Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 25 (2009), 271-276 www.emis.de/journals ISSN 1786-0091

INTEGRABILITY OF DISTRIBUTION D^{\perp} ON A NEARLY SASAKIAN MANIFOLD

WAN YONG AND DONG HE PEI

ABSTRACT. In this paper, we give some sufficient and necessary conditions for integrability of distribution D^{\perp} on a nearly Sasakian manifold, and generalize Bejancu's result.

1. INTRODUCTION

Let \overline{M} be a real (2n+1)-dimensional almost contact metric manifold with the structure tensors (Φ, ξ, η, g) , then

(1.1)
$$\Phi\xi = 0, \eta(\xi) = 1, \Phi^2 = -I + \eta \otimes \xi, \eta(X) = g(X,\xi),$$

(1.2)
$$g(\Phi X, \Phi Y) = g(X, Y) - \eta(X)\eta(Y), \eta \circ \Phi = 0.$$

for any $X, Y \in \Gamma(T\overline{M})$.

Definition 1.1 ([1]). The Nijenhuis tensor field of Φ on an almost contact metric manifold is defined by

(1.3)
$$[\Phi, \Phi](X, Y) = [\Phi X, \Phi Y] + \Phi^2[X, Y] - \Phi[\Phi X, Y] - \Phi[X, \Phi Y],$$

for any $X, Y \in \Gamma(T\overline{M})$.

Definition 1.2 ([1]). An almost contact metric manifold \overline{M} is called a nearly Sasakian manifold, if we have

(1.4)
$$(\overline{\nabla}_X \Phi)Y + (\overline{\nabla}_Y \Phi)X = 2g(X,Y)\xi - \eta(Y)X - \eta(X)Y,$$

for any $X, Y \in \Gamma(T\overline{M})$.

Definition 1.3. An almost contact metric manifold \overline{M} is called a Sasakian manifold, if we have

(1.5)
$$(\overline{\nabla}_X \Phi)Y = g(X, Y)\xi - \eta(Y)X,$$

for any $X, Y \in \Gamma(T\overline{M})$.

²⁰⁰⁰ Mathematics Subject Classification. 53C25.

Key words and phrases. nearly Sasakian manifold, semi-invariant submanifold, distribution, connection, integrable.

Supported by Foundation of Educational Committee of Hunan Province No. 05C267.

Obviously, a Sasakian manifold is a nearly Sasakian manifold.

Let M be an m-dimensional submanifold of an n-dimensional almost contact metric manifold \overline{M} . We denote by $\overline{\nabla}$ the Levi-Civita connection on \overline{M} , denote by ∇ the induced connection on M, and denote by ∇^{\perp} the normal connection on M. Thus, for any $X, Y \in \Gamma(TM)$, we have

(1.6)
$$\overline{\nabla}_X Y = \nabla_X Y + h(X, Y),$$

where $h: \Gamma(TM) \times \Gamma(TM) \longrightarrow \Gamma(TM^{\perp})$ is a normal bundle valued symmetric bilinear form on $\Gamma(TM)$. The equation (1.6) is called the Gauss formula and h is called the second fundamental form of M.

Now, for any $X \in \Gamma(TM)$ and $V \in \Gamma(TM^{\perp})$, we denote by $-A_V X$ and $\nabla_X^{\perp} V$ the tangent part and normal part of $\overline{\nabla}_X V$ respectively. Then we have

(1.7)
$$\overline{\nabla}_X V = -A_V X + \nabla_X^{\perp} V$$

Thus, for any $V \in \Gamma(TM^{\perp})$, we have a linear operator, satisfying

(1.8)
$$g(A_V X, Y) = g(X, A_V Y) = g(h(X, Y), V).$$

The equation (1.7) is called the Weingarten formula.

An *m*-dimensional distribution on a manifold M is a mapping D defined on \overline{M} , which assigns to each point x of \overline{M} an *m*-dimensional linear subspace D_x of $T_x\overline{M}$. A vector field X on \overline{M} belongs to D if we have $X_x \in D_x$ for each $x \in \overline{M}$. When this happens we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \overline{M}$ there exist m differentiable linearly independent vector fields $X_i \in \Gamma(D)$ in a neighborhood of x. From now on, all distribution are supposed to be differentiable of class C^{∞} .

The distribution D is said to be involutive if for all vector fields $X, Y \in \Gamma(D)$ we have $[X, Y] \in \Gamma(D)$. A submanifold M of \overline{M} is said to be an integral manifold of D if for every point $x \in M$, D_x coincides with the tangent space to M at x. If there exists no integral manifold of D which contains M, then M is called a maximal integral manifold or a leaf of D. The distribution D is said to be integrable if for every $x \in \overline{M}$ there exists an integral manifold of Dcontaining x.

Definition 1.4 ([1]). Let M be a real (2m+1)-dimensional submanifold of a real (2n+1)-dimensional almost contact metric manifold \overline{M} with the structure tensors (Φ, ξ, η, g) . We assume that the structure tensor ξ is tangent to M, and denote by $\{\xi\}$ the 1-dimensional distribution spanned by ξ on M. Then M is called a semi-invariant submanifold of \overline{M} , if there exist two differentiable distributions D and D^{\perp} on M, satisfying

- (1) $TM = D \oplus D^{\perp} \oplus \{\xi\}$, where D, D^{\perp} and $\{\xi\}$ are mutually orthogonal to each other;
- (2) the distribution D is invariant by Φ , that is, $\Phi(D_x) = D_x$, for each $x \in M$;
- (3) the distribution D^{\perp} is anti-invariant by Φ , that is, $\Phi(D_x^{\perp}) \subset T_x M^{\perp}$, for each $x \in M$.

272

For each vector field X tangent to M, we put

(1.9)
$$\Phi X = \psi X + \omega X,$$

where ψX and ωX are respectively the tangent part and the normal part of ΦX . Also, for each vector field V normal to M, we put

(1.10)
$$\Phi V = BV + CV,$$

where BV and CV are respectively the tangent part and the normal part of ΦV .

In paper [1], we know that the distribution D^{\perp} on M is integrable if and only if $[X, Y] \in \Gamma(D^{\perp})$, for all vector fields $X, Y \in \Gamma(D^{\perp})$.

2. Main Results

Theorem 2.1. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . Then the distribution D^{\perp} is integrable if and only if

(2.1)
$$g(A_{\Phi Y}X - A_{\Phi X}Y + 2(\overline{\nabla}_X \Phi)Y, \Phi Z) = \eta([X, Y])\eta(Z),$$

for any $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(D \oplus \{\xi\})$.

Proof. By using (1.7) we obtain

(2.2)
$$\overline{\nabla}_X \Phi Y = -A_{\Phi Y} X + \nabla_X^{\perp} \Phi Y,$$

for any $X, Y \in \Gamma(D^{\perp})$. On the other hand, by using (1.6) we also obtain

(2.3)
$$\overline{\nabla}_X \Phi Y = (\overline{\nabla}_X \Phi) Y + \Phi \overline{\nabla}_X Y = (\overline{\nabla}_X \Phi) Y + \Phi \nabla_X Y + \Phi h(X, Y).$$

By comparing (2.2) and (2.3) we get

(2.4)
$$(\overline{\nabla}_X \Phi)Y = -A_{\Phi Y}X + \nabla_X^{\perp} \Phi Y - \Phi \nabla_X Y - \Phi h(X, Y).$$

By changing X and Y in (2.4) we have

(2.5)
$$(\overline{\nabla}_Y \Phi)X = -A_{\Phi X}Y + \nabla_Y^{\perp} \Phi X - \Phi \nabla_Y X - \Phi h(Y, X).$$

By using (2.4) and (2.5) we obtain

(2.6)
$$(\overline{\nabla}_X \Phi)Y - (\overline{\nabla}_Y \Phi)X = -A_{\Phi Y}X + A_{\Phi X}Y + \nabla_X^{\perp}\Phi Y - \nabla_Y^{\perp}\Phi X - \Phi[X, Y].$$

By using (1.4)+(2.6) we get

(2.7)
$$2(\overline{\nabla}_X \Phi)Y = 2g(X,Y)\xi - A_{\Phi Y}X + A_{\Phi X}Y + \nabla_X^{\perp}\Phi Y - \nabla_Y^{\perp}\Phi X - \Phi[X,Y].$$

That is,

(2.8)
$$\Phi[X,Y] = 2g(X,Y)\xi - A_{\Phi Y}X + A_{\Phi X}Y + \nabla_X^{\perp}\Phi Y - \nabla_Y^{\perp}\Phi X - 2(\overline{\nabla}_X\Phi)Y.$$

For any $Z \in \Gamma(D \oplus \{\xi\})$, then $\Phi Z \in \Gamma(D)$. Hence, we have

(2.9)
$$g(2g(X,Y)\xi + \nabla_X^{\perp}\Phi Y - \nabla_Y^{\perp}\Phi X, \Phi Z) = 0.$$

By using (2.8), (1.2) and (2.9) we obtain

(2.10) $g([X,Y],Z) = g(-A_{\Phi Y}X + A_{\Phi X}Y - 2(\overline{\nabla}_X \Phi)Y, \Phi Z) + \eta([X,Y])\eta(Z).$ Thus, $[X,Y] \in \Gamma(D^{\perp})$ holds if and only if (2.1) is satisfied. **Lemma 2.1** ([1]). Let M be a semi-invariant submanifold of a Sasakian manifold \overline{M} . Then

and

(2.12)
$$[X,Y] \in \Gamma(D \oplus D^{\perp}),$$

for any $X, Y \in \Gamma(D^{\perp})$.

Corollary (Bejancu-Papaghiuc [1]). Let M be a semi-invariant submanifold of a Sasakian manifold \overline{M} . Then the distribution D^{\perp} is integrable.

Proof. For any $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(D \oplus \{\xi\})$, then $\Phi Z \in \Gamma(D)$ holds. By using Lemma 2.1 and (1.1) we obtain

(2.13)
$$g(-A_{\Phi Y}X + A_{\Phi X}Y, \Phi Z) = 0, \eta([X, Y]) = 0$$

On the other hand, by using (1.5) we get

(2.14)
$$g(2(\overline{\nabla}_X \Phi)Y, \Phi Z) = 0.$$

Taking into account that a Sasakian manifold is a nearly Sasakian manifold, by using (2.13) and (2.14) we have (2.1). By using theorem 2.1, then the distribution D^{\perp} is integrable.

Theorem 2.2. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . Then the distribution D^{\perp} is integrable if and only if

(2.15)
$$g(A_{\Phi X}Y - A_{\Phi Y}X - 2\Phi \nabla_X Y, \Phi Z) = \eta([X, Y])\eta(Z),$$

for any $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(D \oplus \{\xi\})$.

Proof. By using (2.4) and (2.8), we obtain

(2.16) $\Phi[X,Y] =$

$$2g(X,Y)\xi + A_{\Phi Y}X - A_{\Phi X}Y + \nabla_X^{\perp}\Phi Y - \nabla_Y^{\perp}\Phi X + 2\Phi\nabla_X Y + 2\Phi h(X,Y),$$

for any $X, Y \in \Gamma(D^{\perp})$. For any $Z \in \Gamma(D \oplus \{\xi\})$, then $\Phi Z \in \Gamma(D)$. hence, we have

(2.17)
$$g(2g(X,Y)\xi + \nabla_X^{\perp}\Phi Y - \nabla_Y^{\perp}\Phi X, \Phi Z) = 0.$$

From (1.2), we get

(2.18)
$$g(2\Phi h(X,Y),\Phi Z) = 0.$$

By using (1.2), (2.16), (2.17) and (2.18), we obtain

(2.19) $g([X,Y],Z) = -g(A_{\Phi X}Y - A_{\Phi Y}X - 2\Phi \nabla_X Y, \Phi Z) + \eta([X,Y])\eta(Z).$

Thus, $[X, Y] \in \Gamma(D^{\perp})$ holds if and only if (2.15) is satisfied.

274

Lemma 2.2 ([4]). Let \overline{M} be a nearly Sasakian Manifold. Then

$$(2.20) \quad [\Phi,\Phi](X,Y) = 4\Phi(\overline{\nabla}_Y\Phi)X + \eta(Y)\overline{\nabla}_X\xi + X\eta(Y)\xi - \eta(\overline{\nabla}_XY)\xi - 2g(X,\Phi Y)\xi + \eta(X)\Phi Y - \eta(X)\overline{\nabla}_Y\xi - Y\eta(X)\xi + \eta(\overline{\nabla}_YX)\xi + 2g(Y,\Phi X)\xi - \eta(Y)\Phi X + 4g(X,Y)\xi - 2\eta(Y)X - 2\eta(X)Y,$$

for any $X, Y \in \Gamma(T\overline{M})$.

Lemma 2.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . Then

$$(2.21) \quad 2\Phi[X,Y] = -4g(X,Y)\xi - 2A_{\Phi Y}X + 2A_{\Phi X}Y + 2\nabla_X^{\perp}\Phi Y - 2\nabla_Y^{\perp}\Phi X - \Phi[\Phi,\Phi](X,Y) + 4\eta((\overline{\nabla}_Y\Phi)X)\xi,$$

for any $X, Y \in \Gamma(D^{\perp})$.

Proof. By using (2.20) and (1.1), we obtain

(2.22)
$$\Phi[\Phi,\Phi](X,Y) = 4\Phi^2(\overline{\nabla}_Y\Phi)X = -4(\overline{\nabla}_Y\Phi)X + 4\eta((\overline{\nabla}_Y\Phi)X)\xi,$$

for any $X, Y \in \Gamma(D^{\perp})$. From (2.22) and (2.7), we get

(2.23)
$$\Phi[\Phi,\Phi](X,Y) = -4g(X,Y)\xi - 2A_{\Phi Y}X + 2A_{\Phi X}Y + 2\nabla_X^{\perp}\Phi Y - 2\nabla_Y^{\perp}\Phi X - 2\Phi[X,Y] + 4\eta((\overline{\nabla}_Y\Phi)X)\xi.$$

By using (2.23), we have (2.21).

Theorem 2.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \overline{M} . Then the distribution D^{\perp} is integrable if and only if

(2.24)
$$g(2A_{\Phi Y}X - 2A_{\Phi X}Y + \Phi[\Phi, \Phi](X, Y), \Phi Z) = \eta([X, Y])\eta(Z),$$

for any $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(D \oplus \{\xi\})$.

Proof. For any $X, Y \in \Gamma(D^{\perp})$ and $Z \in \Gamma(D \oplus \{\xi\})$, then $\Phi Z \in \Gamma(D)$. Hence, we obtain

(2.25)
$$g(-4g(X,Y)\xi + 2\nabla_X^{\perp}\Phi Y - 2\nabla_Y^{\perp}\Phi X + 4\eta((\overline{\nabla}_Y\Phi)X)\xi, \Phi Z) = 0.$$

By using (2.21), (1.2) and (2.25), we get

(2.26)
$$2g([X,Y],Z) = g(2\Phi[X,Y],\Phi Z) + 2\eta([X,Y])\eta(Z)$$

= $g(-2A_{\Phi Y}X + 2A_{\Phi X}Y - \Phi[\Phi,\Phi](X,Y),\Phi Z) + \eta([X,Y])\eta(Z).$

Thus, $[X, Y] \in \Gamma(D^{\perp})$ holds if and only if (2.24) is satisfied.

References

- [1] A. Bejancu. Geometry of CR-submanifolds, volume 23 of Mathematics and its Applications (East European Series). D. Reidel Publishing Co., Dordrecht, 1986.
- [2] H. Endō. Invariant submanifolds in a K-contact Riemannian manifold. Tensor (N.S.), 28:154–156, 1974.
- [3] M.Okumura. Submanifolds of a Kaehlerian manifold and a Sasakian manifold. Lecture Notes, Michigan State Univ., 1971.
- [4] Y. Wan. Integrabilities of distribution D⊕{ξ} on a nearly Sasakian manifold. J. Changsha Univ. Sci. Technol., Nat. Sci., 4(2):72–74, 2007.
- [5] K. Yano and S. Ishihara. Invariant submanifolds of an almost contact manifold. Kodai Math. Sem. Rep., 21:350–364, 1969.

Received on September 20, 2008., revised on May 12, 2009; accepted on June 28, 2009

DEPARTMENT OF MATHEMATICS AND COMPUTING SCIENCE CHANGSHA UNIVERSITY OF SCIENCE AND TECHNOLOGY CHANGSHA, HUNAN, P. R. CHINA *E-mail address*: wany@csust.edu.cn

DEPARTMENT OF MATHEMATICS AND STATISTICS NORTHEAST NORMAL UNIVERSITY CHANGCHUN, P. R. CHINA *E-mail address*: peidh340@nenu.edu.cn