1, xn) n = 1, 2, . . .

for some k ∈ [0, 1). By induction, we obtain

d(xn, xn+1) ≤ knd(x0, x1), n = 0, 1, 2, . . . .

Therefore, for a natural numberm > n where n = 0, 1, 2, . . . , using the triangle
inequality, we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

≤ knd(x0, x1) + kn+1d(x0, x1) + · · ·+ km−1d(x0, x1)

≤ knd(x0, x1)[1 + k + . . .+ km−n−1 + · · · ]

=
kn

1− k
d(x0, x1)

In other words, for any m > n, n = 0, 1, 2, . . .,

(2.4) d(xn, xm) ≤
kn

1− k
d(x0, x1).

This shows that {xn}∞n=0 is a Cauchy sequence and since X is complete, there
exists u ∈ X with limn→∞xn = u. In addition, by the continuity of α,

d(u, Tu) ≤ d(u, xn) + d(Txn−1, Tu)

≤ d(u, xn) + α(d(xn−1, u), d(xn−1, xn), d(u, Tu)) + Ld(u, xn),
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This gives

d(u, Tu) ≤ d(u, u) + α(d(u, u), d(u, u), d(u, Tu)) + Ld(u, u), as n → ∞.

That is, d(u, Tu) ≤ α(0, 0, d(u, Tu)), which implies that d(u, Tu) ≤ 0. Thus,
Tu = u. Therefore, u is a fixed point of T .

This shows that for any x0 ∈ X, the Picard iteration converges to a fixed
point u ∈ X. Finally, we obtain (iii) by letting m → ∞ in (2.4). �

In the part (ii) of Theorem 1 of [2], it was shown that for some constant
r ∈ [0, 1

2
) we have

r(d(Tx, x) + d(Ty, y)) = α(d(x, y), d(Tx, x), d(Ty, y))

whenever α ∈ A. Thus we obtain the following corollary.

Corollary 1. Let T be a self-mapping of a complete metric space X satisfying

d(Tx, Ty) ≤ r(d(Tx, x) + d(Ty, y)) + Ld(y, Tx) for all x, y ∈ X,

for some constant r ∈ [0, 1
2
). Then

(i) T has a fixed point in X;
(ii) for any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 = Txn, n =

0, 1, 2, . . . converges to some fixed point u of T; and
(iii) The following estimate holds

d(xn, u) ≤
kn

1− k
d(x0, x1), n = 0, 1, 2, . . . ,

for some k = r
1−r

∈ [0, 1).

In part (i) of the same theorem of [2], it was also shown that for 0 ≤ h <
1, 0 ≤ r < 1

2
, the following inequality holds.

h
√
d(Tx, x)d(Ty, y) ≤ r(d(Tx, x) + d(Ty, y)).

Therefore, from Corollary 1, we have

Corollary 2. Let T be a self-mapping of a complete metric space X satisfying

d(Tx, Ty) ≤ h
√

d(Tx, x)d(Ty, y) + Ld(y, Tx) for all x, y ∈ X,

for some constant h ∈ [0, 1). Then

(i) T has a fixed point in X;

(ii) for any x0 ∈ X, the Picard iteration {xn}∞n=0 given by xn+1 = Txn, n =
0, 1, 2, . . . converges to some fixed point u of T ; and

(iii) The following estimate holds

d(xn, u) ≤
kn

1− k
d(x0, x1), n = 0, 1, 2, . . . ,

for some k = h
2
.

We shall illustrate Theorem 1. with the following example.
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Example. Let X = [0, 1] with the usual metric d(x, y) = |x − y|. Define
T : X → X by

Tx =

{
0 if x = 0
1
2

if x ∈ (0, 1].

Observe that the fixed point set of T , FT = {0, 1
2
}.

Define α : R3
+ → R+ by α(a1, a2, a3) =

1
4
(a1+a2+a3) for all a1, a2, a3 ∈ R+.

It is easy to see that α ∈ A (see [1]).
When x = y = 0, or when x > 0 and y > 0, (2.2) is clearly satisfied. Indeed,

the left hand side of the inequality is 0.
Moreover, when x = 0 and y > 0, (2.2) holds whenever L ≥ 1

8
.

Finally, when x > 0 and y = 0, (2.2) is satisfied provided L ≥ 1
4
.

Remark. It is clear that the mapping T as defined in the example above, fails
to satisfy inequality (1.4). If we choose x = 0 and y ∈ (0, 1], then by the
contractive condition (1.4) we get∣∣∣∣0− 1

2

∣∣∣∣ ≤ δ|0− y|+ L|y − 0|

from which, by letting y → 0 we get the contradiction 1
2
< 0. Thus, the class

of almost A-contractions is larger than that of almost contractions.

3. Fixed points for almost A-contractions in arbitrary metric
space.

Our main interest in this section is to obtain fixed points for almost A-
contractions without necessarily requiring X to be complete.

Inspired by section 5 of [13], let T be a self-mapping of an arbitrary metric
space X. We assume that a function f : X → R+ defined by f(x) = d(x, Tx),
for all x ∈ X, attains its minimum in X. The following result shows existence
of a fixed point of T without the completeness condition.

Theorem 2. Let T be an almost A-contraction on a metric space X. Assume
there exists a point u ∈ X such that

(3.1) f(u) = inf{f(x) : x ∈ X},

where f(x) = d(x, Tx) for all x ∈ X. Then u is a fixed point of T .

Proof. Define a sequence {T nx} in X by T n+1x = TT nx, for n = 0, 1, 2, . . ..
Since T is an almost A-contraction, then for some constant k ∈ [0, 1) and any
x ∈ X, we have

d(T nx, T n+1x) ≤ knd(x, Tx), n = 0, 1, 2, . . . .

Suppose d(u, Tu) > 0, then for a positive integer j, we obtain

d(T ju, T j+1u) ≤ kjd(u, Tu).
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That is, f(T ju) ≤ kjf(u). This contradicts (3.1). Hence d(u, Tu) = 0, so that
Tu = u. �

Finally in the following theorem, two metrics d and ρ are defined on a
nonempty set X. Completeness is limited to only (X, d) while (X, ρ) is left as
an arbitrary metric space.

Theorem 3. Let X be a nonempty set with metrics d and ρ. Let S and T be
a self-mappings of X such that

(i) d(x, y) ≤ ρ(x, y), for all x, y ∈ X;
(ii) (X, d) is complete;
(iii) T is continuous on (X, d);
(iv) The following condition holds for some α ∈ A, and L ≥ 0;

ρ(Sx, Ty) ≤ α(ρ(x, y), ρ(x, Sx), ρ(y, Ty)) + Lρ(y, Sx)ρ(x, Ty).

Then S and T have a common fixed point u ∈ X.

Proof. For any x0 ∈ X, define sequence {xn}∞n=0 by

xn =

{
Sxn−1 when n is odd;

Txn−1 when n is even.

Then, when n is odd, condition (iv) yields

ρ(x1, x2) = ρ(Sx0, Tx1)

≤ α(ρ(x0, x1), ρ(x0, Sx0), ρ(x1, Tx1)) + Lρ(x1, Sx0)ρ(x0, Tx1))

= α(ρ(x0, x1), ρ(x0, x1), ρ(x1, x2)) + Lρ(x1, x1)ρ(x0, x2))

= α(ρ(x0, x1), ρ(x0, x1), ρ(x1, x2))

That is, ρ(x1, x2) ≤ kρ(x0, x1). Similarly, when n is even, we have
ρ(x2, x3) ≤ kρ(x1, x2).

Therefore for all n ∈ N, (iv) gives ρ(xn, xn+1) ≤ kρ(xn−1, xn). This induc-
tively gives

ρ(xn, xn+1) ≤ knρ(x0, x1).

As in the proof of Theorem 1, the sequence {xn} is Cauchy in (X, ρ). The
sequence is also Cauchy in (X, d) since condition (i) holds. Furthermore, it
converges to a point u ∈ X on the account of condition (ii).

Using (iii), we have Tu = T (limn→∞ T nx) = limn→∞ T n+1x = u. That is u
is a fixed point of T in X.

Finally, by (iv),

ρ(Su, u) = ρ(Su, Tu) ≤ α(ρ(u, u), ρ(u, Su), ρ(u, Tu)) + Lρ(u, Su)ρ(u, Tu)

= α(0, ρ(Su, u), 0)

Therefore, ρ(Su, u) = 0. Hence u is a common fixed point of S and T . �
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