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ALMOST GEODESIC MAPPINGS ONTO GENERALIZED

RICCI-SYMMETRIC MANIFOLDS

VOLODYMYR BEREZOVSKY, JOSEF MIKEŠ, AND ALENA VANŽUROVÁ

Abstract. Our aim is to continue investigations concerning existence of
almost geodesic mappings of manifolds with linear connection. We deduce
necessary and sufficient conditions for existence of the so-called canonical
almost geodesic mappings of type π of a manifold endowed with a linear
connection onto generalized Ricci-symmetric manifolds. Our result is a
generalization of some previous results by N. S. Sinyukov.

1. Introduction

First let us recall the main concepts and terminology. Let (M,∇) be a smooth
(C∞) n-dimensional manifold endowed with a linear connection ∇. Let TM de-
note the tangent bundle of M , let pM : TM →M be the natural projection, and
let Λ2TM denote the associated vector bundle of bivectors. X (M) denotes the
F(M)-module of vector fields on M over the ring F(M) of smooth functions
on M . If f : M → M̄ is a diffeomorphism then Tf : TM → TM̄ is the corre-
sponding tangent mapping, or differential, Tf = f∗. Unless otherwise specified,
all objects under consideration are supposed to be differentiable of a sufficiently
high class.

1.1. Vector fields and distributions parallel along a curve. Recall that an
n-dimensional distribution on an open neighborhood U ⊆M (dimM = m ≥ n)
is a map D : U → TU , U ∋ x 7→ Dx ⊆ TxM , and D is called differentiable
of the class Ck if it admits a local Ck-basis around any point. In short, D =
span (X1, . . . , Xn) on V . A Ck-vector field X (on U) belongs to D, X ∈ D, if
Xx ∈ Dx for all x ∈ U .
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Let c : I → M , t 7→ c(t), with I ⊂ R being an open interval, denote a (Ck-,
or smooth) curve on M . Let ξ denote the corresponding (Ck−1, or smooth)

tangent (“velocity”) vector field along c, ξ(t) =
(

c(t), dc(t)
dt

)

, t ∈ I. In the

following, we will consider only those curves which are regular in the sense that
the tangent vector field ξ along c does not vanish on the definition domain I,

that is, c′(t) = dc(t)
dt

6= 0 for all t ∈ I. Besides the velocity field ξ, let us introduce
vector fields ξ1, ξ2, associated to a curve c, by the formula

(1) ξ1 = ∇ξξ, ξ2 = ∇ξξ1

Under a (Ck-)vector field along c we mean a (Ck-)mapping Y : I → TM such
that pM ◦ Y = c, that is, Y (t) ∈ Tc(t)M for any t ∈ I. Similarly, a differentiable
n-distribution along c can be introduced as a span of an n-tuple of (differen-
tiable) vector fields along c. The velocity field ξ(t) generates a one-dimensional
distribution Ξ along c. Remark that any differentiable vector field (differentiable
distribution, respectively) along c can be extended into a differentiable vector
field (distribution) on some neighborhood U of c(I).

Denote by τc(t0),c(t) the parallel transport along c relative to ∇ from c(t0) to
c(t). A vector field Y along c on (M,∇) is called parallel along c relative to the
given connection if ∇ξY = 0. A distribution D (defined along c, or on some
open neighborhood of c(I)) is called parallel along c if for any t0 ∈ I and any
vector X0 ∈ Dc(t0), the image of X0 under the parallel translation τ along c

(from the point c(t0) to c(t)) belongs to D, τc(t0),c(t)X0 ∈ Dc(t) for all t ∈ I. A
distribution D parallel along c admits a (local) basis parallel along c; parallelism
along c is independent on reparametrizations of the path.

Lemma 1. Let D be a two-dimensional distribution along c. Let X1, X2 be
vector fields along c which form a basis of D; D = span (X1, X2). Then the
necessary and sufficient condition for D to be parallel along c may be expressed
as follows: there are real function a

j
i : I → R of the parameter t such that

(2) ∇ξXi = a
j
iXj , i, j ∈ {1, 2}

hold (covariant derivatives along c of basis vector fields belong to the distri-
bution, [5, p. 4].

1.2. Almost geodesic curves. Let (M,∇) be a smooth manifold endowed with
a linear connection. Let c : I →M be a smooth regular curve on M . Recall that
c is called a geodesic curve (in short, g.c.), under a general parametrization, if for
any initial value t0 ∈ I of the parameter, the vector field τc(t0),c(t)(ξ(t0)) along
c arising from images of ξ(t0) under the parallel propagation along c, belongs to
the 1-dimensional distribution Ξ = span (ξ) along c (generated by the velocity
field). Hence the vectors ξ1(t) and ξ(t) are collinear for any t ∈ I if and only if
c is a geodesic curve. Equivalently, c is a g. c. if and only if ξ is recurrent along
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c which means: there is a real function λ(t) : I → R such that the formula

(3) ∇ξ(t)ξ(t) = λ(t)ξ(t)

holds. If the curve is parametrized by canonical (affine) parameter, the condition
(3) for geodesic curves take the usual form ∇ξ(s)ξ(s) = 0 for ∈ I, and we speak
about geodesics.

Geodesic curves can be naturally generalized as follows. According to [5], we
call c almost geodesic if there is a 2-dimensional (differentiable) distribution D

(along c, or on some neighborhood of c(I)) parallel along c relative to ∇ such that
the tangent vector field ξ belongs to D (or Ξ is a subdistribution of D), ξ(t) ∈
Dc(t) for t ∈ I. Equivalently, c is almost geodesic if and only if there exist vector
fieldsX1, X2 along c satisfying (2), i.e. parallel, and (differentiable) real functions
bi(t), t ∈ R, defined along c, such that ξ = b1X1 + b2X2 holds. Obviously,
geodesic curves, particularly geodesics, can serve as examples of almost geodesic
curves.

For almost geodesic curves, ξ1 and ξ2 from (1) belong to the corresponding
distribution D. If the vector fields ξ and ξ1 are independent at any point (the
(local) curve c is not a geodesic one), then D = span (ξ, ξ1). So we can easily
check that another equivalent characterization is:

Lemma 2. A curve is almost geodesic if and only if ξ2 ∈ span (ξ, ξ1).

2. Almost geodesic mappings

The concept of an almost geodesic mapping was introduced by V. M. Cher-
nyshenko [3], and later on by N. S. Sinyukov, from a rather different point of
view, [5, 6, 7, 8]. The theory of almost geodesic mappings in a developed form
can be found in [5, 6, 7, 8].

Let (M,∇), (M̄, ∇̄) be smooth n-dimensional manifolds, n > 2, endowed with
torsion-free linear connection.

Definition. [5, 6, 7, 8] A diffeomorphism f : M → M̄ is called almost geodesic
if any geodesic curve of (M,∇) is mapped under f onto an almost geodesic curve
in (M̄, ∇̄).

Conventions. From now on, all connections under consideration are torsion-
free (≡ symmetric). If f : M → M̄ is a diffeomorphism we always suppose that
the connections ∇ and ∇̄ are defined on the same manifold M , and we may
in fact assume diffeomorphisms f : (M,∇) → (M, ∇̄), which is more convenient
from the technical reasons: we can make use of the well-known fact that two
linear connections ∇ and ∇̄ on the same manifold M always differ up to a
(1, 2)-tensor field P ,

(4) ∇̄(X,Y ) = ∇(X,Y ) + P (X,Y ), X, Y ∈ X (M),

and if the connections are symmetric, then P is also symmetric in X,Y . More-
over, we always identify a given curve c with its image c̄ = f ◦ c, similarly we
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identify the tangent vector function ξ(t) with the corresponding vector function
ξ̄(t) = Tf(ξ(t)). Given a diffeomorphism f : (M,∇) → (M, ∇̄) then P deter-
mined by (4) will be called here the deformation tensor of the given connections
under f ([6]). For a deformation tensor P (of type (1, 2)), let us introduce a new
tensor field (of type (1, 3), denoted by the same symbol) by

P (X,Y, Z) =
∑

CS(X,Y,Z)

∇ZP (X,Y ) + P (P (X,Y ), Z), X, Y, Z ∈ X (M)

where
∑

CS( , , ) means the cyclic sum on arguments in brackets (i. e. symmetriza-

tion without coefficients). Let X∧Y means a decomposable bivector, an exterior
product of X and Y . A diffeomorphism f : (M,∇) → (M, ∇̄) is almost-geodesic
if and only if the deformation tensor P satisfies

(5) P (X1, X2, X3) ∧ P (X4, X5) ∧X6 = 0 for all Xi ∈ X (M), i = 1, . . . , 6.

In local coordinates, (5) reads P
[h
(pqr

P i
suδ

j]
v) = 0 where the round and square

brackets denote symmetrization and alternation of indices, respectively.

3. Classification of almost geodesic mappings

N.S. Sinyukov distinguished three kinds of almost geodesic mappings, [5, 6],
namely π1, π2, and π3, characterized, respectively, by the conditions for the
deformation tensor:

π1: P (X,X,X) + P (P (X,X), X) = a(X,X)·X + b(X)·P (X,X), X ∈ X (M),

where a is a symmetric type (0, 2) tensor field and b is a one-form;

π2: P (X,X) = ψ(X) ·X + ϕ(X) · F (X), X ∈ X (M),

where ψ and φ are one-forms, and F is a type (1, 1) tensor field satisfying

(∇F )(X ;X) + F (F (X), X) = µ(X) ·X + ̺(X) · F (X), X ∈ X (M)

for some one-forms µ, ̺;

π3: P (X,X) = ψ(X) ·X + a(X,X) · Z, X ∈ X (M)

where ψ is a one-form, a is a symmetric bilinear form and Z ∈ X (M) is a vector
field satisfying

(∇Z)(X) = h ·X + θ(X) · Z

for some scalar function h : M → R and some one-form θ.

The so-called π̃1-mappings, canonical almost geodesic mappings, are charac-
terized among almost geodesic mappings by the condition b = 0 on the right
hand side. That is, the deformation tensor of a π̃1-mapping satisfies

(6) P (X,X,X) + P (P (X,X), X) = a(X,X) ·X, X ∈ X (M).

It is known that any π1-mapping arises as a composition of a π̃1-mapping and
a geodesic one. But geodesic mappings can be considered as trivial almost
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geodesic mappings, and can be omitted in our further considerations; they have
been analysed and classified in [1]. Our aim is to study π̃1-mappings of affine
manifolds onto particular types of Riemannian spaces, namely those cases that
induce integrable systems.

4. Ricci-symmetric and generalized Ricci-symmetric manifolds

Under a Ricci-symmetric manifold (space) we mean a manifold (M,∇) with
linear connection (a pseudo-Riemannian space (M, g), respectively) for which
the Ricci tensor is parallel (=covariantly constant),

∇Ric = 0.

It was proven in [6] that the family of all π̃1-mappings of a manifold (M,∇)
(= “affine manifold”) onto Ricci-symmetric (pseudo-)Riemannian spaces (M̄, ḡ)
(∇̄R̄ic = 0) is given by an integrable system of differentiable equations (in covari-
ant derivatives). Consequently, given a manifold with a symmetric connection,
the family of all Ricci-symmetric Riemannian spaces (M̄, ḡ) which can serve as
images of the given manifold (M,∇) under some π̃1-mapping, depends on a finite
set of parameters.

On the other hand, geodesic mappings form a subset in the set of π̃1-mappings;
they obey the definition. But basic equations describing geodesic mappings of a
manifold with linear connection do not form an integrable system of Cauchy type,
since a general solution depends on n arbitrary functions. It follows that the
conditions (6) describing π̃1-mappings (i.e. canonical almost geodesic mappings)
of affine manifolds do not, in general, induce an integrable system.

In the following, we consider a particular case when (6) can be transformed
into an integrable system, generalizing the results of Sinyukov. Namely, we
will investigate π̃1-mappings of an affine manifold (M,∇) onto the so-called
generalized Ricci-symmetric manifolds.

An affine manifold (M,∇) will be called a generalized Ricci-symmetric man-
ifold if its Ricci tensor satisfies

(7) ∇Ric (Y, Z;X) + ∇Ric (X,Z;Y ) = 0,

that is, ∇XRic (Y, Z) = −∇Y Ric (X,Z). We do not a priori suppose the Ricci
tensor be symmetric. If Ric is symmetric and (7) holds then Ric is parallel,
∇Ric = 0, and (M,∇) is a Ricci-symmetric manifold. Einstein spaces (Rie-
mannian spaces characterized by the property that the Ricci tensor is propor-
tional to the metric tensor) satisfy (7) since they satisfy ∇Ric = 0, hence are
generalized Ricci-symmetric. In this sense, generalized Ricci-symmetric spaces
can be considered as a certain generalization of Einstein spaces.
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5. Almost geodesic mappings π̃1 onto generalized Ricci-symmetric

manifolds

Given affine m-dimensional manifolds A = (M,∇) and Ā = (M̄, ∇̄) with the
corresponding curvature tensors R and R̄, respectively, all connection-preserving
mappings f : M → M̄ can be described by the following system of (differential)
equations, [6, 7, 8]:

3(∇ZP (X,Y ) + P (Z,P (X,Y )))

=
∑

CS(X,Y )

(R(Y, Z)X − R̄(Y, Z)X) +
∑

CS(X,Y,Z)

a(X,Y )Z.

It becomes clear that the above invariant formulas are rather complicated. As
for the rest, we prefer to express our equalities in local coordinates (with respect
to a map (U,ϕ) on M). This formulas have the following local expression

(8) 3(P h
ij,k + P h

kαP
α
ij) = Rh

(ij)k − R̄h
(ij)k + a(ijδ

h
k),

where P h
ij , aij , R

h
ijk , R̄h

ijk are local components of tensors P , R, R̄ and a,

respectively, δh
k is the Kronecker delta, “,” denotes covariant derivative with

respect to ∇.
The system (8) can be considered as a system of partial differential equa-

tions for functions P h
ij on M , i.e. for components of the deformation tensor; the

corresponding integrability conditions are

R̄h
(ij)[k,ℓ] = Rh

(ij)[k,ℓ] + δh
(iajk),ℓ − δh

(iajℓ),k − 3(−Pα
ijR̄

h
αkℓ + P h

α(jR
α
i)kℓ)

− P h
αk(Rα

(ij)ℓ − R̄α
(ij)ℓδ

α
(iajℓ)) + P h

αℓ(R
α
(ij)k − R̄α

(ij)kδ
α
(iajk)).

Passing from ∇R̄ to ∇̄R̄ on the left hand side we get the following integrability
conditions of the system (8):

(9) R̄h
(ij)[k;ℓ] = δh

(iajk),ℓ − δh
(iajℓ),k + Θh

ijkℓ ,

where

Θh
ijkℓ = Rh

(ij)[k,ℓ] − 3(−Pα
ijR̄

h
αkℓ + P h

α(jR
α
i)kℓ)

− P h
αk(Rα

(ij)ℓ − R̄α
(ij)ℓδ

α
(iajℓ)) + P h

αℓ(R
α
(ij)k − R̄α

(ij)kδ
α
(iajk))

− Pα
ℓ(iR̄

h
|α|j)k − Pα

ℓ(iR̄
h
j)αk + Pα

k(iR̄
h
|α|j)ℓ + Pα

k(iR̄
h
j)αℓ.

Using the Bianchi identity we can write (9) in local coordinate as

R̄h
iℓk;j + R̄h

jℓk;i = δh
(iajk),ℓ − δh

(iajℓ),k + Θh
ijkℓ ,

where “;” denotes covariant derivative with respect to ∇̄. Contraction in h and
k gives the following equality for covariant derivatives of components of the Ricci
tensor R̄ic of ∇̄:

(10) R̄iℓ;j + R̄jℓ;i = (n+ 1)aij,ℓ − aℓ(i,j) + Θα
ijαℓ .
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In the following let us suppose that the affine manifold (M̄, ∇̄) is a generalized
Ricci-symmetric space, that is, (7) holds. In local coordinates, (7) reads

R̄ij;k + R̄kj;i = 0.

Under this assumption, (10) reads

(11) (n+ 1)aij,ℓ − aℓi,j − aℓj,i = −Θα
ijαℓ.

Using symmetrization in ℓ, i gives

aℓi,j + aℓj,i = −
1

n
Θα

(i|ℓα|j) +
2

n
aij,ℓ.

Now (11) reads

(12)
n2 + n− 2

n
aij,ℓ = −Θα

ijαℓ −
1

n
Θα

(i|ℓα|j).

Applying covariant differentiation with respect to ∇̄ to the integrability condi-
tions (9), followed by passing from covariant derivative ∇̄ to ∇ on the right hand
side, we get

(13) R̄h
(ij)k;ℓm − R̄h

(ij)ℓ;mk = δh
(iajk),ℓm − δh

(iajℓ),km + T h
ijkℓm ,

where

T h
ijkℓm = R̄h

αmkR̄
α
(ij)ℓ − R̄α

ℓmkR̄
h
(ij)α − R̄α

jmkR̄
h
(iα)ℓ − R̄α

imkR̄
h
(jα)ℓ

− P h
mαδ

α
(iajk),ℓ − Pα

mjδ
h
(iaαk),ℓ − Pα

miδ
h
(αajk),ℓ − Pα

mkδ
h
(αaij),ℓ − Pα

mlδ
h
(iajk),α

− P h
mαδ

α
(iajℓ),k + Pα

miδ
h
(αajℓ),k + Pα

mjδ
h
(iaαℓ),k + Pα

mkδ
h
(iajℓ),α − Pα

mlδ
h
(iajα),k

− θh
ijkℓ,m + P h

αmθ
α
ijkℓ − Pα

miθ
h
αjkℓ − Pα

mjθ
h
iαkℓ − Pα

mkθ
h
ijαℓ − Pα

mℓθ
h
ijkα.

Alternating (13) in ℓ,m we obtain

R̄h
(ij)m;ℓk − R̄h

(ij)ℓ;mk = δh
(iajm),kℓ − δh

(iajℓ),km + T h
ijk[lm]

+ R̄h
(i|αk|R̄

α
j)mℓ + R̄h

(ij)αR̄
α
kmℓ − R̄α

(ij)kR̄
h
αmℓ + R̄h

α(i|k|R̄
α
j)mℓ

+ δh
(αajk)R

α
iℓm + δh

(αaik)R
α
jℓm + δh

(iajα)R
α
kℓm − δh

(iajk)R
α
αℓm .

(14)

Due to the properties of the Riemannian tensor, (14) can be written as

(15) R̄h
imℓ;jk + R̄h

jmℓ;ik = δh
(iajℓ),km − δh

(iajm),kℓ −Nh
ijkℓm ,

where

Nh
ijkℓm = T h

ijk[ℓm] + R̄α
imℓR̄

h
(αj)k + R̄α

jmℓR̄
h
(αi)k + R̄α

kmℓR̄
h
(ij)α

− R̄h
αmℓR̄

α
(ij)k + δh

(αajk)R
α
iℓm + δh

(αaik)R
α
jℓm + δh

(αaij)R
α
kℓm − a(ijR

h
k)ℓm.

Let us alternate (15) in j, k. We get

R̄h
jmℓ;ik − R̄h

kmℓ;ij = δh
(iajℓ),km − δh

(iajm),kℓ − δh
(iakℓ),jm + δh

(iakm),jℓ

−Nh
i[jk]ℓm + R̄h

αmℓR̄
α
ikj + R̄h

iαℓR̄
α
mkj + R̄h

imαR̄
α
ℓkj − R̄α

imℓR̄
h
αkj .

(16)
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Let us interchange i and k in (15), and then use (16). We evaluate

2R̄h
jmℓ;ik = δh

(iajℓ),km − δh
(iajm),kℓ − δh

(kajm),iℓ

+ δh
(iakm),jℓ − δh

(iakℓ),jm + δh
(jℓak),im + Ωh

ijkℓm,
(17)

where

Ωh
ijkℓm = −Nh

ijkℓm +Nh
k[ij]kℓm − R̄h

αmℓR̄
α
(kj)i + R̄h

jαℓR̄
α
mik + R̄h

jmαR̄
α
ℓik

− R̄h
αi(jR̄

α
k)mℓ + R̄h

jαℓR̄
α
mik + R̄h

jmαR̄
α
ℓik − R̄h

αmℓR̄
α
ikj − R̄h

iαℓR̄
α
mkj + R̄α

im[ℓR̄
h
α]kj .

On the left hand side of (17), let us pass from covariant derivative with respect
to ∇̄ to ∇:

2R̄h
jmℓ,ik = δh

(iajℓ),km − δh
(iajm),kℓ − δh

(kajm),iℓ

+ δh
(iakm),jℓ − δh

(iakℓ),jm − δh
(kajℓ),im + Sh

ijkℓm,
(18)

where

Sh
ijkℓm = Ωh

ijkℓm − 2 [R̄α
jmℓ,iP

h
ℓk − R̄h

αmℓ,iP
α
jk

− R̄h
jαℓ,iP

α
mk − R̄h

jmα,iP
α
ℓk − R̄h

jmℓ,αP
α
ik

− (R̄α
jmℓP

β
αi − R̄h

αmℓP
α
ij − R̄h

jαℓP
α
im − R̄h

jmαP
α
iℓ)P

h

k
¯

− (R̄α
jmℓP

h
αβ − R̄h

αmℓP
α
βj − R̄h

jαℓP
α
βm − R̄h

jmαP
α
βℓ)P

β
ik

− (R̄α
m
¯

ℓP
h
αi − R̄h

αmℓP
α

i
¯

− R̄h
βαℓP

α
im − R̄h

βmαP
α
iℓ)P

β
jk

− (R̄α
jβℓP

h
αi − R̄h

αβℓP
α
ji − R̄h

jαℓP
α

i
¯

− R̄h
jβαP

α
iℓ)P

β
km

− (R̄α
jmβP

h
αi − R̄h

αmβP
α
ji − R̄h

jαβP
α
mi − R̄h

jmαP
α

i
¯

)P β
kℓ].

Denoting Rh
jmℓi = R̄h

jmℓ,i, i. e. introducing a new tensor field of type (1, 4) we

can write the system (18) in the following form

(19) R̄h
jmℓ,i = Rh

jmℓi

and

2Rh
jmℓi,k = δh

(iajℓ),km − δh
(iajm),kℓ − δh

(kajm),iℓ

+ δh
(iakm),jℓ − δh

(iakℓ),jm + δh
(kajℓ),im + Sh

ijkℓm,
(20)

where we used (12).
It can be verified that the equations (8), (12), (19) and (20) for functions

P h
ij(x), aij(x), R̄

h
ijk(x) and Rh

ijkm(x) on (M,∇) form an integrable system; the
above functions must satisfy also additional algebraic conditions

(21)
P h

ij(x) = P h
ji(x), aij(x) = aji(x), R̄h

i(jk)(x) = R̄h
(ijk)(x) = 0,

Rh
i(jk)ℓ(x) = Rh

(ijk)ℓ(x) = 0.
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So we have succeeded to prove the following generalization of the result of
Sinyukov [7, 8] (we use the above notation).

Theorem. Let (M,∇) be a manifold with affine connection and (M̄, ∇̄) a gen-
eralized Ricci-symmetric manifold. There is a π̃1 mapping f : M → M̄ (i.e. a
canonical almost geodesic mapping of type π1) if and only if there exist func-
tions P h

ij(x), aij(x), R̄
h
ijk(x) and Rh

ijkm(x) which satisfy the equations (8), (12),

(19), (20), and (21). The system of equations (8), (12), (19) and (20) forms a
Cauchy type system of PDE’s in covariant derivatives.

As a consequence we obtain

Corollary. The family of all generalized Ricci-symmetric manifolds, which can
serve as an image of the given affine manifold (M,∇) under some π̃1-mapping,
depends on at most

(22)
1

6
n(n+ 1)(2n3 − 4n2 + 5n+ 3)

parameters.
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