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SOME NEW FUNCTIONAL EQUATIONS CONNECTED
WITH CHARACTERIZATION PROBLEMS

KÁROLY LAJKÓ AND FRUZSINA MÉSZÁROS

Abstract. Special cases of the functional equation

h1

(
x

c (y)

)
1

c (y)
fY (y) = h2

(
y

d (x)

)
1

d (x)
fX (x) ,

supposed to hold for almost all (x, y) ∈ R2
+ and for the given functions c, d

and the unknown functions h1, h2, fX and fY , are investigated.

1. Introduction

Functional equations have many interesting applications in characterization
problems of probability theory.

Probably Narumi was the first who studied some related questions in [12].
Later in [2] Arnold, Castillo and Sarabia showed how solutions of functional
equations can be used in characterizing joint distributions from conditional
distributions. They considered among others all possible distributions with
given regression functions with conditionals in scale families.

They obtained those equations in the following way.
Let (X, Y ) be an absolutely continuous bivariate random variable, whose

joint, marginal and conditional density functions are denoted by f(X,Y ), fX , fY ,
fX|Y , fY |X respectively. One can write f(X,Y ) in two different ways and obtain
the functional equation

(1) f(X,Y ) (x, y) = fX|Y (x, y) fY (y) = fY |X (x, y) fX (x)

for all (x, y) ∈ R2 (or for all (x, y) ∈ R2
+ if we restrict our investigations to the

random variable (X, Y ) with support in the positive quadrant).
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They studied joint densities whose conditional densities satisfy

(2) fX|Y (x, y) = h1

(
x

c (y)

)
1

c (y)

and

(3) fY |X (x, y) = h2

(
y

d (x)

)
1

d (x)

for given positive functions c and d, where h1, h2 are positive unknown func-
tions.

Then one can deduce from (1) the functional equation

(4) h1

(
x

c (y)

)
1

c (y)
fY (y) = h2

(
y

d (x)

)
1

d (x)
fX (x) .

For a special choice of the given functions Arnold, Castillo and Sarabia solved
(4) assuming the existence of derivatives of the unknown functions h1, h2, fY ,
fX up to the second order. They restricted the search to random variable
(X, Y ) with support in the positive quadrant and thereby it was possible to
determine the nature of the joint distribution.

In this paper, under special choices of the given functions, we assume only
the measurability of the positive unknown functions h1, h2, fY , fX and that
the so obtained equations hold for almost all pairs (x, y) from R2

+.
We prove that the measurable solutions of (4) satisfied almost everywhere –

in the different special cases – can uniquely be extended to continuous functions
and when the measurable functions are replaced by the continuous functions,
equation (4) is satisfied everywhere on R2

+.
Here we shall use the following result of A. Járai (see [5] and [6]).

Theorem 1 (Járai). Let Z be a regular topological space, Zi (i = 1, 2, . . . , n)
be topological spaces and T be a first countable topological space. Let Y be an
open subset of Rk, Xi an open subset of Rri, ri ∈ Z, (i = 1, 2, . . . , n) and D an
open subset of T × Y . Let furthermore T ′ ⊂ T be a dense subset, f : T ′ → Z,
gi : D → Xi and h : D × Z1 × · · · × Zn → Z. Suppose that the function fi is
almost everywhere defined on Xi (with respect to the ri-dimensional Lebesgue
measure) with values in Zi (i = 1, 2, . . . n) and the following conditions are
satisfied:

(1) for all t ∈ T ′ and for almost all y ∈ Dt = {y ∈ Y | (t, y) ∈ D}
(5) f(t) = h(t, y, f1(g1(t, y)), . . . , fn(gn(t, y)));

(2) for each fixed y in Y , the function h is continuous in the other variables;
(3) fi is Lebesgue measurable on Xi (i = 1, 2, . . . , n);
(4) gi and the partial derivative ∂gi

∂y
are continuous on D (i = 1, 2, . . . , n);

(5) for each t ∈ T there exist a y such that (t, y) ∈ D and the partial
derivative ∂gi

∂y
has the rank ri at (t, y) ∈ D (i = 1, 2, . . . , n).
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Then there exists a unique continuous function f̃ such that f = f̃ almost
everywhere on T , and if f is replaced by f̃ then equation (5) is satisfied almost
everywhere on D.

A different approach of this topic can be found in our paper [10] accepted
to publication in Tatra Mountains Mathematical Publications.

2. First problem

Let us consider the case, when the functions c, d are of the form

c (y) =
1

α + y
, d (x) =

1

β + x
(x, y > 0) ,

where α, β are non-negative constants.
From (4) we get the equation

(6) h1 ((α + y) x) (α + y) fY (y) = h2 ((β + x) y) (β + x) fX (x)

for almost all (x, y) ∈ R2
+, where h1, h2, fX , fY : R+ → R+ are measurable

unknown functions, α, β ≥ 0 are arbitrary constants.
Easy calculation shows the validity of the following technical lemma.

Lemma 1. The positive measurable functions h1, h2, fX , fY satisfy equation
(6) for almost all (x, y) ∈ R2

+ if and only if the measurable functions G1, G2,
F1, F2 : R+ → R defined by

G1 (t) = ln [h1 (t)] , G2 (t) = ln [h2 (t)] ,

F1 (t) = ln [(α + t) fY (t)] , F2 (t) = ln [(β + t) fX (t)] , (t ∈ R+)

satisfy the functional equation

(7) G1 (x (α + y)) + F1 (y) = G2 (y (β + x)) + F2 (x) ,

for almost all (x, y) ∈ R2
+, where α, β ≥ 0 are arbitrary constants.

To get the measurable solution of equation (7) (and so (6)) satisfied almost
everywhere, we distinguish 2 cases:

(1) α2 + β2 6= 0;
(2) α = β = 0.

2.1. The α2 + β2 6= 0 case. In this case, by the help of Theorem 1, we can
prove the following

Theorem 2. If the measurable functions G1, G2, F1, F2 : R+ → R satisfy equa-
tion (7) for almost all (x, y) ∈ R2

+, then there exist unique continuous functions

G̃1, G̃2, F̃1, F̃2 : R+ → R such that G̃1 = G1, G̃2 = G2, F̃1 = F1 and F̃2 = F2

almost everywhere, and if G1, G2, F1, F2 are replaced by G̃1, G̃2, F̃1, F̃2 respec-
tively, then equation (7) is satisfied everywhere on R2

+.
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Proof. First we prove that there exists unique continuous function G̃1 which

is almost everywhere equal to G1 on R+ and replacing G1 by G̃1, equation (7)
is satisfied almost everywhere.

With the substitution t = x (α + y) we get from (7) the equation

(8) G1 (t) = G2

(
y

(
β +

t

α + y

))
+ F2

(
t

α + y

)
− F1 (y)

which is satisfied for almost all (t, y) ∈ R2
+. By Fubini’s Theorem it follows

that there exists T ′ ⊆ R+ of full measure such that for all t ∈ T ′ equation (8)
is satisfied for almost every y ∈ Dt, where

Dt =
{
y ∈ R+

∣∣(t, y) ∈ R2
+

}
= R+.

Let us define the functions g1, g2, g3, h in the following way:

g1 (t, y) = y

(
β +

t

α + y

)
, g2 (t, y) =

t

α + y
,

g3 (t, y) = y, h (t, y, z1, z2, z3) = z1 + z2 − z3,

and let us now apply Theorem 1 of Járai to (8) with the following casting:
G1 = f , G2 = f1, F2 = f2, F1 = f3, Z = Zi = R, T = Y = Xi = R+,
(i = 1, 2, 3).

Hence the first assumption in Theorem 1 with respect to (8) holds. In
the event of fixed y, the function h is continuous in the other variables, so
the second assumption holds too. Because the functions in equation (8) are
measurable, the third assumption is trivial.

The functions gi are continuous, the partial derivatives

D2g1 (t, y) =
tα

(y + α)2 + β, D2g2 (t, y) = − t

(y + α)2 , D2g3 (t, y) = 1

are also continuous, so the fourth assumption holds too.
For each t ∈ R+ there exist a y ∈ R+ such that (t, y) ∈ R2

+ and the partial
derivatives don’t equal zero in (t, y), so they have rank 1. Thus the last
assumption is satisfied in Theorem 1.

So we get from Theorem 1 that there exists unique continuous function

G̃1 which is almost everywhere equal to G1 on R+ and G̃1, G2, F1, F2 satisfy
equation (7) almost everywhere, which is equivalent to the equation

(9) G̃1 (x (α + y)) + F1 (y) = G2 (y (β + x)) + F2 (x)

for almost all (x, y) ∈ R2
+.

By a similar argument we can prove the same for the function G2.
From equation (9) with the substitution t = y (β + x) we get the equation

G2 (t) = G̃1

((
t

y
− β

)
(α + y)

)
+ F1 (y)− F2

(
t

y
− β

)

which with a suitable casting, by Fubini’s Theorem, and the fact that the
assumptions of Theorem 1 are fulfilled again, gives us that there exists unique
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continuous function G̃2 which is almost everywhere equal to G2 on R+ and G̃1,

G̃2, F1, F2 satisfy equation (7) almost everywhere, i.e.

(10) G̃1 (x (α + y)) + F1 (y) = G̃2 (y (β + x)) + F2 (x)

for almost all (x, y) ∈ R2
+.

There exist such x0 and y0 so that with the substitutions x = x0 and y = y0,
respectively, we get from equation (10) that

(11) F1 (y) = G̃2 (y (β + x0)) + F2 (x0)− G̃1 (x0 (α + y))

holds for almost all y ∈ R+, and

(12) F2 (x) = G̃1 (x (α + y0)) + F1 (y0)− G̃2 (y0 (β + x))

holds for almost all x ∈ R+. Since G̃1, G̃2 : R+ → R are continuous, therefore

there exist unique continuous functions F̃1, F̃2 : R+ → R, defined by the right-
hand side of the last two equality, which are almost everywhere equal to F1 and

F2 on R+ respectively, and if we replace F1 and F2 by F̃1 and F̃2, respectively,
the functional equation

(13) G̃1 (x (α + y)) + F̃1 (y) = G̃2 (y (β + x)) + F̃2 (x)

is satisfied almost everywhere on R2
+.

Both side of (13) define continuous functions on R2
+, which are equal to

each other on a dense subset of R2
+, therefore we obtain that (13) is satisfied

everywhere on R2
+.

Further G1 = G̃1, G2 = G̃2, F1 = F̃1 and F2 = F̃2 almost everywhere on
R+. ¤

Therefore it is enough to determine the general continuous solutions G̃1, G̃2,

F̃1, F̃2 : R+ → R of equation

(14) G̃1 (x (α + y)) + F̃1 (y) = G̃2 (y (β + x)) + F̃2 (x) , (x, y) ∈ R2
+.

2.1.1. The α > 0, β > 0 case. From (14) with the substitutions x → βx,
y → αy and the notions

G1 (t) = G̃1 (αβt) , G2 (t) = G̃2 (αβt) ,

F 1 (t) = F̃1 (αt) , F 2 (t) = F̃2 (βt)

the following equation arises

(15) G1 (x (1 + y)) + F 1 (y) = G2 (y (1 + x)) + F 2 (x) , (x, y) ∈ R2
+.

Equation (15) was investigated in [9] by Lajkó, where the general measurable
(continuous) solutions were given, and the following statement was proved.
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Theorem 3. [see [9]] If the continuous functions G1, G2, F 1, F 2 : R+ → R
satisfy the functional equation (15), then there exist constants c1, c2, γ, δ1, δ2,
δ3, δ4 ∈ R with δ1 + δ3 = δ2 + δ4 such that

G1 (x) = c1 ln x + γx + δ1,

G2 (x) = c2 ln x + γx + δ2,

F 1 (x) = c2 ln x− c1 ln (x + 1) + γx + δ3,

F 2 (x) = c1 ln x− c2 ln (x + 1) + γx + δ4

for all x ∈ R+.

Now we can summarize the results of Lemma 1 and Theorems 2, 3 in the
following theorem.

Theorem 4. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (6) (in case α, β > 0) for almost all (x, y) ∈ R2

+ if and
only if

h1 (x) =

(
x

αβ

)c1

exp

(
γ

αβ
x + δ1

)
a.e. x ∈ R+,

h2 (x) =

(
x

αβ

)c2

exp

(
γ

αβ
x + δ2

)
a.e. x ∈ R+,

fY (y) = αc1−c2
yc2

(y + α)c1+1 exp
(γ

α
y + δ3

)
a.e. y ∈ R+,

fX (x) = βc2−c1
xc1

(x + β)c2+1 exp

(
γ

β
x + δ4

)
a.e. x ∈ R+,

where c1, c2, γ, δ1, δ2, δ3, δ4 ∈ R are arbitrary constants with δ1 + δ3 = δ2 + δ4.

Proof. Theorems 2 and 3 imply that the measurable functions G̃1, G̃2, F̃1,

F̃2 are almost everywhere equal to the functions G1, G2, F 1, F 2 given in
Theorem 3, respectively. Then, by Lemma 1, we can easily get our result for
the functions h1, h2, fX , fY .

On the other hand, it is easy to see that functions h1, h2, fX , fY , given in
this theorem, satisfy the functional equation (6) for almost all (x, y) ∈ R2

+ if
δ1 + δ3 = δ2 + δ4 ¤

Remark 1. The previous theorem shows that h1 and h2 are gamma densities
(with parameters − γ

αβ
, c1 + 1 and − γ

αβ
, c2 + 1, respectively). Thus (X,Y ) has

gamma conditionals in this case.

Remark 2. It is easy to see that in this special case the joint density function
is of the form

f(X,Y ) (x, y) = exp (δ1 + δ3)

(
x

β

)c1 ( y

α

)c2
exp

(
γ

(
x

β
+

xy

αβ
+

y

α

))
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for almost all (x, y) ∈ R2
+, i.e. the class of all solutions to (2) and (3) (in case

c (y) = 1
α+y

, d (x) = 1
β+x

) coincides with the MODEL II gamma conditional

class (see [2]).

2.1.2. The α = 0, β > 0 case. From (14) the following equation arises

G̃1 (xy) + F̃1 (y) = G̃2 (y (β + x)) + F̃2 (x) , (x, y) ∈ R2
+,

which with the substitutions

x → β
x

y
, y → y

β

gives us the equation

G̃1 (x) + F̃1

(
y

β

)
= G̃2 (x + y) + F̃2

(
β

x

y

)
, (x, y) ∈ R2

+.

With the definitions

F 1 (y) = F̃1

(
y

β

)
, F 2 (x) = F̃2 (βx)

we get

(16) G̃1 (x) + F 1 (y) = G̃2 (x + y) + F 2

(
x

y

)
, (x, y) ∈ R2

+.

The following theorem can be derived from the main results of the papers
[3], [8].

Theorem 5. The continuous functions G̃1, G̃2, F 1, F 2 : R+ → R satisfy the
functional equation (16) if and only if

G̃1 (x) = γx + c1 ln x + δ1,

G̃2 (x) = γx + c2 ln x + δ2,

F 1 (x) = γx + (c2 − c1) ln x + δ3,

F 2 (x) = c1 ln x− c2 ln (x + 1) + δ4

for all x ∈ R+, where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are constants, such that
δ1 + δ3 = δ2 + δ4.

Now we can summarize the results of Lemma 1 and Theorems 2, 5 in the
following theorem.

Theorem 6. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (6) (in case α = 0, β > 0) for almost all (x, y) ∈ R2

+ if
and only if

h1 (x) = xc1 exp (γx + δ1) a.e. x ∈ R+,

h2 (x) = xc2 exp (γx + δ2) a.e. x ∈ R+,

fY (y) = βc2−c1yc2−c1−1 exp (βγy + δ3) a.e. y ∈ R+,

fX (x) = βc2−c1xc1 (x + β)−c2−1 exp (δ4) a.e. x ∈ R+,
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where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are arbitrary constants with δ1 + δ3 = δ2 + δ4.

Proof. It goes similarly as in the case of Theorem 4. ¤
Remark 3. The previous theorem shows that h1 and h2 are gamma densities
(with parameters −γ, c1 + 1 and −γ, c2 + 1, respectively). Thus (X, Y ) has
gamma conditionals in this case.

Remark 4. It is easy to see that in this special case the joint density function
is of the form

f(X,Y ) (x, y) = exp (δ1 + δ3) βc2−c1xc1yc2 exp (γy (x + β))

for almost all (x, y) ∈ R2
+.

2.1.3. The α > 0, β = 0 case. From (14) the following equation arises

G̃1 (x (α + y)) + F̃1 (y) = G̃2 (xy) + F̃2 (x) , (x, y) ∈ R2
+,

which with the substitutions

x → y

α
, y → α

x

y

gives us the equation

G̃1 (x + y) + F̃1

(
α

x

y

)
= G̃2 (x) + F̃2

( y

α

)
, (x, y) ∈ R2

+.

With the definitions

F 1 (x) = F̃1 (αx) , F 2 (y) = F̃2

( y

α

)

we get

(17) G̃2 (x) + F 2 (y) = G̃1 (x + y) + F 1

(
x

y

)
, (x, y) ∈ R2

+.

Equation (17) is dual to (16) by simple changing
(
G̃1, F 1

)
into

(
G̃2, F 2

)
,

thus by the help of Theorem 5 we get the following result.

Theorem 7. The continuous functions G̃1, G̃2, F 1, F 2 : R+ → R satisfy the
functional equation (17) if and only if

G̃1 (x) = γx + c2 ln x + δ2,

G̃2 (x) = γx + c1 ln x + δ1,

F 1 (x) = c1 ln x− c2 ln (x + 1) + δ4,

F 2 (x) = γx + (c2 − c1) ln x + δ3

for all x ∈ R+, where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are constants such that δ1+δ3 =
δ2 + δ4.

Now we can summarize the results of Lemma 1 and Theorems 2, 7 in the
following theorem.
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Theorem 8. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (6) (in case α > 0, β = 0) for almost all (x, y) ∈ R2

+ if
and only if

h1 (x) = xc2 exp (γx + δ2) a.e. x ∈ R+,

h2 (x) = xc1 exp (γx + δ1) a.e. x ∈ R+,

fY (y) = αc2−c1yc1 (y + α)−c2−1 exp (δ4) a.e. y ∈ R+,

fX (x) = αc2−c1xc2−c1−1 exp (αγx + δ3) a.e. x ∈ R+,

where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are arbitrary constants with δ1 + δ3 = δ2 + δ4.

Proof. It goes similarly as in the case of Theorem 4. ¤
Remark 5. The previous theorem shows that h1 and h2 are gamma densities
(with parameters −γ, c2 + 1 and −γ, c1 + 1, respectively). Thus (X, Y ) has
gamma conditionals in this case.

Remark 6. It is easy to see that in this special case the joint density function
is of the form

f(X,Y ) (x, y) = exp (δ1 + δ3) αc2−c1xc2yc1 exp (γx (y + α))

for almost all (x, y) ∈ R2
+.

2.2. The α = β = 0 case. From (7) the following equation arises

G1 (xy) + F1 (y) = G2 (xy) + F2 (x)

and with the notations

H (t) = G1 (t)−G2 (t) , F (t) = F2 (t) , G (t) = −F1 (t)

we get the equation

(18) H (xy) = F (x) + G (y)

for almost all (x, y) ∈ R2
+, where F, G,H : R+ → R are measurable functions.

Similarly as in Theorem 2, by the help of Theorem 1, we can prove the
following

Theorem 9. If the measurable functions F, G,H : R+ → R satisfy equation
(18) for almost all (x, y) ∈ R2

+, then there exist unique continuous functions

F̃ , G̃, H̃ : R+ → R such that F̃ = F , G̃ = G and H̃ = H almost everywhere,

and if F, G,H are replaced by F̃ , G̃, H̃ respectively, then equation (18) is
satisfied everywhere on R2

+.

Therefore we only need the general continuous solutions F̃ , G̃, H̃ : R+ → R
of the Pexider equation

(19) H̃ (xy) = F̃ (x) + G̃ (y) , (x, y) ∈ R2
+

which are the following:

H̃ (t) = c ln t + δ1 + δ2, (t ∈ R+) ,
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F̃ (t) = c ln t + δ1, (t ∈ R+) ,

G̃ (t) = c ln t + δ2, (t ∈ R+) ,

where c, δ1, δ2 ∈ R are arbitrary constants (see e.g. [1], [7]). By the help of
these solutions we can state the following

Theorem 10. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (6) (in case α = β = 0) for almost all (x, y) ∈ R2

+ if and
only if

h1 (x) = eδ1+δ2 exp (G2 (x)) xc a.e. x ∈ R+,

h2 (x) = exp (G2 (x)) a.e. x ∈ R+,

fX (x) = eδ1xc−1 a.e. x ∈ R+,

fY (x) = e−δ2x−c−1 a.e. x ∈ R+,

where G2 : R+ → R is an arbitrary measurable function and c, δ1, δ2 ∈ R are
arbitrary constants.

Remark 7. The joint density function in this case has the form

f(X,Y ) (x, y) = xceG2(xy)+δ1

for almost all (x, y) ∈ R2
+.

3. Second problem

The second inquired case of the general equation (4) is the following. Let
the functions c, d be linear, i.e.

c (y) = λ1 (α + y) , d (x) = λ2 (β + x) (x, y > 0) ,

where λ1, λ2 are positive, α and β are non-negative constants.
Hence, from (4) we get the equation

(20) h1

(
x

λ1 (α + y)

)
1

λ1 (α + y)
fY (y) = h2

(
y

λ2 (β + x)

)
1

λ2 (β + x)
fX (x)

for almost all (x, y) ∈ R2
+, where h1, h2, fX , fY : R+ → R+ are measurable

unknown functions, λ1, λ2 ∈ R+, α, β ≥ 0 are arbitrary constants.
Easy calculation shows the validity of the following technical lemma.

Lemma 2. The positive measurable functions h1, h2, fX , fY satisfy equation
(20) for almost all (x, y) ∈ R2

+ if and only if the measurable functions G1, G2,
F1, F2 : R+ → R defined by

G1 (t) = − ln

[
h2

(
1

λ2t

)]
, G2 (t) = − ln

[
h1

(
1

λ1t

)]
,

F1 (t) = ln

[
fY (t)

λ1 (α + t)

]
, F2 (t) = ln

[
fX (t)

λ2 (β + t)

]
, (t ∈ R+)
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satisfy the functional equation

(21) G1

(
x + β

y

)
+ F1 (y) = G2

(
y + α

x

)
+ F2 (x) ,

for almost all (x, y) ∈ R2
+, where α, β ≥ 0 are arbitrary constants.

To get the measurable solution of equation (21) (and so (20)) satisfied almost
everywhere, we distinguish 2 cases:

(1) α2 + β2 6= 0;
(2) α = β = 0.

3.1. The α2 + β2 6= 0 case. Similarly as in Theorem 2, by the help of Theo-
rem 1, we can prove the following

Theorem 11. If the measurable functions G1, G2, F1, F2 : R+ → R satisfy
equation (21) for almost all (x, y) ∈ R2

+, then there exist unique continuous

functions G̃1, G̃2, F̃1, F̃2 : R+ → R such that G̃1 = G1, G̃2 = G2, F̃1 = F1 and

F̃2 = F2 almost everywhere, and if G1, G2, F1, F2 are replaced by G̃1, G̃2, F̃1,

F̃2 respectively, then equation (21) is satisfied everywhere on R2
+.

Proof. First we prove that there exists unique continuous function G̃1 which is

almost everywhere equal to G1 on R+ and replacing G1 by G̃1, equation (21)
is satisfied almost everywhere.

With the substitution

t =
x + β

y

we get from (21) the equation

(22) G1 (t) = G2

(
y + α

ty − β

)
+ F2 (ty − β)− F1 (y)

which is satisfied for almost all (t, y) ∈ R2
+. By Fubini’s Theorem it follows

that there exists T ′ ⊆ R+ of full measure such that for all t ∈ T ′ equation (22)
is satisfied for almost every y ∈ Dt, where

Dt =
{
y ∈ R+

∣∣(t, y) ∈ R2
+

}
= R+.

Let us define the functions g1, g2, g3, h in the following way:

g1 (t, y) =
y + α

ty − β
, g2 (t, y) = ty − β,

g3 (t, y) = y, h (t, y, z1, z2, z3) = z1 + z2 − z3,

and let us now apply Theorem 1 of Járai to (22) with the following casting:
G1 = f , G2 = f1, F2 = f2, F1 = f3, Z = Zi = R, T = Y = Xi = R+,
(i = 1, 2, 3).

Hence the first assumption in Theorem 1 with respect to (22) holds. In
the event of fixed y, the function h is continuous in the other variables, so
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the second assumption holds too. Because the functions in equation (22) are
measurable, the third assumption is trivial.

The functions gi are continuous, the partial derivatives

D2g1 (t, y) = − β + tα

(ty − β)2 , D2g2 (t, y) = t, D2g3 (t, y) = 1

are also continuous, so the fourth assumption holds too.
For each t ∈ R+ there exist a y ∈ R+ such that (t, y) ∈ R2

+ and the partial
derivatives don’t equal zero in (t, y), so they have rank 1. Thus the last
assumption is satisfied in Theorem 1.

So we get from Theorem 1 that there exists unique continuous function

G̃1 which is almost everywhere equal to G1 on R+ and G̃1, G2, F1, F2 satisfy
equation (21) almost everywhere, which is equivalent to the equation

(23) G̃1

(
x + β

y

)
+ F1 (y) = G2

(
y + α

x

)
+ F2 (x)

for almost all (x, y) ∈ R2
+.

By a similar argument we can prove the same for the function G2.
From equation (23) with the substitution

t =
y + α

x

we get the equation

G2 (t) = G̃1

(
y + α + βt

ty

)
+ F1 (y)− F2

(
y + α

t

)

which with a suitable casting, by Fubini’s Theorem, and the fact that the
assumptions of Theorem 1 are fulfilled again, gives us that there exists unique

continuous function G̃2 which is almost everywhere equal to G2 on R+ and G̃1,

G̃2, F1, F2 satisfy equation (21) almost everywhere, i.e.

(24) G̃1

(
x + β

y

)
+ F1 (y) = G̃2

(
y + α

x

)
+ F2 (x)

for almost all (x, y) ∈ R2
+.

There exist such x0 and y0 so that with the substitutions x = x0 and y = y0,
respectively, we get from equation (24) that

(25) F1 (y) = G̃2

(
y + α

x0

)
+ F2 (x0)− G̃1

(
x0 + β

y

)

holds for almost all y ∈ R+, and

(26) F2 (x) = G̃1

(
x + β

y0

)
+ F1 (y0)− G̃2

(
y0 + α

x

)
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holds for almost all x ∈ R+. Since G̃1, G̃2 : R+ → R are continuous, therefore

there exist unique continuous functions F̃1, F̃2 : R+ → R, defined by the right-
hand side of the last two equality, which are almost everywhere equal to F1 and

F2 on R+ respectively, and if we replace F1 and F2 by F̃1 and F̃2, respectively,
the functional equation

(27) G̃1

(
x + β

y

)
+ F̃1 (y) = G̃2

(
y + α

x

)
+ F̃2 (x)

is satisfied almost everywhere on R2
+.

Both side of (27) define continuous functions on R2
+, which are equal to

each other on a dense subset of R2
+, therefore we obtain that (27) is satisfied

everywhere on R2
+.

Further G1 = G̃1, G2 = G̃2, F1 = F̃1 and F2 = F̃2 almost everywhere on
R+. ¤

Hence it is enough to determine the general continuous solutions G̃1, G̃2,

F̃1, F̃2 : R+ → R of equation

(28) G̃1

(
x + β

y

)
+ F̃1 (y) = G̃2

(
y + α

x

)
+ F̃2 (x) , (x, y) ∈ R2

+.

3.1.1. The α > 0, β > 0 case. From (28) with the substitutions x → βx,
y → αy and the notions

G1 (t) = G̃1

(
β

α
t

)
, G2 (t) = G̃2

(
α

β
t

)
,

F 1 (t) = F̃1 (αt) , F 2 (t) = F̃2 (βt)

the following equation arises

(29) G1

(
x + 1

y

)
+ F 1 (y) = G2

(
y + 1

x

)
+ F 2 (x) , (x, y) ∈ R2

+.

Equation (29) was investigated in [4] by Glavosits and Lajkó and the fol-
lowing result was proved.

Theorem 12. [see [4]] If the continuous (or measurable) functions G1, G2, F 1,
F 2 : R+ → R satisfy the functional equation (29), then there exist constants
p1, p2, q, d1, d2, d3, d4 ∈ R with d1 + d3 = d2 + d4 such that

G1 (x) = p1 ln x + q ln (x + 1) + d1,

G2 (x) = p2 ln x + q ln (x + 1) + d2,

F 1 (x) = (p1 + q) ln x + p2 ln (x + 1) + d3,

F 2 (x) = (p2 + q) ln x + p1 ln (x + 1) + d4

for all x ∈ R+
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Finally, as an immediate consequence of Lemma 2, Theorems 11 and 12, we
get the following result.

Theorem 13. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy the
equation (20) (in case α, β > 0) for almost all (x, y) ∈ R2

+ if and only if

h1 (x) = e−d2

(
λ1α

β

)p2

xp2+q

(
x +

β

λ1α

)−q

a.e. x ∈ R+,

h2 (x) = e−d1

(
λ2β

α

)p1

xp1+q

(
x +

α

λ2β

)−q

a.e. x ∈ R+,

fX (x) = ed4
λ2

βp1+p2+q
xp2+q (x + β)p1+1 a.e. x ∈ R+,

fY (x) = ed3
λ1

αp1+p2+q
xp1+q (x + α)p2+1 a.e. x ∈ R+,

where p1, p2, q, d1, d2, d3, d4 ∈ R are arbitrary constants with d1 +d3 = d2 +d4.

Proof. Theorem 11 and 12 imply that the measurable functions G1, G2, F1,

F2 are almost everywhere equal to the functions G̃1, G̃2, F̃1, F̃2 given in Theo-
rem 12. Finally, by Lemma 2, we get the result of our theorem to the functions
h1, h2, fX , fY .

It is easy to see that functions h1, h2, fX , fY , given in this theorem, indeed
satisfy the functional equation (20) for almost all (x, y) ∈ R2

+ if d1 + d3 =
d2 + d4. ¤

Remark 8. Theorem 13 shows that h1 and h2 are Pearson type VI distributions
(with parameters p2 + q + 1, −p2 − 1 and p1 + q + 1, −p1 − 1, respectively),
which are also called beta distributions of the second kind (see [2]). In this
case the marginals fX and fY has also the same Pearson type VI distribution.

Remark 9. One can get easily that in this case the joint density function is of
the form

f(X,Y ) (x, y) = exp (d3 − d2) α−p1β−p2xp2+qyp1+q (αx + βy + αβ)−q

for almost all (x, y) ∈ R2
+, thus the class of all solutions to (2) and (3) coincides

with an extension of the bivariate Pareto distribution introduced by Mardia
(see [2], [11]).

3.1.2. The α = 0, β > 0 case. From (28) the following equation arises

G̃1

(
x + β

y

)
+ F̃1 (y) = G̃2

(y

x

)
+ F̃2 (x) , (x, y) ∈ R2

+,

which with the substitutions

x → β
x

y
, y → 1

y
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gives us the equation

G̃1 (β (x + y)) + F̃1

(
1

y

)
= G̃2

(
1

βx

)
+ F̃2

(
β

x

y

)
, (x, y) ∈ R2

+.

With the definitions

G1 (x) = G̃1 (βx) , G2 (x) = G̃2

(
1

βx

)
,

F 1 (y) = −F̃1

(
1

y

)
, F 2 (x) = −F̃2 (βx)

we get

(30) G2 (x) + F 1 (y) = G1 (x + y) + F 2

(
x

y

)
, (x, y) ∈ R2

+.

Equation (30) is dual to equation (16) as well, by replacing
(
G̃1, G̃2

)
by(

G2, G1

)
, thus it comes easily from Theorem 5 the following statement.

Theorem 14. The continuous functions G1, G2, F 1, F 2 : R+ → R satisfy the
functional equation (30) if and only if

G1 (x) = γx + c2 ln x + δ2,

G2 (x) = γx + c1 ln x + δ1,

F 1 (x) = γx + (c2 − c1) ln x + δ3,

F 2 (x) = c1 ln x− c2 ln (x + 1) + δ4

for all x ∈ R+, where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are constants, such that
δ1 + δ3 = δ2 + δ4.

Now we can summarize the results of Lemma 2 and Theorems 11, 14 in the
following theorem.

Theorem 15. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (20) (in case α = 0, β > 0) for almost all (x, y) ∈ R2

+ if
and only if

h1 (x) =

(
β

λ1

)c1

x−c1 exp

(
−γλ1

β
x− δ1

)
a.e. x ∈ R+,

h2 (x) = (βλ2)
c2 xc2 exp

(
− γ

βλ2x
− δ2

)
a.e. x ∈ R+,

fY (y) = λ1y
c2−c1+1 exp

(
−γ

y
− δ3

)
a.e. y ∈ R+,

fX (x) = λ2β
c1−c2x−c1 (x + β)c2+1 exp (−δ4) a.e. x ∈ R+,

where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are arbitrary constants with δ1 + δ3 = δ2 + δ4.
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Remark 10. It is easy to see that in this special case the joint density function
is of the form

f(X,Y ) (x, y) = exp (−δ1 − δ3) βc1x−c1yc2 exp

(
−γ

β

x + β

y

)

for almost all (x, y) ∈ R2
+.

3.1.3. The α > 0, β = 0 case. From (28) the following equation arises

G̃1

(
x

y

)
+ F̃1 (y) = G̃2

(
y + α

x

)
+ F̃2 (x) , (x, y) ∈ R2

+,

which with the substitutions

x → 1

y
, y → α

x

y

gives us the equation

G̃1

(
1

αx

)
+ F̃1

(
α

x

y

)
= G̃2 (α (x + y)) + F̃2

(
1

y

)
, (x, y) ∈ R2

+.

With the definitions

G1 (x) = G̃1

(
1

αx

)
, G2 (x) = G̃2 (αx) ,

F 1 (x) = −F̃1 (αx) , F 2 (y) = −F̃2

(
1

y

)

we get

(31) G1 (x) + F 2 (y) = G2 (x + y) + F 1

(
x

y

)
, (x, y) ∈ R2

+.

Equation (31) is dual to (16) by replacing
(
G̃1, G̃2

)
by

(
G1, G2

)
and(

F 1, F 2

)
by

(
F 2, F 1

)
, thus, using again Theorem 5, we get

Theorem 16. The continuous functions G1, G2, F 1, F 2 : R+ → R satisfy the
functional equation (31) if and only if

G1 (x) = γx + c1 ln x + δ1,

G2 (x) = γx + c2 ln x + δ2,

F 1 (x) = c1 ln x− c2 ln (x + 1) + δ4,

F 2 (x) = γx + (c2 − c1) ln x + δ3

for all x ∈ R+, where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are constants, such that
δ1 + δ3 = δ2 + δ4.

Now we can summarize the results of Lemma 2 and Theorems 11, 16 in the
following theorem.
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Theorem 17. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (20) (in case α > 0, β = 0) for almost all (x, y) ∈ R2

+ if
and only if

h1 (x) = (αλ1)
c2 xc2 exp

(
− γ

αλ1x
− δ2

)
a.e. x ∈ R+,

h2 (x) =

(
α

λ2

)c1

x−c1 exp

(
−γλ2

α
x− δ1

)
a.e. x ∈ R+,

fY (y) = λ1α
c1−c2 (y + α)c2+1 y−c1 exp (−δ4) a.e. y ∈ R+,

fX (x) = λ2x
c2−c1+1 exp

(
−γ

x
− δ3

)
a.e. x ∈ R+,

where γ, c1, c2, δ1, δ2, δ3, δ4 ∈ R are arbitrary constants with δ1 + δ3 = δ2 + δ4.

Remark 11. It is easy to see that in this special case the joint density function
is of the form

f(X,Y ) (x, y) = exp (−δ2 − δ4) αc2xc1y−c2 exp

(
−γ

α

y + α

x

)

for almost all (x, y) ∈ R2
+.

3.2. The α = β = 0 case. From (21) the following equation arises

G1

(
x

y

)
+ F1 (y) = G2

(y

x

)
+ F2 (x)

and with the substitution x → xy and the notations

H (t) = F2 (t) , F (t) = G1 (t)−G2

(
1

t

)
, G (t) = F1 (t)

we get again the Pexider equation

H (xy) = F (x) + G (y)

for almost all (x, y) ∈ R2
+, where F, G,H : R+ → R are measurable functions.

Let us use the result of Theorem 9, hence we only need the general continuous

solutions F̃ , G̃, H̃ : R+ → R of the Pexider equation (15) for all (x, y) ∈ R2
+,

(the measureable solutions of the almost everywhere satisfied Pexider equation
are almost everywhere equal to these solutions), which are the following:

H̃ (t) = c ln t + δ1 + δ2, (t ∈ R+) ,

F̃ (t) = c ln t + δ1, (t ∈ R+) ,

G̃ (t) = c ln t + δ2, (t ∈ R+) ,

where c, δ1, δ2 ∈ R are arbitrary constants (see e.g. [1], [7]).
By the help of these solutions we can state the following
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Theorem 18. The measurable functions h1, h2, fX , fY : R+ → R+ satisfy
functional equation (20) (in case α = β = 0) for almost all (x, y) ∈ R2

+ if and
only if

h1 (x) = exp

(
−G2

(
1

λ1x

))
a.e. x ∈ R+,

h2 (x) = eδ1 exp (−G2 (λ2x)) (λ2x)c a.e. x ∈ R+,

fX (x) = eδ1+δ2λ2x
c+1 a.e. x ∈ R+,

fY (x) = eδ2λ1x
c+1 a.e. x ∈ R+,

where G2 : R+ → R is an arbitrary measurable function and c, δ1, δ2 ∈ R are
arbitrary constants.

Remark 12. The joint density function in this case has the form

f(X,Y ) (x, y) = yce−G2( y
x)+δ2

for almost all (x, y) ∈ R2
+.
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[9] K. Lajkó. Functional equations in the theory of conditionally specified distributions.

Publ. Math. Debrecen, 58(1-2):241–248, 2001.
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