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PURELY PERIODIC NEAREST SQUARE
CONTINUED FRACTIONS

JOHN P. ROBERTSON

Abstract. We give three sets of conditions to determine whether a real
quadratic surd ξ = (P +

√
D)/Q has a purely periodic nearest square con-

tinued fraction expansion. One set is a few inequalities involving only ξ and
its conjugate ξ = (P −

√
D)/Q. Another set is a few inequalities involving

only P/
√
D and Q/

√
D. A third set of conditions and additional results

are presented.

1. Introduction

The oldest general method for solving Pell equations is the cyclic method,
written about by Bhaskara in 1150 AD, although it seems to have been de-
veloped by even earlier Indian mathematicians [1, p. 602], [2, p. 21], [9, p.
333], [3, pp. 32–34], [8, pp. 22–24]. The nearest square continued fraction
introduced by A. A. K. Ayyangar in 1938 [1, 2] encapsulates one variant of
the cyclic method. Despite its great age, this continued fraction seems to have
been little studied. The nearest square continued fraction is defined in the
next section.

Simple tests have long been known for determining whether a real quadratic
irrational ξ = (P +

√
D)/Q, D > 0 not a square, has a purely periodic regular

continued fraction expansion, or nearest integer continued fraction expansion.
Thus if ξ = (P −

√
D)/Q, then ξ has a purely periodic regular continued

fraction expansion if and only if ξ > 1 and −1 < ξ < 0 [7, pp. 73–74], [3,
Thm. 3.8]. Also ξ has a purely periodic nearest integer continued fraction
expansion if and only if ξ > 2 and (1−

√
5)/2 < ξ ≤ (3−

√
5)/2 [6].

In this paper we derive a test for pure periodicity for the nearest square
continued fraction of A. A. K. Ayyangar [2] which is in the spirit of these
tests. Our starting point is a recent result in [5].
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This characterization is given in the following theorem. Write

φ = (1 +
√
5)/2.

Theorem 1. A real quadratic surd ξ has a purely periodic nearest square
continued fraction expansion if and only if

(i) ξ > φ,
(ii) N(2ξ + 1) ≥ −1,
(iii) If ξ < 2, then N(ξ − 1) < −1,
(iv) If 2 < ξ ≤ φ+ 1, then N(ξ − 1) ≤ −1,
(v) If ξ > φ+ 1, then N(2ξ − 1) < −1.

Here N(η) is the norm of η = (P +
√
D)/Q, i.e., N(η) = ηη where η =

(P −
√
D)/Q is the conjugate of η.

The region Ω given in the theorem is illustrated in Figure 1. The boundaries
are segments of certain hyperbolas. Solid lines along the boundary of the
region indicate that these points are in the region, and dotted lines indicate
points that are not in the region. Exaggerated points are drawn for (ξ, ξ) =
(φ, 1 − φ) ≈ (1.618,−0.618) and (φ + 1, 2 − φ) ≈ (2.618, 0.382) to emphasize
that the former is not in the region, while the latter is in the region.

Figure 1. The region Ω

Another characterization is given in the following corollary.
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Corollary 1. Let ξ = (P+
√
D)/Q be a real quadratic surd. Write x = Q/

√
D

and y = P/
√
D. ξ has a purely periodic nearest square continued fraction if

and only if either

0 < x < 2/
√
5 and − x

2
+

√
1−

(x
2

)2

≤ y <
x

2
+

√
1−

(x
2

)2

, or

2/
√
5 ≤ x < 1 and x−

√
1− x2 < y ≤ x+

√
1− x2.

The region Ψ given in the corollary is graphed in Figure 2. The boundaries
are segments of certain ellipses. Exaggerated points are drawn for (x, y) =
(2/

√
5, 3/

√
5) ≈ (0.894, 1.342) and (2/

√
5, 1/

√
5) ≈ (0.894, 0.447) to empha-

size that the former is in the region, and the latter is not.

Figure 2. The region Ψ

As mentioned, the nearest square continued fraction (NSCF) is defined in
the next section. The proof of Theorem 1 is reduced to a few lemmas in the
second section following, and these lemmas are proved in subsequent sections.
A final section gives additional corollaries.

2. Background on the NSCF

A (non-terminating) semi–regular continued fraction is a continued fraction

a0 +
ε1

a1+

ε2

a2+

ε3

a3+
· · ·
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i 0 1 2 3 4 5 6 7 8 9 10 11 12
Pi 0 9 7 8 3 5 4 5 3 8 7 9 9
Qi 1 16 3 11 8 9 9 8 11 3 16 1 16
ai 9 1 5 1 1 1 1 1 1 5 1 18 1
εi 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 1. The regular continued fraction expansion of
√
97

where the ai are integers, ai > 0 when i > 0, εi = ±1, ai + εi+1 ≥ 1 for i ≥ 1,
and ai + εi+1 ≥ 2 infinitely often [7, p. 139].

Writing

ξi = ai +
εi+1

ai+1+

εi+2

ai+2+

εi+3

ai+3+
· · ·

we have the familiar recurrence relation

ξi = ai +
εi+1

ξi+1

, or ξi+1 =
εi+1

ξi − ai
.

The regular continued fraction (RCF) of an irrational number ξ0 is defined
by taking ai = bξic and εi+1 = 1 for all i ≥ 0.

As previously noted, the nearest square continued fraction was introduced
by A. A. K. Ayyangar in 1938 [1, 2]. Let ξ0 = (P +

√
D)/Q be a surd in

standard form, i.e.,

(i) P , Q 6= 0, and D > 0 are integers, D not a perfect square,
(ii) (P 2 −D)/Q is an integer,
(iii) gcd(P,Q, (D − P 2)/Q) = 1.

Then with c = bξic, the integer part of ξi, we can represent ξi in two ways, the
positive and negative representations of ξi:

ξi = c+
Q′

P ′ +
√
D

= c+ 1− Q′′

P ′′ +
√
D
,

where P ′+
√
D

Q′ > 1 and P ′′+
√
D

Q′′ > 1 are also in standard form. Here P ′ = cQ−P ,

Q′ = (D − P ′ 2)/Q, P ′′ = (c+ 1)Q− P , Q′′ = (P ′′ 2 −D)/Q.
We choose the partial denominator ai and numerator εi+1 of the nearest

square continued fraction expansion as follows:

(i) ai = c and εi+1 = 1 if |Q′| < |Q′′|, or |Q′| = |Q′′| and Q < 0.
(ii) ai = c+ 1 and εi+1 = −1 if |Q′| > |Q′′|, or |Q′| = |Q′′| and Q > 0.

We say the NSCF takes the positive representation of ξi if the NSCF suc-

cessor of ξi is
P ′+

√
D

Q′ and we say the NSCF takes the negative representation

of ξi if the NSCF successor of ξi is
P ′′+

√
D

Q′′ .

Tables 1 and 2 show the first period of the regular and nearest square con-
tinued fractions of

√
97.
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i 0 1 2 3 4 5 6 7
Pi 0 10 11 13 5 11 10 10
Qi 1 3 8 9 8 3 1 3
ai 10 7 3 2 2 7 20 7
εi 1 -1 -1 -1 1 -1 -1 -1

Table 2. The nearest square continued fraction expansion of
√
97

3. Proof of Theorem 1 and Corollary 1

Our proof of Theorem 1 is based on the following theorem from [5]:

Theorem 2. Let ξ = (P +
√
D)/Q be a quadratic surd in standard form and

let R = (D − P 2)/Q. Then ξ has a purely periodic nearest square continued
fraction expansion if and only if

(i) Q2 + 1
4
R2 ≤ D, 1

4
Q2 +R2 ≤ D,

(ii) ξ is the successor of 1/ξ,

(iii) ξ is not of the form
p+q+

√
p2+q2

2q
, p > 2q > 0.

We also need a result by Ayyangar [2, Cor. 1 to Thm. 5]:

Theorem 3. If a real quadratic surd has a purely periodic nearest square con-
tinued fraction, then ξ > φ.

Given these two theorems, Theorem 1 clearly follows from the following
three lemmas:

Lemma 1. ξ > φ satisfies Condition (i) of Theorem 2 if and only if

(i) N(2ξ + 1) ≥ −1,
(ii) If ξ ≤ φ+ 1, then N(ξ − 1) ≤ −1,
(iii) If ξ > φ+ 1, then N(2ξ − 1) ≤ −1.

Lemma 2. If ξ > φ and ξ satisfies Condition (i) of Theorem 2, then ξ is the
successor of 1/ξ except when ξ < 2 and N(ξ − 1) = −1.

Lemma 3. ξ is of the form (p+ q+
√
p2 + q2)/2q with p > 2q > 0 if and only

if ξ > φ+ 1 and N(2ξ − 1) = −1.

The next three sections prove these lemmas, and so complete the proof of
Theorem 1.

Corollary 1 follows from Theorem 1 by considering the birational map x =
2/(ξ−ξ), y = (ξ+ξ)/(ξ−ξ), which has the inverse ξ = (y+1)/x, ξ = (y−1)/x.
For example, the segment φ ≤ ξ ≤ φ+1 on the hyperbola N(ξ−1) = −1 in the
ξ-ξ plane corresponds to the segment x ≥ 2/

√
5 on the ellipse 2x2−2xy+y2 = 1

in the x-y plane.
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4. Proof of Lemma 1

Lemma 1 follows from the following two lemmas:

Lemma 4. ξ > φ satisfies Condition (i) of Theorem 2 if and only if

N(2ξ + 1) ≥ −1, N(ξ − 1) ≤ −1, and N(2ξ − 1) ≤ −1.

Lemma 5.

(i) For φ < ξ < φ+ 1, if N(ξ − 1) ≤ −1, then N(2ξ − 1) < −1.
(ii) For ξ > φ+ 1, if N(2ξ − 1) ≤ −1, then N(ξ − 1) < −1.
(iii) If ξ = φ+ 1, then N(ξ − 1) = N(2ξ − 1) = −1.

Substituting for Q, R, andD in terms of ξ and ξ in the formulas in Condition
(i) of Theorem 2 yields expressions that can be factored, from which the proof
of Lemma 4 is straightforward.

Before getting to that, the following two lemmas are needed:

Lemma 6. Write

H1(ξ) = −1−
1

ξ + 1
,

H2(ξ) =
1

2

(
−1−

1

2ξ + 1

)
,

H3(ξ) =
1

2

(
1−

1

2ξ − 1

)
,

H4(ξ) = 1−
1

ξ − 1
.

Then for ξ > φ,

(i) H1(ξ) < H2(ξ),
(ii) H2(ξ) < H3(ξ),
(iii) If ξ < φ+ 1, then H4(ξ) < H3(ξ),
(iv) If ξ > φ+ 1, then H3(ξ) < H4(ξ),
(v) Each Hi(ξ) is an increasing function of ξ.

Lemma 7. If ξ > 1 then

(i) N(ξ + 1) T −1 if and only if ξ T H1(ξ),

(ii) N(2ξ + 1) T −1 if and only if ξ T H2(ξ),

(iii) N(2ξ − 1) T −1 if and only if ξ T H3(ξ),

(iv) N(ξ − 1) T −1 if and only if ξ T H4(ξ).

The proofs of Lemmas 6 and 7 are straightforward.
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As a final preliminary, ξ = (P +
√
D)/Q and ξ = (P −

√
D)/Q give

(1)
Q√
D

=
2

ξ − ξ
,

P√
D

=
ξ + ξ

ξ − ξ
,

R√
D

=
−2ξξ

ξ − ξ
.

With these preliminaries we turn to the proof of Lemma 4. Write

(2) F =
1

4

(
Q√
D

)2

+

(
R√
D

)2

− 1.

Substituting into Equation (2) in terms of ξ and ξ we get

F =
1

4

(
2

ξ − ξ

)2

+

(
−2ξξ

ξ − ξ

)2

− 1

=
((2ξ + 1)(2ξ + 1) + 1)((2ξ − 1)(2ξ − 1) + 1)

4(ξ − ξ)2

=
(N(2ξ + 1) + 1)(N(2ξ − 1) + 1)

4(ξ − ξ)2
.

(3)

By Equation (2), the surd ξ satisfies the second part of Condition (i) of The-
orem 2 if and only if F ≤ 0. By Equation (3), because 4(ξ − ξ)2 > 0, F ≤ 0 is
equivalent to

(N(2ξ + 1) + 1)(N(2ξ − 1) + 1) ≤ 0.

This holds if and only if either

(4) N(2ξ + 1) ≤ −1 and N(2ξ − 1) ≥ −1, or

(5) N(2ξ + 1) ≥ −1 and N(2ξ − 1) ≤ −1.

We show that if ξ > φ then ξ cannot satisfy both conditions in Equation
(4). Assume that N(2ξ+1) ≤ −1. By Lemma 7(ii), for ξ > φ, N(2ξ+1) ≤ −1
implies that ξ ≤ H2(ξ). By Lemma 6(ii), H2(ξ) < H3(ξ), so ξ < H3(ξ).
Lemma 7(iii) gives N(2 ξ − 1) < −1. We conclude that ξ satisfies the second
part of Condition (i) of Theorem 2 if and only ξ satisfies Equation (5).

Similarly, using the first part of Condition (i) of Theorem 2 we have either

N(ξ + 1) ≤ −1 and N(ξ − 1) ≥ −1, or

(6) N(ξ + 1) ≥ −1 and N(ξ − 1) ≤ −1.

From Equation (5) we have N(2ξ + 1) ≥ −1, which for ξ > φ implies that
ξ ≥ H2(ξ). By Lemma 6(i), H2(ξ) > H1(ξ), so N(ξ + 1) > −1. This says
that ξ > φ satisfies the first part of Condition (i) of Theorem 2 if and only if
ξ satisfies Equation (6).

As such, ξ > φ satisfies Condition (i) of Theorem 2 if and only if

N(2ξ + 1) ≥ −1, N(2ξ − 1) ≤ −1, N(ξ + 1) > −1, and N(ξ − 1) ≤ −1.
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Because, for ξ > φ, N(2ξ + 1) ≥ −1 already implies that N(ξ + 1) > −1, ξ
satisfies Condition (i) of Theorem 2 if and only if

N(2ξ + 1) ≥ −1, N(2ξ − 1) ≤ −1, and N(ξ − 1) ≤ −1.

This establishes Lemma 4.
We turn to the proof of Lemma 5. For Condition (i), if N(ξ − 1) ≤ −1

then ξ ≤ H4(ξ). But H4(ξ) < H3(ξ), so ξ < H3(ξ), which implies that
N(2ξ − 1) < −1.

For Condition (ii), ξ > φ+ 1 gives H3(ξ) < H4(ξ).
Finally, direct calculation establishes Condition (iii).

5. Proof of Lemma 2

We begin with a lemma.

Lemma 8. For η = (P +
√
D)/Q, if 0 < η < 1, then the successor of η is

1/η if |N(η)| < |N(1 − η)| or Q < 0 and |N(η)| = |N(1 − η)|; otherwise the
successor of η is 1/(1− η) 6= 1/η.

Proof. It suffices to show that the NSCF takes the positive representation when
|N(η)| < |N(1− η)| or Q < 0 and |N(η)| = |N(1− η)|, and that otherwise the
NSCF takes the negative representation.

Because 0 < η < 1, c = bηc = 0, so P ′ = −P , Q′ = (D−P 2)/Q, P ′′ = Q−P ,
and Q′′ = ((Q− P )2 −D)/Q.

Then

N(η) =
P 2 −D

Q2
=

−Q′

Q
,

and

N(1− η) =
(Q− P )2 −D

Q2
=

Q′′

Q
.

The lemma follows. �

If ξ = (P +
√
D)/Q > φ then 1/ξ = (−P +

√
D)/R where R = (D−P 2)/Q,

and 0 < 1/ξ < 1. Applying Lemma 8 to 1/ξ, to determine whether ξ is the
successor of 1/ξ it suffices to determine whether |N(1/ξ)| < |N(1 − 1/ξ)| or
R < 0 and |N(1/ξ)| = |N(1− 1/ξ)|.

But, |N(1/ξ)| < |N(1 − 1/ξ)| if and only if 1 = |N(1)| < |N(ξ − 1)|.
Similarly, |N(1/ξ)| = |N(1− 1/ξ)| if and only if 1 = |N(ξ − 1)|.

From Lemma 4(ii) we know that if ξ satisfies Condition (i) of Theorem 2
then N(ξ − 1) ≤ −1 so |N(ξ − 1)| ≥ 1.

So ξ is the successor of 1/ξ except when |N(ξ − 1)| = 1 and R > 0.
Now |N(ξ−1)| = 1 if and only ifN(ξ−1) = 1 orN(ξ−1) = −1. By Lemma 1

if ξ > φ and ξ satisfies Condition (i) of Theorem 2, then N(ξ − 1) ≤ −1, so
we cannot have N(ξ − 1) = 1.
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If N(ξ − 1) = −1, then ξ = 1− 1/(ξ − 1), so

R =
−2 ξ ξ

ξ − ξ
=

−2 ξ (ξ − 2)

(ξ − 1)2 + 1

and R > 0 when φ < ξ < 2, and R < 0 when ξ > 2.

6. Proof of Lemma 3

If ξ = (p+ q +
√
p2 + q2)/2q then 2ξ − 1 = (p+

√
p2 + q2)/q and

N(2ξ − 1) = −1.

If, in addition, if p > 2q > 0, then

p+ q +
√

p2 + q2

2q
>

3q +
√

5q2

2q
=

3 +
√
5

2
= φ+ 1.

If ξ > φ and N(2ξ − 1) = −1 then ξ = H3(ξ) < 1/2 < ξ. In particular,

ξ − ξ > 0, so Q = 2
√
D/(ξ − ξ) > 0.

If N(2ξ − 1) = −1 then 2ξξ − ξ − ξ + 1 = 0. With ξ = (P +
√
D)/Q we get

(7) 2P 2 − 2PQ+Q2 = 2D,

so Q is even.
Write Q = 2q > 0 and P = p + q. From Equation (7) we have 2(p + q)2 −

2(p+ q)(2q) + 4q2 = 2D giving D = p2 + q2.
Next suppose

(8) ξ =
p+ q +

√
p2 + q2

2q
> φ+ 1

with q > 0. We now show that p > 2q. First we show that p ≥ 0. If p < 0 (so
|p| = −p), then

p+ q +
√
p2 + q2

2q
<

p+ q + |p|+ q

2q
= 1 < φ+ 1,

a contradiction.
Now, if 0 ≤ p ≤ 2q then

p+ q +
√

p2 + q2

2q
≤

2q + q +
√
4q2 + q2

2q
= φ+ 1.

contradicting (8). This completes the proof that p > 2q > 0.
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7. Additional comments

Keith Matthews [4] points out that the following characterization is equiv-
alent to Theorem 1 and avoids the “≤” and “≥.”

Theorem 4. A real quadratic surd ξ has a purely periodic NSCF expansion if
and only if either

(a) ξ has one of the forms

(i) ξ = (p+ q +
√
p2 + q2)/q, q ≥ 2p > 0,

(ii) ξ = (p− q +
√

p2 + q2)/2q, p > 2q > 0,

or

(b) (i) ξ > φ,
(ii) N(2ξ + 1) > −1,
(iii) N(2ξ − 1) < −1,
(iv) N(ξ − 1) < −1.

We finish with a few corollaries of Theorem 1. The first gives two conditions
ξ must satisfy if it has a purely periodic NSCF expansion.

Corollary 2. If ξ has a purely periodic NSCF expansion, then

(i) 1− φ < ξ < 1/2,
(ii) ξ − ξ > 2.

Proof. For (i), by Theorem 1, N(2ξ + 1) ≥ −1, so for ξ > φ, ξ ≥ H2(ξ). But
ξ > φ implies that H2(ξ) > H2(φ) = 1− φ.

By Theorem 2 and Lemma 4, N(2ξ − 1) ≤ −1, so ξ ≤ H3(ξ) < 1/2.
For (ii), we have ξ > φ > 1/2 > ξ, so ξ − ξ > 0. From Equation (1), we get

Q > 0.
From Condition (i) of Theorem 2, Q2 + 1

4
R2 ≤ D, and R 6= 0, so |Q| <

√
D.

Because Q > 0, in fact

(9) 0 < Q <
√
D,

or 0 < Q/
√
D < 1. Using (1) again establishes that ξ − ξ > 2. �

There are ξ that satisfy the conclusions of both Theorem 3 and Corollary 2
that do not have purely periodic NSCF expansions, such as (15 +

√
126)/11,

(18 +
√
212)/7, (10 +

√
198)/7, (8 +

√
181)/13, and (301 +

√
80661)/284. But

there are partial converses to the combination of Theorem 3 and Corollary 2,
such as

Corollary 3. If ξ ≥ φ+1 and −1/2 < ξ ≤ 2−φ, then ξ has a purely periodic
NSCF expansion.

Proof. For ξ > φ+1 it suffices to show thatN(2ξ+1) > −1 andN(2ξ−1) < −1.
First, ξ > −1/2 implies that 2ξ + 1 > 0, and so N(2ξ + 1) > 0 > −1.
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Second, ξ ≤ 2 − φ implies that 2ξ − 1 ≤ 3 − 2φ < 0. When ξ > φ + 1 we
have 2ξ − 1 > 2φ + 1 > 0 and so N(2ξ − 1) < (2φ + 1)(3 − 2φ) = −1. So if
ξ > φ+1 and −1/2 < ξ ≤ 2−φ then ξ has a purely periodic NSCF expansion.

Finally, ξ = φ+ 1 has a purely periodic NSCF expansion. �

If ξ = (P +
√
D)/Q has a purely periodic RCF expansion, then 0 < Q ≤

2b
√
Dc, and 0 < P <

√
D [7, p. 68]. Similarly, for the NSCF we have

Corollary 4. If ξ = (P +
√
D)/Q has a purely periodic NSCF expansion, then

(i) 0 < Q <
√
D,

(ii)
√

D/5 < P ≤ 3
√
D/5.

Proof. Figure 2 illustrates this.
Part (i) is Equation (9), in the proof of Corollary 2.

Now we show that P >
√
D/5. From Corollary 2 we have ξ > 1 − φ, so

φξ > φ(1− φ) ≥ ξ(1− φ). Then φξ + φξ > ξ, (2φ− 1)ξ + (2φ− 1)ξ > ξ − ξ,
and

P
√
D

=
ξ + ξ

ξ − ξ
>

1

2φ− 1
=

1
√
5
.

Now we show that P ≤ 3
√

D/5. It suffices to establish that

(10) ξ ≤ (2− φ)2ξ

because multiplying both sides of Equation (10) by 2(φ+1) (and noticing that
(φ+ 1)(2− φ) = 1) gives ξ(2φ+ 2) ≤ ξ(4− 2φ), which gives

(ξ + ξ)(2φ− 1) ≤ 3(ξ − ξ)

or
P
√
D

=
ξ + ξ

ξ − ξ
≤

3
√
5
.

Assume first that φ < ξ < φ+ 1. Then

(2− φ)2ξ −H4(ξ) =
(2− φ)2

ξ − 1
(2(φ+ 1)− 2ξ)(2(φ+ 1)− ξ) > 0

so (2− φ)2ξ > H4(ξ) ≥ ξ, where the last inequality is from Lemma 7.
Now assume ξ ≥ φ+ 1. Then

(2− φ)2ξ −H3(ξ) =
2 (2− φ)2

2ξ − 1
(2ξ − (φ+ 1))(ξ − (φ+ 1)) ≥ 0

so (2− φ)2ξ ≥ H3(ξ) ≥ ξ. �
The following lemma will be useful in the proof of Corollary 5.

Lemma 9. For k a nonzero integer and ξ a quadratic surd, at most one of ξ
and ξ + k has a purely periodic NSCF expansion.
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Proof. First we claim that ξ and ξ + k have the same NSCF successor. If the
positive and negative representations of ξ are

ξ = c+
Q′

P ′ +
√
D

= c+ 1− Q′′

P ′′ +
√
D
,

then the positive and negative representations of ξ + k are

ξ + k = c+ k +
Q′

P ′ +
√
D

= c+ k + 1− Q′′

P ′′ +
√
D
,

and the claim follows.
Corollary 1 to Theorem X in [2] states that two different reduced surds

cannot have the same successor. A surd is reduced if and only if it has a purely
periodic NSCF expansion (see [2, Thm. XI] and the immediately preceding
comments). Because ξ and ξ + k have the same NSCF successor, at most one
can have a purely periodic NSCF expansion. �

The final corollary explores relations between surds with purely periodic
RCF expansions and those with purely periodic NSCF expansions.

Corollary 5. (i) If ξ has a purely periodic NSCF expansion, then exactly
one of ξ or ξ − 1 has a purely periodic RCF expansion.

(ii) If ξ has a purely periodic RCF expansion, then ξ or ξ + 1 has a purely
periodic NSCF expansion if and only if either N(ξ − 1) < −1 or N(ξ) ≤
−1.

(iii) If ξ > 2 has a purely periodic RCF expansion, then either ξ or ξ + 1 has
a purely periodic NSCF expansion.

If ξ < 2 has purely periodic RCF expansion it might be that one of or neither
of ξ or ξ + 1 has a purely periodic NSCF expansion. Each of the following
three surds 1 < ξ < 2 has a purely periodic RCF expansion: (11 +

√
133)/12,

(5+
√
43)/6, (3+

√
93)/7. For the first, neither ξ nor ξ+1 has a purely periodic

NSCF expansion; for the second ξ has a purely periodic NSCF expansion, and
for the third ξ + 1 has a purely periodic NSCF expansion.

Now we prove Corollary 5.

Proof. ξ has a purely periodic RCF expansion if and only if ξ > 1 and −1 <
ξ < 0 [7, pp. 73–74], [3, Thm. 3.8].

Item (i) is Lemma 6.2 in [6]. The proof is short, so we give it here. From
Theorem 3 we have ξ > 1, and from Corollary 2 we have −1 < 1−φ < ξ < 1/2.
If ξ < 0, then ξ has a purely periodic RCF expansion.

Now assume ξ > 0. Because ξ < 1/2, −1 < ξ − 1 = ξ − 1 < −1/2 < 0.
Also, ξ > 0 and Corollary 2(ii) give ξ > 2, so ξ − 1 > 1.

Lemma 9 gives that not both ξ and ξ − 1 have purely periodic NSCF ex-
pansions.

Now we prove (ii). If ξ < 2 has a purely periodic NSCF expansion, then
N(ξ − 1) < −1 by Theorem 1(iii). If ξ > 2 has a purely periodic NSCF
expansion, then ξ − 1 > 1 and ξ − 1 < −1 so N(ξ − 1) < −1.
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Now suppose that ξ+1 has a purely periodic NSCF expansion. Then, using
Lemma 4(ii), N(ξ) = N(ξ + 1− 1) ≤ −1.

The following sub-cases finish the proof of (ii); here “p.p. NSCF” denotes a
purely periodic NSCF expansion.

I. If N(ξ) ≤ −1 and
A. ξ ≤ φ then ξ + 1 has a p.p. NSCF.
B. ξ > φ and N(2ξ + 1) < −1 then ξ + 1 has a p.p. NSCF.
C. ξ > φ and N(2ξ + 1) ≥ −1 then ξ has a p.p. NSCF.

II. If N(ξ − 1) < −1 and
A. N(2ξ + 1) < −1 then ξ + 1 has a p.p. NSCF.
B. N(2ξ + 1) ≥ −1 then ξ has a p.p. NSCF.

As an example, we prove I.B. Let η = ξ+1. We show that η satisfies Theorem 1.
From ξ > φ we have η > φ+1, and in particular, η satisfies Theorem 1(i). From
ξ > −1 we have η > 0. Combined with η > φ+1 we have N(2η+1) > 0 > −1,
giving Theorem 1(ii). Finally, N(2η − 1) = N(2ξ + 1) < −1, so η satisfies
Theorem 1(v).

The other sub-cases are proved in an equally straightforward way.
For (iii), ξ > 2 and ξ < 0 imply that N(ξ − 1) < −1, and the result follows

from (ii). �
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