INTEGRABILITY OF DISTRIBUTION D^{\perp} ON A NEARLY SASAKIAN MANIFOLD

WAN YONG AND DONG HE PEI

Abstract

In this paper, we give some sufficient and necessary conditions for integrability of distribution D^{\perp} on a nearly Sasakian manifold, and generalize Bejancu's result.

1. Introduction

Let \bar{M} be a real $(2 n+1)$-dimensional almost contact metric manifold with the structure tensors (Φ, ξ, η, g), then

$$
\begin{gather*}
\Phi \xi=0, \eta(\xi)=1, \Phi^{2}=-I+\eta \otimes \xi, \eta(X)=g(X, \xi), \tag{1.1}\\
g(\Phi X, \Phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta \circ \Phi=0 . \tag{1.2}
\end{gather*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Definition 1.1 ([1]). The Nijenhuis tensor field of Φ on an almost contact metric manifold is defined by

$$
\begin{equation*}
[\Phi, \Phi](X, Y)=[\Phi X, \Phi Y]+\Phi^{2}[X, Y]-\Phi[\Phi X, Y]-\Phi[X, \Phi Y] \tag{1.3}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Definition 1.2 ([1]). An almost contact metric manifold \bar{M} is called a nearly Sasakian manifold, if we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \Phi\right) Y+\left(\bar{\nabla}_{Y} \Phi\right) X=2 g(X, Y) \xi-\eta(Y) X-\eta(X) Y \tag{1.4}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Definition 1.3. An almost contact metric manifold \bar{M} is called a Sasakian manifold, if we have

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \Phi\right) Y=g(X, Y) \xi-\eta(Y) X \tag{1.5}
\end{equation*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.

[^0]Obviously, a Sasakian manifold is a nearly Sasakian manifold.
Let M be an m-dimensional submanifold of an n-dimensional almost contact metric manifold \bar{M}. We denote by $\bar{\nabla}$ the Levi-Civita connection on \bar{M}, denote by ∇ the induced connection on M, and denote by ∇^{\perp} the normal connection on M. Thus, for any $X, Y \in \Gamma(T M)$, we have

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y) \tag{1.6}
\end{equation*}
$$

where $h: \Gamma(T M) \times \Gamma(T M) \longrightarrow \Gamma\left(T M^{\perp}\right)$ is a normal bundle valued symmetric bilinear form on $\Gamma(T M)$. The equation (1.6) is called the Gauss formula and h is called the second fundamental form of M.

Now, for any $X \in \Gamma(T M)$ and $V \in \Gamma\left(T M^{\perp}\right)$, we denote by $-A_{V} X$ and $\nabla \frac{\perp}{X} V$ the tangent part and normal part of $\bar{\nabla}_{X} V$ respectively. Then we have

$$
\begin{equation*}
\bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{\perp} V . \tag{1.7}
\end{equation*}
$$

Thus, for any $V \in \Gamma\left(T M^{\perp}\right)$, we have a linear operator, satisfying

$$
\begin{equation*}
g\left(A_{V} X, Y\right)=g\left(X, A_{V} Y\right)=g(h(X, Y), V) . \tag{1.8}
\end{equation*}
$$

The equation (1.7) is called the Weingarten formula.
An m-dimensional distribution on a manifold \bar{M} is a mapping D defined on \bar{M}, which assigns to each point x of \bar{M} an m-dimensional linear subspace D_{x} of $T_{x} \bar{M}$. A vector field X on \bar{M} belongs to D if we have $X_{x} \in D_{x}$ for each $x \in \bar{M}$. When this happens we write $X \in \Gamma(D)$. The distribution D is said to be differentiable if for any $x \in \bar{M}$ there exist m differentiable linearly independent vector fields $X_{i} \in \Gamma(D)$ in a neighborhood of x. From now on, all distribution are supposed to be differentiable of class C^{∞}.

The distribution D is said to be involutive if for all vector fields $X, Y \in \Gamma(D)$ we have $[X, Y] \in \Gamma(D)$. A submanifold M of \bar{M} is said to be an integral manifold of D if for every point $x \in M, D_{x}$ coincides with the tangent space to M at x. If there exists no integral manifold of D which contains M, then M is called a maximal integral manifold or a leaf of D. The distribution D is said to be integrable if for every $x \in \bar{M}$ there exists an integral manifold of D containing x.
Definition 1.4 ([1]). Let M be a real ($2 m+1$)-dimensional submanifold of a real (2n+1)-dimensional almost contact metric manifold \bar{M} with the structure tensors (Φ, ξ, η, g). We assume that the structure tensor ξ is tangent to M, and denote by $\{\xi\}$ the 1 -dimensional distribution spanned by ξ on M. Then M is called a semi-invariant submanifold of \bar{M}, if there exist two differentiable distributions D and D^{\perp} on M, satisfying
(1) $T M=D \oplus D^{\perp} \oplus\{\xi\}$, where D, D^{\perp} and $\{\xi\}$ are mutually orthogonal to each other;
(2) the distribution D is invariant by Φ, that is, $\Phi\left(D_{x}\right)=D_{x}$, for each $x \in M$;
(3) the distribution D^{\perp} is anti-invariant by Φ, that is, $\Phi\left(D_{x}^{\perp}\right) \subset T_{x} M^{\perp}$, for each $x \in M$.

For each vector field X tangent to M, we put

$$
\begin{equation*}
\Phi X=\psi X+\omega X \tag{1.9}
\end{equation*}
$$

where ψX and ωX are respectively the tangent part and the normal part of ΦX. Also, for each vector field V normal to M, we put

$$
\begin{equation*}
\Phi V=B V+C V \tag{1.10}
\end{equation*}
$$

where $B V$ and $C V$ are respectively the tangent part and the normal part of ΦV.

In paper [1], we know that the distribution D^{\perp} on M is integrable if and only if $[X, Y] \in \Gamma\left(D^{\perp}\right)$, for all vector fields $X, Y \in \Gamma\left(D^{\perp}\right)$.

2. Main Results

Theorem 2.1. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
g\left(A_{\Phi Y} X-A_{\Phi X} Y+2\left(\bar{\nabla}_{X} \Phi\right) Y, \Phi Z\right)=\eta([X, Y]) \eta(Z) \tag{2.1}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D \oplus\{\xi\})$.
Proof. By using (1.7) we obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \Phi Y=-A_{\Phi Y} X+\nabla_{X}^{\perp} \Phi Y \tag{2.2}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$. On the other hand, by using (1.6) we also obtain

$$
\begin{equation*}
\bar{\nabla}_{X} \Phi Y=\left(\bar{\nabla}_{X} \Phi\right) Y+\Phi \bar{\nabla}_{X} Y=\left(\bar{\nabla}_{X} \Phi\right) Y+\Phi \nabla_{X} Y+\Phi h(X, Y) \tag{2.3}
\end{equation*}
$$

By comparing (2.2) and (2.3) we get

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \Phi\right) Y=-A_{\Phi Y} X+\nabla_{X}^{\perp} \Phi Y-\Phi \nabla_{X} Y-\Phi h(X, Y) \tag{2.4}
\end{equation*}
$$

By changing X and Y in (2.4) we have

$$
\begin{equation*}
\left(\bar{\nabla}_{Y} \Phi\right) X=-A_{\Phi X} Y+\nabla_{Y}^{\perp} \Phi X-\Phi \nabla_{Y} X-\Phi h(Y, X) \tag{2.5}
\end{equation*}
$$

By using (2.4) and (2.5) we obtain
(2.6) $\left(\bar{\nabla}_{X} \Phi\right) Y-\left(\bar{\nabla}_{Y} \Phi\right) X=-A_{\Phi Y} X+A_{\Phi X} Y+\nabla_{X}^{\perp} \Phi Y-\nabla_{Y}^{\perp} \Phi X-\Phi[X, Y]$.

By using (1.4)+(2.6) we get
(2.7) $2\left(\bar{\nabla}_{X} \Phi\right) Y=2 g(X, Y) \xi-A_{\Phi Y} X+A_{\Phi X} Y+\nabla_{X}^{\perp} \Phi Y-\nabla_{Y}^{\perp} \Phi X-\Phi[X, Y]$.

That is,
(2.8) $\Phi[X, Y]=2 g(X, Y) \xi-A_{\Phi Y} X+A_{\Phi X} Y+\nabla_{X}^{\perp} \Phi Y-\nabla_{Y}^{\perp} \Phi X-2\left(\bar{\nabla}_{X} \Phi\right) Y$.

For any $Z \in \Gamma(D \oplus\{\xi\})$, then $\Phi Z \in \Gamma(D)$. Hence, we have

$$
\begin{equation*}
g\left(2 g(X, Y) \xi+\nabla \frac{\perp}{X} \Phi Y-\nabla \frac{\perp}{Y} \Phi X, \Phi Z\right)=0 . \tag{2.9}
\end{equation*}
$$

By using (2.8), (1.2) and (2.9) we obtain
(2.10) $g([X, Y], Z)=g\left(-A_{\Phi Y} X+A_{\Phi X} Y-2\left(\bar{\nabla}_{X} \Phi\right) Y, \Phi Z\right)+\eta([X, Y]) \eta(Z)$.

Thus, $[X, Y] \in \Gamma\left(D^{\perp}\right)$ holds if and only if (2.1) is satisfied.

Lemma 2.1 ([1]). Let M be a semi-invariant submanifold of a Sasakian manifold \bar{M}. Then

$$
\begin{equation*}
A_{\Phi X} Y=A_{\Phi Y} X \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
[X, Y] \in \Gamma\left(D \oplus D^{\perp}\right) \tag{2.12}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$.
Corollary (Bejancu-Papaghiuc [1]). Let M be a semi-invariant submanifold of a Sasakian manifold \bar{M}. Then the distribution D^{\perp} is integrable.
Proof. For any $X, Y \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D \oplus\{\xi\})$, then $\Phi Z \in \Gamma(D)$ holds. By using Lemma 2.1 and (1.1) we obtain

$$
\begin{equation*}
g\left(-A_{\Phi Y} X+A_{\Phi X} Y, \Phi Z\right)=0, \eta([X, Y])=0 . \tag{2.13}
\end{equation*}
$$

On the other hand, by using (1.5) we get

$$
\begin{equation*}
g\left(2\left(\bar{\nabla}_{X} \Phi\right) Y, \Phi Z\right)=0 \tag{2.14}
\end{equation*}
$$

Taking into account that a Sasakian manifold is a nearly Sasakian manifold, by using (2.13) and (2.14) we have (2.1). By using theorem 2.1, then the distribution D^{\perp} is integrable.

Theorem 2.2. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
g\left(A_{\Phi X} Y-A_{\Phi Y} X-2 \Phi \nabla_{X} Y, \Phi Z\right)=\eta([X, Y]) \eta(Z) \tag{2.15}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D \oplus\{\xi\})$.
Proof. By using (2.4) and (2.8), we obtain
(2.16) $\Phi[X, Y]=$

$$
2 g(X, Y) \xi+A_{\Phi Y} X-A_{\Phi X} Y+\nabla_{X}^{\perp} \Phi Y-\nabla_{Y}^{\perp} \Phi X+2 \Phi \nabla_{X} Y+2 \Phi h(X, Y)
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$. For any $Z \in \Gamma(D \oplus\{\xi\})$, then $\Phi Z \in \Gamma(D)$. hence, we have

$$
\begin{equation*}
g\left(2 g(X, Y) \xi+\nabla_{X}^{\perp} \Phi Y-\nabla_{Y}^{\perp} \Phi X, \Phi Z\right)=0 . \tag{2.17}
\end{equation*}
$$

From (1.2), we get

$$
\begin{equation*}
g(2 \Phi h(X, Y), \Phi Z)=0 \tag{2.18}
\end{equation*}
$$

By using (1.2), (2.16), (2.17) and (2.18), we obtain

$$
\begin{equation*}
g([X, Y], Z)=-g\left(A_{\Phi X} Y-A_{\Phi Y} X-2 \Phi \nabla_{X} Y, \Phi Z\right)+\eta([X, Y]) \eta(Z) \tag{2.19}
\end{equation*}
$$

Thus, $[X, Y] \in \Gamma\left(D^{\perp}\right)$ holds if and only if (2.15) is satisfied.

Lemma 2.2 ([4]). Let \bar{M} be a nearly Sasakian Manifold. Then

$$
\begin{align*}
& {[\Phi, \Phi](X, Y)=4 \Phi\left(\bar{\nabla}_{Y} \Phi\right) X+\eta(Y) \bar{\nabla}_{X} \xi+X \eta(Y) \xi-\eta\left(\bar{\nabla}_{X} Y\right) \xi} \tag{2.20}\\
& \quad-2 g(X, \Phi Y) \xi+\eta(X) \Phi Y-\eta(X) \bar{\nabla}_{Y} \xi-Y \eta(X) \xi+\eta\left(\bar{\nabla}_{Y} X\right) \xi \\
& \quad+2 g(Y, \Phi X) \xi-\eta(Y) \Phi X+4 g(X, Y) \xi-2 \eta(Y) X-2 \eta(X) Y,
\end{align*}
$$

for any $X, Y \in \Gamma(T \bar{M})$.
Lemma 2.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then

$$
\begin{align*}
2 \Phi[X, Y]=-4 g(X, Y) \xi & -2 A_{\Phi Y} X+2 A_{\Phi X} Y+2 \nabla_{X}^{\perp} \Phi Y \tag{2.21}\\
& -2 \nabla_{Y}^{\perp} \Phi X-\Phi[\Phi, \Phi](X, Y)+4 \eta\left(\left(\bar{\nabla}_{Y} \Phi\right) X\right) \xi
\end{align*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$.
Proof. By using (2.20) and (1.1), we obtain

$$
\begin{equation*}
\Phi[\Phi, \Phi](X, Y)=4 \Phi^{2}\left(\bar{\nabla}_{Y} \Phi\right) X=-4\left(\bar{\nabla}_{Y} \Phi\right) X+4 \eta\left(\left(\bar{\nabla}_{Y} \Phi\right) X\right) \xi \tag{2.22}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$. From (2.22) and (2.7), we get

$$
\begin{align*}
\Phi[\Phi, \Phi](X, Y)=-4 g(X, Y) & \xi-2 A_{\Phi Y} X+2 A_{\Phi X} Y+2 \nabla_{X}^{\perp} \Phi Y \tag{2.23}\\
& -2 \nabla_{Y}^{\perp} \Phi X-2 \Phi[X, Y]+4 \eta\left(\left(\bar{\nabla}_{Y} \Phi\right) X\right) \xi
\end{align*}
$$

By using (2.23), we have (2.21).
Theorem 2.3. Let M be a semi-invariant submanifold of a nearly Sasakian manifold \bar{M}. Then the distribution D^{\perp} is integrable if and only if

$$
\begin{equation*}
g\left(2 A_{\Phi Y} X-2 A_{\Phi X} Y+\Phi[\Phi, \Phi](X, Y), \Phi Z\right)=\eta([X, Y]) \eta(Z) \tag{2.24}
\end{equation*}
$$

for any $X, Y \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D \oplus\{\xi\})$.
Proof. For any $X, Y \in \Gamma\left(D^{\perp}\right)$ and $Z \in \Gamma(D \oplus\{\xi\})$, then $\Phi Z \in \Gamma(D)$. Hence, we obtain

$$
\begin{equation*}
g\left(-4 g(X, Y) \xi+2 \nabla \frac{\perp}{X} \Phi Y-2 \nabla \stackrel{\perp}{Y} \Phi X+4 \eta\left(\left(\bar{\nabla}_{Y} \Phi\right) X\right) \xi, \Phi Z\right)=0 \tag{2.25}
\end{equation*}
$$

By using (2.21), (1.2) and (2.25), we get

$$
\begin{align*}
& 2 g([X, Y], Z)=g(2 \Phi[X, Y], \Phi Z)+2 \eta([X, Y]) \eta(Z) \tag{2.26}\\
& \quad=g\left(-2 A_{\Phi Y} X+2 A_{\Phi X} Y-\Phi[\Phi, \Phi](X, Y), \Phi Z\right)+\eta([X, Y]) \eta(Z)
\end{align*}
$$

Thus, $[X, Y] \in \Gamma\left(D^{\perp}\right)$ holds if and only if (2.24) is satisfied.

References

[1] A. Bejancu. Geometry of CR-submanifolds, volume 23 of Mathematics and its Applications (East European Series). D. Reidel Publishing Co., Dordrecht, 1986.
[2] H. Endō. Invariant submanifolds in a K-contact Riemannian manifold. Tensor (N.S.), 28:154-156, 1974.
[3] M.Okumura. Submanifolds of a Kaehlerian manifold and a Sasakian manifold. Lecture Notes, Michigan State Univ., 1971.
[4] Y. Wan. Integrabilities of distribution $D \oplus\{\xi\}$ on a nearly Sasakian manifold. J. Changsha Univ. Sci. Technol., Nat. Sci., 4(2):72-74, 2007.
[5] K. Yano and S. Ishihara. Invariant submanifolds of an almost contact manifold. Kōdai Math. Sem. Rep., 21:350-364, 1969.

Received on September 20, 2008., revised on May 12, 2009; accepted on June 28, 2009

Department of Mathematics and Computing Science Changsha University of Science and technology Changsha, Hunan, P. R. China
E-mail address: wany@csust.edu.cn
Department of Mathematics and Statistics
Northeast Normal University
Changchun, P. R. China
E-mail address: peidh340@nenu.edu.cn

[^0]: 2000 Mathematics Subject Classification. 53C25.
 Key words and phrases. nearly Sasakian manifold, semi-invariant submanifold, distribution, connection, integrable.

 Supported by Foundation of Educational Committee of Hunan Province No. 05C267.

