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Abstract. In the present paper we prove the a.e. convergence of Fejér
means of integrable functions with respect to the two-dimensional represen-
tative product systems on a bounded compact totally disconnected group
provided that the set of indices is in a cone-like set.

1. Introduction

Now, we give a brief introduction, for more details see [3]. Moreover, see
the book of Hewitt and Ross [9] and Schipp, Wade, Simon and Pál [11].

Denote by N,P the set of natural numbers and the set of positive integers,
respectively. Let m := (mk, k ∈ N) be a sequence of positive integers such
that mk ≥ 2 and Gk a finite group with order mk, (k ∈ N). Suppose that each
group has discrete topology and normalized Haar measure µk. Let Gm be the
compact group formed by the complete direct product of the groups Gk with
the product of the topologies, operations and measures (µ). Thus, each x ∈ Gm

is a sequence x := (x0, x1, . . .), where xk ∈ Gk, (k ∈ N). We call this sequence
the expansion of x. The compact totally disconnected (simply CTD) group
Gm is called a bounded group if the sequencem is bounded. All over this paper
the boundedness of the group Gm is supposed. Set m∗ := max{mk : k ∈ N}.
A neighborhood base of the topology can be given in the following way:

I0(x) := Gm In(x) := {y ∈ Gm : yk = xk for 0 ≤ k < n},
where x ∈ Gm, n ∈ P. Let M0 := 1 and Mk+1 := mkMk, k ∈ N, every
n ∈ N can be uniquely expressed as n =

∑∞
k=0 nkMk, 0 ≤ nk < mk, nk ∈ N.

This allows us to say that the sequence (n0, n1, . . .) is the expansion of n
with respect to the number system m. We often use the following notations:
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268 KÁROLY NAGY

|n| := max{k ∈ N : nk 6= 0}, n(k) :=
∑k−1

j=0 nkMk, and n(k) :=
∑∞

k nkMk,

where |n| is called the order of n.
Denote by Σk the dual object of the finite group Gk (k ∈ N). Thus, each

σ ∈ Σk is a set of continuous irreducible unitary representations of Gk which
are equivalent to some fixed representation U (σ). Let dσ be the dimension of its
representation space and let {ξ1, ξ2, . . . , ξdσ} be a fixed, but arbitrary orthonor-

mal basis in the representation space. The functions u
(σ)
i,j (x) := 〈U (σ)

x ξi, ξj〉
(i, j ∈ {1, . . . , dσ}, x ∈ Gk ) are called the coordinate functions for U (σ) and
the basis {ξ1, ξ2, . . . , ξdσ}. Let {ϕs

k : 0 ≤ s < mk} be a system of all normal-
ized coordinate functions of the group Gk. We suppose that ϕ0

k ≡ 1. Thus,
for every 0 ≤ s < mk there exists a σ ∈ Σk, i, j ∈ {1, . . . , dσ} such that

ϕs(x) =
√
dσu

(σ)
i,j (x) for x ∈ Gk. Let ψ be the product system of the functions

ϕs
k, that is

ψn(x) :=
∞∏
k=0

ϕnk
k (xk) (x ∈ Gm),

where n is of the form n =
∑∞

k=0 nkMk and x = (x0, x1, . . .). The system ψ
is orthonormal and complete on L2(Gm) [7]. If the group Gk is the discrete
cyclic group of order mk for each k ∈ N, then the system ψ is the well-known
Vilenkin system and Gm is a Vilenkin group[1]. As special cases we have
the Walsh system and the Walsh group, too [11]. The system ψ is called
representative product system of the CTD group.

Let us consider the Dirichlet and Fejér kernel functions

Dn(y, x) :=
n−1∑
k=0

ψk(y)ψk(x), Kn(y, x) :=
1

n

n∑
k=1

Dk(y, x)

and D0 = K0 := 0. The Mnth Dirichlet kernel has got a closed form [7]

DMn(y, x) =

{
Mn, for y ∈ In(x)

0, otherwise.

Recently, the behavior of the Dirichlet kernel was discussed by Toledo [14, 12].
The Fourier coefficients, the partial sums of Fourier series and the Fejér means
are defined in the usual way for f ∈ L1(Gm). It is known that

σnf(y) =

∫
Gm

f(x)Kn(y, x)dµ(x).

Denote Gm ×Gm̃ the two-dimensional compact totally disconnected (CTD)
group. Define the two-dimensional Dirichlet and Fejér kernel functions as the
Kronecker product of the one-dimensional functions

Dn(y, x) := Dn1(y
1, x1)Dn2(y

2, x2), Kn(y, x) := Kn1(y
1, x1)Kn2(y

2, x2),
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where y := (y1, y2), x := (x1, x2) ∈ Gm × Gm̃ and n = (n1, n2) ∈ N2. The
following is well-known

σnf(y) =

∫
Gm×Gm̃

f(u1, u2)Kn1(y
1, u1)Kn2(y

2, u2)dµ(u1, u2)

In the present paper we also suppose that m = m̃ and we write simply G2
m =

Gm × Gm̃, although we know that Gm 6= Gm̃ may be happened. During the
proofs C and c denote constants which may depend only on m∗ and could vary
at different occurrences.

In [7] Gát and Toledo proved the fact that the Fejér means of the Fourier
series with respect to representative product systems on bounded groups con-
verge to the function in Lp -norm (1 ≤ p <∞), although we can not state the
same for the Fourier series in general. In 2009 they extended this statement to
Cesàro means of order α where 0 < α < 1 [8]. On the other hand the behavior
of the partial sums worse than in the commutative (Vilenkin, Walsh) case. Let
Gm be the complete product of S3. If 1 < p <∞ and p 6= 2, then there exists
an f ∈ Lp(Gm) such that Snf does not converge to the function f in Lp-norm
[13].

The almost everywhere convergence of the one-dimensional Fejér means was
proved by Gát in [3]. Our paper deal with the a.e. convergence of the two-
dimensional Fejér means provided that the set of indices is in a cone-like set.
We note that until the present time there was not any result given in dimension
2 for the Fourier series on CTD groups.

For double Walsh-Fourier series, Móricz, Schipp and Wade [10] proved that
σnf converge to f a.e. in the Pringsheim sense (that is, no restriction on the
indices other than min(n1, n2) → ∞) for all functions f ∈ L log+ L. For
double Walsh system Gát [4] and Weisz [15] proved that the Fejér means of an
integrable function converge almost everywhere to the function itself provided
that the indices satisfy the inequality β−1 ≤ n1/n2 ≤ β with some fixed β > 1.
Recently, a common generalization of the results of Gát, Weisz and the result
of Móricz, Schipp, Wade (with respect to Walsh system) was given in the same
direction and way as Gát did in [5] with respect to the trigonometric system.
A necessary and sufficient condition for cone-like sets was given by the author
and Gát in order to preserve the convergence property for Walsh system [6].

In the present paper we prove the a.e. convergence of Fejér means of inte-
grable functions with respect to two-dimensional representative product sys-
tems of a bounded CTD group provided that the set of indices is in a cone-like
set.

2. Almost everywhere convergence of double Fejér means with
cone resriction

The following Lemmas are the basis of our proof:
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Lemma 2.1 (Gát [3]). Let A, t, s, n ∈ N, and x ∈ It+1(u), u ∈ Gm. Then∫
It(u)\It+1(u)

sup
MA≤n(s)<MA+1

|Kn(s),Ms
(y, x)|dµ(y) ≤ cMmin(s,t)

√
MA

Mmax(s,t)

.

Lemma 2.2. Let A, t ∈ N, and x ∈ It+1(u), u ∈ Gm. Then∫
It(u)\It+1(u)

sup
n≥MA

|Kn(y, x)|dµ(y) ≤ c

√
Mt

MA

.

Proof. Set x ∈ It+1(u), u ∈ Gm. By Lemma 2.1 and the method of Gát we
write that∫

It(u)\It+1(u)

sup
n≥MA

|Kn(y, x)|dµ(y) ≤
∞∑

B=A

∫
It(u)\It+1(u)

sup
|n|=B

|Kn(y, x)|dµ(y)

≤
∞∑

B=A

1

MB

∫
It(u)\It+1(u)

sup
|n|=B

B∑
s=0

ms−2∑
j=0

|Kn(s+1)+jMs,Ms
(y, x)|dµ(y)

≤
∞∑

B=A

1

MB

B∑
s=0

∫
It(u)\It+1(u)

sup
|n|=B

|Kn(s),Ms
(y, x)|dµ(y)

≤ c

∞∑
B=A

1

MB

(
t∑

s=0

Ms

√
MB

Mt

+
B∑

s=t+1

Mt

√
MB

Ms

)

≤ c

∞∑
B=A

1

MB

Mt

√
MB

Mt

≤ c

√
Mt

MA

. �

We define the maximal operator σ# by

σ#f := sup
n∈P2

β−1≤n1/n2≤β

|σnf |,

where β > 1 is a fixed parameter. For this maximal operator we have the
following theorem:

Theorem 2.3. The operator σ# is of weak type (1, 1).

By standard argument we get that

Theorem 2.4. Let f ∈ L1(G2
m) and β ≥ 1 be a fixed parameter. Then the

relation

lim
∧n→∞

β−1≤n1/n2≤β

σnf = f a.e.

holds.

By the help of Lemma 2.2, the well-known Calderon-Zygmund decomposi-
tion Lemma and the method of Gát and Blahota in [2] (with necessary changes)



ALMOST EVERYWHERE CONVERGENCE OF DOUBLE FEJÉR MEANS 271

we have the proof of Theorem 2.3. On the other hand, Theorem 2.3 could be
reach as a corollary of our main theorem in the following section.

At last, we note that Theorem 2.4 is unknown until the present time.

3. Pointwise convergence of cone-like restricted
two-dimensional Fejér means

Now, we define the cone-like sets. Let α : [1,+∞) → [1,+∞) be a strictly
monotone increasing continuous function with property lim+∞ α = +∞, α(1) =
1, and β : [1,+∞) → [1,+∞) be a monotone increasing function with property
β(1) > 1.

Define the cone-like restriction sets of N2 as follows [5, 6]:

Nα,β,1 :=

{
n ∈ N2 :

α(n1)

β(n1)
≤ n2 ≤ α(n1)β(n1)

}
,

Nα,β,2 :=

{
n ∈ N2 :

α−1(n2)

β(n2)
≤ n1 ≤ α−1(n2)β(n2)

}
.

For α(x) := x, β(x) := β (β ∈ (1,∞)) we get the restriction set Nα,β,1 =

Nα,β,2 =
{
n ∈ N2 : 1

β
≤ n2

n1
≤ β

}
used in [2, 4, 15].

Let β(x) = β be a constant function. It is natural that Nα,β1,1 ⊂ Nα,β2,1 and
Nα,β1,2 ⊂ Nα,β2,2 for any β1 ≤ β2.

For i = 1, 2 set

Nα,i := {Nα,β,i : β > 1}.
For a fixed i ∈ {1, 2}, we say that Nα,i is weaker than Nα,3−i, if for all L ∈
Nα,i, there exists an L̃ ∈ Nα,3−i such that L ⊂ L̃. This will be denoted by
Nα,i ≺ Nα,3−i. If Nα,1 ≺ Nα,2 and Nα,2 ≺ Nα,1, then we say that Nα,1 and Nα,2

are equivalent and denote this by Nα,1 ∼ Nα,2.
We say that the function α is a cone-like restriction function (CRF), if

Nα,1 ∼ Nα,2. Set Nα := Nα,1 ∪ Nα,2. We say that the cone-like set L ∈ Nα is
based on the function α.

The properties of a CRF is characterized in the following statement [5]:
Function α is a CRF if and only if there exist ζ, γ1, γ2 > 1 such that the
inequality

(3.1) γ1α(x) ≤ α(ζx) ≤ γ2α(x)

holds for each x ≥ 1.
In other words, the condition γ1α(x) ≤ α(ζx) ≤ γ2α(x) is very natural,

since it is necessary and sufficient in order to have that for all restriction set
L ∈ Nα,1 there exists a restriction set L̃ ∈ Nα,2 such that L ⊂ L̃, and in the
same way backwards also.

We define the maximal operator σ∗
L by

σ∗
L := sup

n∈L
|σnf |.



272 KÁROLY NAGY

For the maximal operator σ∗
L we prove the following theorem:

Theorem 3.1. Let α be CRF, L ∈ Nα. Then the operator σ∗
L is of weak type

(1, 1).

By standard argument we get that

Theorem 3.2. Let α be CRF, L ∈ Nα. Then for any f ∈ L1(G2
m) the relation

lim
∧n→∞
n∈L

σnf = f a.e.

holds.

We immediately have Theorem 2.4 in the previous section as a corollary. To
prove Theorem 3.1 we need the following decomposition Lemma of Calderon
and Zygmund type proved in [5].

Lemma 3.3. Let the function ϕj : [1,+∞) → [1,+∞) be monotone increasing
and continuous with property lim+∞ ϕj = +∞ (j = 1, 2). Set φj := bϕjc
(j = 1, 2) (where bxc denotes the lower integer part of x).

Let f ∈ L1 and λ > ‖f‖1. Then there exists a sequence of integrable func-
tions (fi) such that

f =
∞∑
i=0

fi,

where ‖f0‖∞ ≤ Cλ, ‖f0‖1 ≤ C‖f‖1 and supp fi ⊂ Iki,1(x
i
1)×Iki,2(xi2) =: J i

1×J i
2

((xi1, x
i
2) ∈ G2

m) with measures

µ(Iki,1(x
i
1)) = 1/Mφ1(si) and µ(Iki,2(x

i
2)) = 1/Mφ2(si)

for some si ≥ 1. Moreover,
∫
G2

m
fi = 0 (i ≥ 1), the sets J i

1×J i
2 are disjoint, and

with the definition F :=
⋃∞

i=1(Iki,1(x
i
1)× Iki,2(x

i
2)) we have µ(F ) ≤ C‖f‖1/λ.

Proof of Theorem 3: During the proof of Theorem 3.1 we follow the method
of the author and Gát in [6]. But, we have to make necessary changes, because
we have got another structure than in the Walsh case.

Let L ∈ Nα. Without loss of generality, we suppose that L = Nα,β,1 for some
β > 1. First, we choose functions φ1(s) := |s| (that is, φ1(s) is the order of s
and M|s| ≤ s < M|s|+1) and φ2(s) := |α(s)|, where α is CRF (we note that the
continuous functions ϕ1, ϕ2 can be constructed). We apply Lemma 3.3 for the
functions φ1(s), φ2(s).

Set f ∈ L1(G2
m) and supp f ⊂ J1 × J2 with measure µ(Ji) =

1
Mφi(s)

for some

s ≥ 1 (i = 1, 2). Set kj := φj(s), that is Ji = Iki(x
i) for j = 1, 2.

By the help of Lemma 2.2 we prove the inequality

(3.2)

∫
Ik1 (x

1)×Ik2 (x
2)

sup
n∈L

|σnf | ≤ c‖f‖1.
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We decompose the set Ik1(x1)× Ik2(x2) as the following union:(
Ik1(x1)× Ik2(x2)

)
∪
(
Ik1(x

1)× Ik2(x2)
)
∪
(
Ik1(x1)× Ik2(x

2)
)
.

We set δ := ζ logγ1 (2βm∗)+1. n1 ≤Mφ1(s)/δ yields that

n2 ≤ βα(n1) ≤ βα(Mφ1(s)ζ
− logγ1 (2βm∗)−1)

≤ β
1

γ
logγ1 2βm∗+1

1

α(Mφ1(s)) ≤
α(s)

2m∗
< Mφ2(s).

Moreover, ζ, γ1, γ2 > 1 gives n1 < Mk1 and n2 < Mk2 . In this case the
(k, l)-th Fourier coefficients are zeros for k ≤ n1 and l ≤ n2. More exactly,

f̂(k, l) =

∫
G2

m

f(ψk × ψl) =

∫
Ik1 (x

1)×Ik2(x
2)

f(ψk × ψl) = (ψk × ψl)

∫
Ik1 (x

1)×Ik2 (x
2)

f = 0.

This yields that σnf = 0. That is, we have to suppose that n1 > Mφ1(s)/δ ≥
Mk1−c∗ . From this we write that

n2 ≥
α(n1)

β
≥
α(Mφ1(s)m∗/δm∗)

β
≥ 1

βγ
logζ m∗+logγ1 2βm∗+1

2

α(Mφ1(s)m∗)

≥ α(s)

δ′
≥ Mφ2(s)

δ′
≥Mk2−c∗ .

Now, we discuss the integral
∫
Ik1 (x

1)×Ik2 (x
2)
supn∈L |σnf |.

Now, we decompose the sets Iki(xi) (i = 1, 2) in the usual way. Using the
notation

Ja,b := (Ia(x
1)\Ia+1(x

1))× (Ib(x
2)\Ib+1(x

2))

for a = 0, 1, . . . , k1 − 1, b = 0, 1, . . . , k2 − 1 we have that

Ik1(x1)× Ik2(x2) =
k1−1⋃
a=0

k2−1⋃
b=0

Ja,b.

By Lemma 2.2 (with u1 ∈ Ik1(x
1) = J1) and theorem of Fubini we get that∫

Ja,b

sup
n∈L

|
∫
J1×J2

f(u1, u2)Kn1(y
1, u1)Kn2(y

2, u2)dµ(u1, u2)|dµ(y1, y2)

≤
∫
J1×J2

|f(u1, u2)|
∫
Ja,b

sup
n∈L

|Kn1(y
1, u1)Kn2(y

2, u2)|dµ(y1, y2)dµ(u1, u2)

≤
∫
J1×J2

|f(u1, u2)|
∫
Ja,b

sup
n1≥Mk1−c∗

|Kn1(y
1, u1)|×

× sup
n2≥Mk2−c∗

|Kn2(y
2, u2)|dµ(y1, y2)dµ(u1, u2)

≤ c‖f‖1

√
MaMb

Mk1Mk2
.
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Moreover, we write that

∫
Ik1 (x

1)×Ik2 (x
2)

sup
n∈L

|σnf | ≤
k1−1∑
a=0

k2−1∑
b=0

∫
Ja,b

sup
n∈L

|σnf |

≤ c‖f‖1
k1−1∑
a=0

k2−1∑
b=0

√
MaMb

Mk1Mk2
≤ c‖f‖1.

We discuss the integral
∫
Ik1 (x

1)×Ik2(x
2)
supn∈L |σnf |.

For r ≥ k1 and a fixed x1 ∈ Gm we set an ε := (x10, . . . , x
1
k1−1, εk1 , . . . , εr, x

1
r+1, . . .),

where εi ∈ Gi (i = k1, . . . , r).
Then

Ik1(x
1) =

⋃
εi∈Gi

i=k1,...,r

Ir+1(ε).

For each a = k1, . . . , r, b = 0, 1, . . . , k2 − 1 and an arbitrary ε we define the
sets Ja,b

ε and J b
ε by

Ja,b
ε := (Ia(ε)\Ia+1(ε))×

(
Ib(x

2)\Ib+1(x
2)
)

and

J b
ε := Ir+1(ε)×

(
Ib(x

2)\Ib+1(x
2)
)
.

Then we have the following disjoint decomposition of the set Ik1(x
1)× Ik2(x2):

Ik1(x
1)× Ik2(x2) =

(
r⋃

a=k1

k2−1⋃
b=0

Ja,b
ε

)⋃(
k2−1⋃
b=0

J b
ε

)
.

We introduce the following abbreviation:

SL
r := sup

Mr−c≤n1≤Mr+c
n∈L
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It is easy to see that, cα(Mr) ≤ n2 ≤ Cα(Mr) for n ∈ L and Mr ≤ n1 ≤ cMr.
Theorem of Fubini and the decomposition given above yields that∫

Ik1 (x
1)×Ik2 (x

2)

sup
n∈L

|σnf(y1, y2)|dµ(y1, y2) ≤

≤
∞∑

r=k1

∫
Ik1(x

1)×Ik2 (x
2)

SL
r |
∫
Ik1 (x

1)×Ik2 (x
2)

f(u1, u2)Kn1(y
1, u1)Kn2(y

2, u2)dµ(u1, u2)|dµ(y1, y2)

≤
∞∑

r=k1

∑
ε

∫
Ik1 (x

1)×Ik2 (x
2)

SL
r |
∫
Ir+1(ε)×Ik2 (x

2)

f(u1, u2)Kn1(y
1, u1)Kn2(y

2, u2)dµ(u1, u2)|dµ(y1, y2)

≤
∞∑

r=k1

∑
ε

r∑
a=k1

k2−1∑
b=0

∫
Ja,b
ε

SL
r |
∫
Ir+1(ε)×Ik2 (x

2)

f(u1, u2)Kn1(y
1, u1)Kn2(y

2, u2)dµ(u1, u2)|dµ(y1, y2)

+
∞∑

r=k1

∑
ε

k2−1∑
b=0

∫
Jb
ε

SL
r |
∫
Ir+1(ε)×Ik2 (x

2)

f(u1, u2)Kn1(y
1, u1)Kn2(y

2, u2)dµ(u1, u2)|dµ(y1, y2)

≤
∞∑

r=k1

∑
ε

r∑
a=k1

k2−1∑
b=0

∫
Ir+1(ε)×Ik2 (x

2)

|f(u1, u2)|
∫
Ja,b
ε

sup
Mr−c≤n1

|Kn1(y
1, u1)|×

× sup
cα(Mr)≤n2

|Kn2(y
2, u2)|dµ(y1, y2)dµ(u1, u2)

+
∞∑

r=k1

∑
ε

k2−1∑
b=0

∫
Ir+1(ε)×Ik2 (x

2)

|f(u1, u2)|
∫
Jb
ε

sup
n1≤Mr+c

|Kn1(y
1, u1)|×

× sup
cα(Mr)≤n2

|Kn2(y
2, u2)|dµ(y1, y2)dµ(u1, u2)

=: I + II.

We discuss I. We use Lemma 2.2 and u1 ∈ Ir+1(ε), u
2 ∈ Ik2(x

2). Thus,

I ≤ c‖f‖1
∞∑

r=k1

r∑
a=k1

k2−1∑
b=0

√
MaMb

Mrα(Mr)
≤ c‖f‖1

∞∑
r=k1

√
Mk2

α(Mr)
.

From Lemma 2.2 (with u2 ∈ Ik2(x
2)) and the fact that |Kn| ≤ cn (see [3])

we get that

II ≤ c

∞∑
r=k1

∑
ε

k2−1∑
b=0

∫
Ir+1(ε)×Ik2 (x

2)

|f(u1, u2)|Mr
1

Mr

√
Mb

α(Mr)
dµ(u1, u2)

≤ c‖f‖1
∞∑

r=k1

√
Mk2

α(Mr)
.
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Now, we show that
∑∞

r=k1

√
Mk2

α(Mr)
≤ c. Since, α is strictly monotone in-

creasing we have that α(Mr) ≥ α(Mk12
r−k1). We write for an arbitrary A (we

will give more details about A later)

∞∑
r=k1

√
1

α(Mr)
≤

A−1∑
j=0

∞∑
i=0

√
1

α(Mk12Ai+j)
.

Now, we choose A so big such that the inequality√
α(Mk12Ai+j+A) ≥

√
γ
A logζ 2

1 α(Mk12Ai+j) ≥ 2
√
α(Mk12Ai+j)

holds. (We could choose such an A because γ1, ζ > 1.) From this

∞∑
r=k1

√
1

α(Mr)
≤ c

A−1∑
j=0

√
1

α(Mk12j)
≤ c

√
1

α(Mk1)
.

Mk2 ≤ α(s) and α(Mk1) = α(M|s|) ≥ α(s/m∗) ≥ cα(s) yields that

∞∑
r=k1

√
Mk2

α(Mr)
≤ c

√
Mk2

α(Mk1)
≤ c.

The discussion of the integral
∫
Ik1 (x

1)×Ik2 (x
2)
supn∈L |σnf | follows.

Using the substitutions t = α(s) and s = α−1(t), we write that

I|s|(x1)× I|α(s)|(x
2) = I|α−1(t)|(x1)× I|t|(x

2).

That is

Iφ1(s)(x
1)× Iφ2(s)(x

2) = Iφ̃2(t)
(x1)× Iφ̃1(t)

(x2).

If α is CRF, then α−1 is CRF, too (for more details see [6]). By this∫
Iφ1(s)(x

1)×Iφ2(s)(x
2)

sup
n∈L

|σnf | ≤
∫
Iφ̃2(t)

(x1)×Iφ̃1(t)
(x2)

sup
n∈L̃

|σnf |.

The discussion above gives that∫
Ik1 (x

1)×Ik2 (x
2)

sup
n∈L

|σnf | ≤ c‖f‖1.

The fact that
∫
Gm

|Kn(y, x)|dµ(y) ≤ c for all n ∈ N, x ∈ Gm (see [3]) implies

that the operator σ∗
L is of type (∞,∞). This, inequality (3.2) and Lemma 3.3

give by standard argument our theorem. �
By the interpolation lemma of Marcinkiewicz [11] and the fact that the

operator σ∗
L is sublinear we immediately have the following corollary.

Corollary 3.4. Let α be CRF and L ∈ Nα. Then the operator σ∗
L is of type

(p, p) for all 1 < p ≤ ∞.
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