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ON THE PARALLEL DISPLACEMENT AND PARALLEL

VECTOR FIELDS IN FINSLER GEOMETRY

TETSUYA NAGANO

This paper is dedicated to Professor Masao Hashiguchi on the occasion of his 80-th birthday

Abstract. In Finsler geometry, the notion of parallel for Finsler tensor
fields is defined, already. In this paper, however, for vector fields on a base
manifold, the author studies the notion of parallel. In the last section, the
obtained results are shown as compare corresponding properties to them
of Riemannian geometry.

Introduction

The author gave the definition (1.1) of the parallel displacement along a curve
in [7] and explained the geometrical meaning by HTM(the horizontal subbundle
of TTM) in it. Further, the author proved that the inverse vector field was
parallel along the inverse curve under some conditions, in addition, that the
inner product of two parallel vector fields was preserved along a path. Next,the
notion of the autoparallel curves was stated and, last, the author formulated the
notion of the geodesics by using the Cartan Finsler connection and the notions
of the path and autoparallel curves.

In this paper, the author studies the notion of parallel displacement for vector
fields on a base manifold. The notion of parallel for Finsler tensor fields is
already defined([3],[5],[6]) as same as done the notion of parallel displacement
along curves([2],[1]). However, the study in detail of parallel vector field on the
base manifold are not done, the author thinks so. As the first step of the study
in detail, the author investigates the geometrical meaning of parallel in HTM

(Proposition 3.1) and from the obtained results the author have the conditions
for Finsler connections (Theorem 3.1). Lastly, in Riemannian geometry, parallel
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vector fields have the special properties, for examples, “be parallel along any
curve” and “its norm is constant on the base manifold”. So the author checks
the above two properties for the ”parallel vector field” in Finsler geometry and
investigates being parallel along curves under our definition (1.1) of the parallel
displacement in particular.

The terminology and notations are referred to the books [4] and [5]. The
author is given very useful suggestions by Prof. T. Aikou and Prof. M. Hashiguchi
frequently, and greatly appreciates their kindness.

1. The definition of the parallel displacement along a curve

Firstly, we put the terminology and notations used in this paper. Let M

be an n-dimensional differentiable manifold and TM its tangent bundle, and let
(N i

j , F
i
jr , C

i
jr) be a Finsler connection( or the coefficients of a Finsler connection).

Further let F (x, y) be a Finsler fundamental function and gij(x, y) = 1
2

∂2F 2

∂yi∂yj

the Finsler metric.
Now, for a vector field along a curve c, we put the definition of the parallel

displacement along c. It is as follows

Definition 1.1. For a curve c = (ci(t)) (a ≤ t ≤ b) and a vector field v = (vi(t))
along c, if the equations

(1.1)
dvi

dt
+ vjF i

jr(c, ċ)ċ
r = 0 (ċr =

dcr

dt
)

are satisfied, then v is said to be parallel along c, and we call the map v(a) → v(b)
the parallel displacement along c.

Let set the state as the curve c = (ci(t)) (a ≤ t ≤ b) passes through two
points p = c(a), q = c(b) on M , and we assume that the vector field v = (vi(t))
is parallel along c and A = (Ai) = v(a), B = (Bi) = v(b). Then we have another
curve c−1 and vector field v−1 as follows

c−1(τ) = (c−1i(τ)), where c−1i(τ) = ci(−τ + a + b),(1.2)

v−1(τ) = (v−1i(τ)), where v−1i(τ) = vi(−τ + a + b)(1.3)

and t = −τ + a + b, a ≤ τ ≤ b. Then c−1(a) = c(b) = q, c−1(b) = c(a) =
p and v−1(a) = v(b) = B, v−1(b) = v(a) = A.

We have the following theorem, for the inverse curve c−1 and vector field v−1,

Theorem 1.1. For any differentiable curve c(t). Let v(t) be parallel vector field
along the curve c(t). Then the vector field v−1 is parallel along the curve c−1 if
and only if

(1.4) F i
0j(x, y) + F i

0j(x,−y) = 0

is satisfied, where (N i
j , F

i
jr , C

i
jr) is a Finsler connection satisfying F i

jr(x, y) =

F i
rj(x, y).
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Now, let HTM be the subbundle of the bundle TTM . HTM is the collection
of horizontal vectors at every point (x, y) on the tangent bundle TM , namely

(1.5) HTM =
⋃

(x,y)∈TM

{

ziδi ∈ T(x,y)TM
∣

∣ zi ∈ R
}

,

where δi = ∂
∂xi −N r

i
∂

∂yr is the horizontal basis of T(x,y)TM . We put a local co-

ordinate system (xi, yi, zi) of HTM . This system have the coordinate transfor-
mation (xi, yi, zi) −→ (x̄a, ȳa, z̄a) attended with the coordinate transformation
(xi) −→ (x̄a) of the base manifold M , where

(1.6)



















x̄a = x̄a(x)

ȳa = yj ∂x̄a

∂xj

z̄a = zj ∂x̄a

∂xj
.

Then we can take the derivative operator with respect to xi

(1.7)
δ

δxi
=

∂

∂xi
− N r

i

∂

∂yr
− F r

i

∂

∂zr
,

where F i
j = zrF i

rj(x, y).

Next, let c = (ci(t)) be a curve on M and v = (vi(t)) a vector field along c.

We take the lift c̃ = (ci, ċi, vi) to HTM and the tangent vector
dc̃

dt
of c̃ is written

in

dc̃

dt
=

dci

dt

∂

∂xi
+

dċi

dt

∂

∂yi
+

dvi

dt

∂

∂zi

= ċi δ

δxi
+

(

dċi

dt
+ N i

r(c, ċ)ċ
r

)

∂

∂yi
+

(

dvi

dt
+ vjF i

jr(c, ċ)ċ
r

)

∂

∂zi
.

(1.8)

Therefore Definition 1.1 means that the lift c̃ is a horizontal curve in HTM .
So we have

Theorem 1.2. If a vector field v = (vi(t)) along the curve c = (ci(t)) is parallel
along c, then the lift c̃ = (c, ċ, v) to HTM is a horizontal curve in HTM . The
inverse property is also true.

2. Paths and Autoparallel curves

First, we treat paths on M ([4]). It is the curve c = (ci(t)) satisfying

(2.1)
dċi

dt
+ N i

r(c, ċ)ċ
r = 0.

In other words, the canonical lift (c, ċ) to TM is a horizontal curve in TM .
Then we have the following theorem.
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Theorem 2.1. The inverse curve c−1 of any path c is also a path if and only
if N i

j(x,−y) = −N i
j(x, y) satisfies.

Next, we consider a Finsler space (M, F (x, y)) with a Finsler connection
(N i

j , F
i
jr , C

i
jr). We assume the curve c = (ci(t)) is a path, namely, satisfies

(2.1) and two vector fields v = (vi(t)), u = (ui(t)) are parallel along c. Then
the ”inner product” gij(c, ċ)v

iuj satisfies

d

dt
(gij(c, ċ)v

iuj) =
∂gij

∂xr
ċrviuj +

∂gij

∂yr

dċr

dt
viuj + gij

dvi

dt
uj + gijv

i duj

dt

=

(

δgij

δxr
− gkjF

k
ir − gikF k

jr

)

ċrviuj = gij|r(c, ċ)v
iuj ċr.

(2.2)

Hence if gij|r = 0, then gij(c, ċ)v
iuj is constant on c.

Inversely, we assume that the inner product gij(c, ċ)v
iuj is preserved on the

curve c = (ci(t)). Then we have the following calculations

d

dt
(gij(c, ċ)v

iuj) =
∂gij

∂yr
viuj

(

dċr

dt
+ N r

k (c, ċ)ċk

)

≡ 0.(2.3)

The vector fields v, u are arbitrarily. So we have

(2.4)
∂gij(c, ċ)

∂yr

(

dċr

dt
+ N r

k (c, ċ)ċk

)

= 0.

Obviously, on the curve c satisfying (2.4), the inner product of the parallel vector
fields v and u are preserved. So we have

Theorem 2.2. Let (M, F (x, y)) be a Finsler space with a Finsler connection
(N i

j , F
i
jr , C

i
jr) satisfying h-metrical gij|r = 0 and v = (vi(t)), u = (ui(t)) vector

fields parallel along the curve c = (ci(t)). Then the inner product gij(c, ċ)v
iuj is

preserved on c if and only if the equation (2.4) is satisfied.

Furthermore if N i
j(x, y) + N i

j(x,−y) = 0, T i
jk(x, y) = 0 and F i

0j(x, y) +

F i
0j(x,−y) = 0 are satisfied, then according to Theorem 1.1 we have

Theorem 2.3. For a Finsler space (M, F (x, y)) with a Finsler connection
(N i

j , F
i
jr , C

i
jr) satisfying h-metrical gij|r = 0, if the curve c = (ci(t)) is a path and

vector fields v = (vi(t)), u = (ui(t)) are parallel along c, then the inner products
gij(c, ċ)v

iuj and gij(c
−1, ċ−1)v−1iu−1j are preserved on c and c−1, respectively.

Last, let’s define the autoparallel curve. It is as follows

Definition 2.1. If the canonical lift (c, ċ, ċ) to HTM is horizontal of HTM ,
then we call c an autoparallel curve.

By the above definition, autoparallel curves c satisfy

(2.5)
dċi

dt
+ F i

jr(c, ċ)ċ
j ċr = 0.
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In addition we consider the geodesics from the viewpoint of the parallel dis-

placement. It is well known that for the Cartan connection (
c

N i
j ,

c

F i
jr ,

c

Ci
jr) the

equations of the geodesic c(t) are written

(2.6)
d2ci

dt2
+

c

N i
j(c, ċ)

dcj

dt
= 0 ( or

d2ci

dt2
+

c

F i
rj(c, ċ)

dcr

dt

dcj

dt
= 0).

This means that the geodesic is path and autoparallel curve, from
c

N i
j =

c

F i
0j .

3. Parallel vector fields

In Riemannian geometry, when the equations

(3.1)
∂vi(x)

∂xj
+ Γi

rj(x)vr(x) = 0

are satisfied, we call v(x) the parallel vector field, where Γi
jk(x) are the coef-

ficients of the Riemannian connection. We want the notion of parallel vector
fields in Finsler geometry.

According to Section 1 and 2, we treat the lift ṽ = (x, v, v) to HTM and
calculate the differential with respect to xi as follows

∂ṽ

∂xi
= δr

i

∂

∂xr
+

∂vr

∂xi

∂

∂yr
+

∂vr

∂xi

∂

∂zr

=
∂

∂xi
+

∂vr

∂xi

∂

∂yr
+

∂vr

∂xi

∂

∂zr

=

(

δ

δxi
+ N r

i

∂

∂yr
+ F r

i

∂

∂zr

)

+
∂vr

∂xi

∂

∂yr
+

∂vr

∂xi

∂

∂zr

=
δ

δxi
+

(

∂vr

∂xi
+ N r

i

)

∂

∂yr
+

(

∂vr

∂xi
+ F r

i

)

∂

∂zr

=
δ

δxi
+

(

∂vr

∂xi
+ N r

i (x, v)

)

∂

∂yr
+

(

∂vr

∂xi
+ F r

ji(x, v)vj

)

∂

∂zr
.

(3.2)

So we consider the tangential case of
∂ṽ

∂xi
, namely, we assume that v(x) satisfies

∂vr

∂xi
+ N r

i (x, v) = 0(3.3)

∂vr

∂xi
+ F r

ji(x, v)vj = 0.(3.4)

From (3.2) if the vector field v(x) on M satisfies (3.3) and (3.4), then the lift ṽ

on HTM is tangential to the n-dimensional subspace spanned by
δ

δxi
. So we

have
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Proposition 3.1. Let M be an n-dimensional differential manifold and
(N i

j , F
i
jr , C

i
jr) a Finsler connection. For a vector field v(x) on M , the

lift ṽ = (x, v, v) on HTM is tangential to the n-dimensional subspace
{

∑

i λi

δ

δxi

∣

∣

∣
λi ∈ R, i = 1, 2, · · · , n

}

at every point (x, v, v) if and only if v sat-

isfies (3.3) and (3.4).

Next we study the conditions in order for the vector field satisfying (3.3) and
(3.4) to exist in locally at every point (x, y) ∈ TM .

First of all, we must have the necessary condition as follows

(3.5) Di
j(x, v) = 0

because of ∂vr

∂xi = −N r
i (x, v) = −F r

ji(x, v)vj and Di
j(x, v) = F i

0j(x, v)−N i
j(x, v).

Next, by the integrability conditions
∂2vi

∂xj∂xk
=

∂2vi

∂xk∂xj
of (3.3), the equation

(3.6) Ri
jk(x, v) = 0

are satisfied because that

∂2vi

∂xj∂xk
= −

∂N i
j

∂xk
−

∂N i
j

∂yr

∂vr

∂xk
= −

∂N i
j

∂xk
+

∂N i
j

∂yr
N r

k

= −

(

∂N i
j

∂xk
− N r

k

∂N i
j

∂yr

)

= −
δN i

j

δxk

(3.7)

and

∂2vi

∂xk∂xj
= −

δN i
k

δxj
,(3.8)

so we have

(3.9) Ri
jk(x, v) =

δN i
j

δxk
−

δN i
k

δxj
= 0.

Furthermore by the integrability conditions
∂2vi

∂xj∂xk
=

∂2vi

∂xk∂xj
of (3.4), the

equation

(3.10) Ri
0jk(x, v) = 0



ON THE PARALLEL DISPLACEMENT AND PARALLEL VECTOR FIELDS. . . 355

are satisfied because that

∂2vi

∂xj∂xk
= −

∂(F i
rjv

r)

∂xk
= −

∂F i
rj

∂xk
vr − F i

rj

∂vr

∂xk

= −

(

∂F i
rj

∂xk
+

∂F i
rj

∂ym

∂vm

∂xk

)

vr + F i
rjF

r
mkvm

= −

(

∂F i
rj

∂xk
−

∂F i
rj

∂ym
Nm

k

)

vr + F i
rjF

r
mkvm

= −
δF i

rj

δxk
vr + F i

rjF
r
mkvm = −

(

δF i
rj

δxk
− F i

mjF
m
rk

)

vr

(3.11)

and

∂2vi

∂xk∂xj
= −

(

δF i
rk

δxj
− F i

mkFm
rj

)

vr,(3.12)

so we have

(3.13)

(

δF i
rj

δxk
−

δF i
rk

δxj
+ F i

mkFm
rj − F i

mjF
m
rk

)

vr = 0.

From (3.6), (3.13) and Ri
rjk =

δF i
rj

δxk
−

δF i
rk

δxj
+ F i

mkFm
rj − F i

mjF
m
rk + Ci

rmRm
jk, we

have (3.10).

At last we have the conditions that there exist a vector field v(x) with initial
value v(x0) = y0 satisfying (3.3) and (3.4). Of course, the solutions of the
differential equations (3.3) or (3.4) are locally. So we have

Theorem 3.1. For any point x0 ∈ M and any direction y0 at x0, there ex-
ists an neighborhood U of x0 and on U the vector field v(x) with the initial
value v(x0) = y0 satisfies (3.3) and (3.4) if and only if the Finsler connection
(N i

j(x, y), F i
jr(x, y), Ci

jr(x, y)) satisfies

Di
j(x, y) = 0, (for the deflection tensor)(3.14)

Ri
jk(x, y) = 0, (for the R1 torsion tensor)(3.15)

Ri
0jk(x, y) = 0 (for the R2 curvature tensor).(3.16)

Now, in Riemannian geometry, if a vector field v(x) on M satisfies (3.1),
namely, parallel vector field, then v(x) have the following properties

(1) v is parallel along any curve c,
(2) the norm ‖v‖ is constant on M .

So, for the vector field v(x) stated in Theorem 3.1, we investigate the above two
properties.
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First of all, we consider the curve c(t) = (ci(t)) as the solution of the following
differential equation

(3.17)
dci

dt
= vi(c(t)).

Then the restriction v|c = v(c(t)) satisfies
dvi|c
dt

=
∂vi

∂xr

dcr

dt
= −F i

jr(c, v|c)v
j |cċ

r

from (3.4). Further, from ċ = v|c, we have

(3.18)
dvi|c
dt

+ vj |cF
i
jr(c, ċ)ċ

r = 0.

Thus, according to Definition 1.1, we may call v parallel along the curve c.

Next the solution c(t) of (3.17) satisfies
dċi

dt
=

∂vi

∂xr

dcr

dt
= −N i

r(c, v|c)ċ
r from

(3.3). Thus we have

(3.19)
dċi

dt
+ N i

r(c, ċ)ċ
r = 0.

By the definition (2.1), the flow c of v(x) is a path.
Therefore let (M, F ) be a Finsler space with a Finsler connection satisfying

(3.14), (3.15), (3.16) and gij|k(x, y) = 0. According to Theorem 2.2, the inner

product ‖v‖2 = gij(c, ċ)v
ivj is constant on the path c that is the solution of

(3.17). This means the norm ‖v‖ is constant on c. Thus we have

Theorem 3.2. Let (M, F ) be a Finsler space with a Finsler connection satisfy-
ing (3.14), (3.15), (3.16) and gij|k = 0. Then, at every point x(∈ M), there are
an neighborhood U of x, a local vector field v and a certain path on U , and the
following properties are satisfied on U

(1) v is parallel along c,
(2) the norm ‖v‖ is constant on c.

Remark 3.1. We notice the interesting similarity when we compare the notions
of geodesics and parallel vector fields with the ones of Riemannian geometry, see
Table 1.

For the metrical properties (inner product, geodesic, norm), we need not only
the horizontal property of HTM , but also the one of TM . We may define
the notion of parallel vector fields on M in Finsler geometry. It is Proposition
3.1, namely, if the lift ṽ = (x, v, v) to HTM is tangential to the n-dimensional
subspace spanned by δ

δxi , then we call v the parallel vector field on M .
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Riemannian space (M, g) Finsler space (M, F )

(I) v is parallel along c

• dvi

dt
+ vjΓi

jr(c)ċ
r = 0 • dvi

dt
+ vjF i

jr(c, ċ)ċ
r = 0

(c, v) is horizontal of TM (c, ċ, v) is horizontal of HTM

(II) the inner product

• it is constant on c • (c, ċ) is horizontal of TM

if c is a path, it is constant on c

(III) c is a geodesic

• (c, ċ) is horizontal of TM • (c, ċ) is horizontal of TM

c is an autoparallel curve c is a path
• (c, ċ, ċ) is horizontal of HTM

c is an autoparallel curve

(IV) v is a parallel vector field

• ∂vi(x)
∂xj + Γi

rj(x)vr(x) = 0 • ∂vr

∂xi + F r
ji(x, v)vj = 0

(x, v) is horizontal of TM (x, v, v) is horizontal of HTM

• v is parallel along any c • v is parallel along the curve c

that is the solution of (3.17)

• the norm ‖v‖ is constant • ∂vr

∂xi + N r
i (x, v) = 0

on M if (x, v) is horizontal of TM ,
the norm ‖v‖ is constant on c

Table 1
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