Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 25 (2009), 165-173 www.emis.de/journals ISSN 1786-0091

COMMUTATIVITY OF PRIME Γ -NEAR RINGS WITH $\Gamma - (\sigma, \tau)$ -DERIVATION

RAVI RAINA, V. K. BHAT AND NEETU KUMARI

ABSTRACT. Let N be a prime Γ -near ring with multiplicative center Z. Let σ and τ be automorphisms of N and δ be a $\Gamma - (\sigma, \tau)$ -derivation of N such that N is 2-torsion free. In this paper the following results are proved:

- (1) If $\sigma\gamma\delta = \delta\gamma\sigma$ and $\tau\gamma\delta = \delta\gamma\tau$ and $\delta(N) \subseteq Z$, or $[\delta(x), \delta(y)]_{\gamma} = 0$, for all $x, y \in N$ and $\gamma \in \Gamma$, then N is a commutative ring.
- (2) If δ_1 is a Γ -derivation, δ_2 is a $\Gamma (\sigma, \tau)$ derivation of N such that $\tau \gamma \delta_1 = \delta_1 \gamma \tau$ and $\tau \gamma \delta_2 = \delta_2 \gamma \tau$, then $\delta_1(\delta_2(N)) = 0$ implies $\delta_1 = 0$ or $\delta_2 = 0$.
- (3) The condition for a $\Gamma (\sigma, \tau)$ -derivation to be zero in prime Γ -near ring is also investigated.

1. INTRODUCTION

Throughout this paper N denotes a zero symmetric left Γ -near ring with multiplicative center Z. A Γ -near ring is a triple $(N, +, \Gamma)$ which satisfies the following conditions.

- (1) (N, +) is a group.
- (2) Γ is a non-empty set of binary operators on N such that for each $\gamma \in \Gamma$, $(N, +, \gamma)$ is a near ring.
- (3) $x\beta(y\gamma z) = (x\beta y)\gamma z$ for all $x, y, z \in N$ and $\beta, \gamma \in \Gamma$.

N is called a prime Γ -near ring if $x\Gamma N\Gamma y = \{0\}$ implies x = 0 or y = 0; $x, y \in N$. Recall that N is called a prime near ring if xNy = 0 implies x = 0 or $y = 0; x, y \in N$.

For a Γ -near ring N, the set $N_0 = \{x \in N : 0\gamma x = 0, \text{ for all } \gamma \in \Gamma\}$ is called zero symmetric part of N. If $N = N_0$, then N is called zero symmetric. Recall that as in [8, 3, 9]; a Γ -derivation on N is an additive endomorphism δ on N satisfying the product rule $\delta(x\gamma y) = \delta(x)\gamma y + x\gamma\delta(y)$ for all $x, y \in N$

²⁰⁰⁰ Mathematics Subject Classification. 16Y30, 16N60, 16W25, 16U80.

Key words and phrases. Prime near ring, automorphism, derivation, (σ, τ) -derivation, $\Gamma - (\sigma, \tau)$ -derivation.

and $\gamma \in \Gamma$. An additive mapping $\delta : N \to N$ is called a $\Gamma - (\sigma, \tau)$ -derivation if there exists automorphisms $\sigma, \tau : N \to N$ such that

$$\delta(x\gamma y) = \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y)$$
 for all $x, y \in N$ and $\gamma \in \Gamma$.

For all $x, y \in N$ and $\gamma \in \Gamma$, the symbol $[x, y]_{\sigma,\tau}^{\gamma}$ denotes $\tau(x)\gamma y - y\gamma\sigma(x)$. The other commutators are; $[x, y]_{\gamma} = x\gamma y - y\gamma x$ and (x, y) = x + y - x - y, the additive group commutator. An element $c \in N$ for which $\delta(c) = 0$ is called a constant.

The purpose of this paper is to study and generalize some results of [9] and [1] on commutativity of prime Γ -near rings. Some recent results on rings deal with commutativity of prime and semi-prime rings admitting suitably-constrained derivations. For further details on prime near rings we refer the reader to [5, 6, 3, 2, 10, 12].

As a generalization of near rings, Γ -near rings were introduced by Satyanarayana [11]. Booth together with Groenewald [7] studied several aspects of Γ -near rings. In this paper we investigate the condition for a $\Gamma - (\sigma, \tau)$ derivation to be zero in prime Γ -near rings.

2. Main Result

We begin with the following Lemma.

Lemma 2.1. An additive endomorphism δ on a Γ -near ring N is a $\Gamma - (\sigma, \tau)$ derivation if and only if $\delta(x\gamma y) = \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y)$, for all $x, y \in N$ and $\gamma \in \Gamma$.

Proof. Let δ be a $\Gamma - (\sigma, \tau)$ -derivation on a Γ near ring. Since, $x\gamma(y+y) = x\gamma y + x\gamma y$, we have

(2.1)
$$\delta(x\gamma(y+y)) = \delta(x)\gamma\sigma(y+y) + \tau(x)\gamma\delta(y+y)$$
$$= \delta(x)\gamma\sigma(y) + \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y) + \tau(x)\gamma\delta(y)$$

for all $x, y \in N$ and $\gamma \in \Gamma$.

Also,

(2.2)
$$\delta(x\gamma y + x\gamma y) = \delta(x\gamma y) + \delta(x\gamma y)$$
$$= \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y),$$

for all $x, y \in N$ and $\gamma \in \Gamma$. Comparing (2.1) and (2.2), we have

$$\delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y) = \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y),$$

for all $x, y \in N$ and $\gamma \in \Gamma$.

Hence, we have,

$$\delta(x\gamma y) = \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y)$$
, for all $x, y \in N$ and $\gamma \in \Gamma$.

Conversely, suppose for all $x, y \in N$ and $\gamma \in \Gamma$

$$\delta(x\gamma y) = \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y)$$

Then,

(2.3)
$$\delta(x\gamma(y+y)) = \tau(x)\gamma\delta(y+y) + \delta(x)\gamma\sigma(y+y)$$
$$= \tau(x)\gamma\delta(y) + \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y) + \delta(x)\gamma\sigma(y),$$

for all $x, y \in N$ and $\gamma \in \Gamma$.

Also,

(2.4)
$$\delta(x\gamma y + x\gamma y) = \delta(x\gamma y) + \delta(x\gamma y)$$
$$= \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y),$$

for all $x, y \in N$ and $\gamma \in \Gamma$. Comparing (2.3) and (2.4), we have

$$\tau(x)\gamma\delta(y) + \delta(x)\gamma\sigma(y) = \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y),$$

for all $x, y \in N$ and $\gamma \in \Gamma$. Thus, for all $x, y \in N$ and $\gamma \in \Gamma$, we have $\delta(x\gamma y) = \delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y).$

Lemma 2.2. Let δ be a $\Gamma - (\sigma, \tau)$ -derivation on a near ring N. Then for all $x, y, z \in N$ and $\beta, \gamma \in \Gamma$;

$$(\delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y))\beta\sigma(z) = \delta(x)\gamma\sigma(y)\beta\sigma(z) + \tau(x)\gamma\delta(y)\beta\sigma(z).$$

Proof. For all $x, y, z \in N$ and $\beta, \gamma \in \Gamma$

(2.5)
$$\delta((x\gamma y)\beta z) = \delta(x\gamma y)\beta\sigma(z) + \tau(x\gamma y)\beta\delta(z)$$
$$= (\delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y))\beta\sigma(z) + \tau(x)\gamma\tau(y)\beta\delta(z).$$

Also, for all $x, y, z \in N$ and $\beta, \gamma \in \Gamma$

$$\delta(x\gamma(y\beta z)) = \delta(x)\gamma\sigma(y\beta z) + \tau(x)\gamma\delta(y\beta z)$$

= $\delta(x)\gamma\sigma(y)\beta\sigma(z) + \tau(x)\gamma(\delta(y))\beta\sigma(z) + \tau(y)\beta\delta(z))$
(2.6) = $\delta(x)\gamma\sigma(y)\beta\sigma(z) + \tau(x)\gamma\delta(y)\beta\sigma(z) + \tau(x)\gamma\tau(y)\beta\delta(z).$

Comparing (2.5) and (2.6), we get

$$\delta(x)\sigma(y) + \tau(x)\delta(y))\sigma(z) = \delta(x)\sigma(y)\sigma(z) + \tau(x)\delta(y)\sigma(z)$$

for all $x, y, z \in N$ and $\beta, \gamma \in \Gamma$.

Lemma 2.3. Let N be a Γ -prime near ring with multiplicative center Z.

- (1) If there exists a nonzero element $z \in Z$ such that $z+z \in Z$, then (N, +) is abelian.
- (2) Let δ be a nonzero $\Gamma (\sigma, \tau)$ -derivation of N and $a \in N$. If $\delta(N)\gamma\sigma(a) = 0$ or $a\gamma\delta(N) = 0$, then a = 0.

Proof. (1) Let $a \in N$ such that $0 \neq z = \delta(a) \in Z$. Then $z + z \in Z - \{0\}$. Now, Z is the multiplicative center of N. Therefore, for all $x, y \in Z$ and $\gamma \in \Gamma$, we have $(x + y)\gamma(z + z) = (z + z)\gamma(x + y)$. It implies that,

$$x\gamma z + x\gamma z + y\gamma z + y\gamma z = z\gamma x + z\gamma y + z\gamma x + z\gamma y,$$

and $z \in Z$, implies $z\gamma(x-y) = 0$. Now, N is a Γ -prime near ring and $z \neq 0$. Therefore, (x-y) = 0. Hence, N is abelian.

(2) By hypothesis, $\delta(N)\gamma\sigma(a) = 0$, where $a \in N$ and $\gamma \in \Gamma$. Therefore, for all $x, y \in N$ and $\beta, \gamma \in \Gamma$

$$\delta(x\beta y)\gamma\sigma(a) = 0.$$

Now, by Lemma (2.2), we have

$$\delta(x)\beta\sigma(y)\gamma\sigma(a) + \tau(x)\beta\delta(y)\gamma\sigma(a) = 0,$$

which implies that

$$\delta(x)\beta\sigma(y)\gamma\sigma(a) = 0$$
, or $\delta(x)\Gamma N\Gamma\sigma(a) = 0$.

But, N is a prime Γ -near ring, δ a nonzero $\Gamma - (\sigma, \tau)$ -derivation of N and σ is an automorphism. Therefore, a = 0.

Now, let $a\gamma\delta(N) = 0$. Then for all $x, y \in N$ and $\beta, \gamma \in \Gamma$,

$$a\gamma\delta(x\beta y) = 0$$

which implies that

$$a\gamma(\delta(x)\beta\sigma(y) + \tau(x)\beta\delta(y)) = 0,$$

i.e.

$$a\gamma\delta(x)\beta\sigma(y) + a\gamma\tau(x)\beta\delta(y) = 0.$$

Therefore, for all $x, y \in N$ and $\beta, \gamma \in \Gamma$, we have $a\gamma\tau(x)\beta\delta(y) = 0$.

Now, τ is an automorphism of N so, $a\Gamma N\Gamma\delta(N) = 0$. Also N is prime and $\delta(N) \neq 0$ imply that a = 0.

Lemma 2.4. Let N be a 2-torsion free prime Γ -near ring, and δ be a $\Gamma - (\sigma, \tau)$ -derivation of N. If $\delta^2 = 0$, and σ, τ commute with δ , then $\delta = 0$.

Proof. For all $x, y \in N$ and $\gamma \in \Gamma$, $\delta^2(x\gamma y) = 0$. So, we have

$$\begin{aligned} 0 &= \delta(\delta(x\gamma y)) = \delta(\delta(x)\gamma\sigma(y) + \tau(x)\gamma\delta(y)) \\ &= \delta(\delta(x)\gamma\sigma(y)) + \delta(\tau(x)\gamma\delta(y)) \\ &= \delta(\delta(x))\gamma\sigma(\sigma(y)) + \tau(\delta(x))\gamma\delta(\sigma(y)) + \delta(\tau(x))\gamma\sigma(\delta(y)) \\ &+ \tau(\tau(x))\gamma\delta(\delta(y)) \\ &= \delta^2(x)\gamma\sigma^2(y) + \tau(\delta(x))\gamma\delta(\sigma(y)) + \delta(\tau(x))\gamma\sigma(\delta(y)) + \tau^2(x)\gamma\delta^2(y) \\ &= 2\delta(\tau(x))\gamma\delta(\sigma(y)) \quad (By hypothesis). \end{aligned}$$

Therefore, for all $x, y \in N$ and $\gamma \in \Gamma$; $\delta(\tau(x))\gamma\delta(\sigma(y)) = 0$.

Now, as N is 2-torsion free near ring and σ is an automorphism of N, we get $\delta(\tau(x))\delta(N) = 0$. Hence, by Lemma (2.3), $\delta = 0$.

Now, we are in a position to generalize some results of Oznur Golbasi and Neset Aydin [9] and Mohammad, Ashraf., Ali, Asma and Ali, Sakir [1] in Prime Γ -near rings.

Theorem 2.5. Let δ be a $\Gamma - (\sigma, \tau)$ -derivation of a Γ -near-ring N. If $a \in N$ is not a left zero divisor and $[a, \delta(a)]^{\gamma}_{(\sigma,\tau)} = 0$, then (x, a) is constant for all $x \in N$ and $\gamma \in \Gamma$.

Proof. Let $x \in N$ and $\gamma \in \Gamma$. We have, $\delta(a\gamma(x+a)) = \delta(a\gamma x + a\gamma a)$ Expanding the equation, we have

$$\begin{split} \delta(a)\gamma\sigma(x) &+ \delta(a)\gamma\sigma(a) + \tau(a)\gamma\delta(x) + \tau(a)\gamma\delta(a) \\ &= \delta(a)\gamma\sigma(x) + \tau(a)\gamma\delta(x) + \delta(a)\gamma\sigma(a) + \tau(a)\gamma\delta(a). \end{split}$$

Therefore,

$$\delta(a)\gamma\sigma(a) + \tau(a)\gamma\delta(x) = \tau(a)\gamma\delta(x) + \delta(a)\gamma\sigma(a)$$

This implies,

$$0 = \tau(a)\gamma\delta(x) + \delta(a)\gamma\sigma(a) - \tau(a)\gamma\delta(x) - \delta(a)\gamma\sigma(a).$$

But, $[a, \delta(a)]_{\sigma,\tau}^{\gamma} = 0$, which implies that

$$\tau(a)\gamma\delta(a) - \delta(a)\gamma\sigma(a) = 0.$$

Thus,

$$0 = \tau(a)\gamma\delta(x) + \tau(a)\gamma\delta(a) - \tau(a)\gamma\delta(x) - \tau(a)\gamma\delta(a)$$

which implies that $\tau(a)\gamma\delta(x,a) = 0$.

But, τ is an automorphism of N, and $\tau(a)$ is not a left zero divisor. Therefore, $\delta(x, a) = 0$. Hence, (x, a) is constant for all $x \in N$.

Theorem 2.6. Let N have no non-zero divisors of zero. If N admits a nontrivial (σ, τ) -commuting $\Gamma - (\sigma, \tau)$ -derivation δ , then (N, +) is abelian.

Proof. Let c be any additive commutator. Then Theorem (2.5) implies, c is a constant. Also, for any $x \in N$ and $\gamma \in \Gamma$, $x\gamma c$ is also an additive commutator and hence a constant. Thus, for all $x \in N$ and $\gamma \in \Gamma$

$$0 = \delta(x\gamma c) = \delta(x)\gamma\sigma(c) + \tau(x)\gamma\delta(c).$$

This implies $\delta(x)\gamma\sigma(c) = 0$ for all $x \in N$ and $\gamma \in \Gamma$.

Since, $\delta(x) \neq 0$ for some $x \in N$ and $\gamma \in \Gamma$. Therefore, $\sigma(c) = 0$. Thus, c = 0 for all additive commutators c. Hence, (N, +) is abelian.

Theorem 2.7. Let N be a prime Γ -near ring with a nonzero $\Gamma - (\sigma, \tau)$ derivation δ such that $\sigma\gamma\delta = \delta\gamma\sigma$ and $\tau\gamma\delta = \delta\gamma\tau$ for all $\gamma \in \Gamma$. If $\delta(N) \subseteq Z$, then (N, +) is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof. By hypothesis $\delta(N) \subseteq Z$ and δ is non-trivial. Therefore, there exists $0 \neq a \in N$ such that $z = \delta(a) \in Z - \{0\}$ and $z + z = \delta(a + a) \in Z - \{0\}$.

Therefore, by Lemma (2.3), (N, +) is abelian.

Again by hypothesis, for all $a, b, c \in N$ and $\beta, \gamma \in \Gamma$, we have

$$\sigma(c)\gamma\delta(a\beta b) = \delta(a\beta b)\gamma\sigma(c).$$

Now, using Lemma (2.2) and the fact that N is a left near-ring, we have

$$\sigma(c)\gamma\delta(a)\beta\sigma(b) + \sigma(c)\gamma\tau(a)\beta\delta(b) = \delta(a)\beta\sigma(b)\gamma\sigma(c) + \tau(a)\beta\delta(b)\gamma\sigma(c),$$

for all $a, b, c \in N$ and $\beta, \gamma \in \Gamma$.

Now, $\delta(N) \subseteq Z, \sigma\gamma\delta = \delta\gamma\sigma$ and $\tau\gamma\delta = \delta\gamma\tau$ for all $\gamma \in \Gamma$, we get

$$\delta(a) \ \gamma \sigma(c) \beta \sigma(b) + \delta(b) \gamma \sigma(c) \beta \tau(a) = \delta(a) \gamma \sigma(b) \beta \sigma(c) + \delta(b) \gamma \tau(a) \beta \sigma(c)$$

for all $a, b, c \in N$ and $\beta, \gamma \in \Gamma$.

Comparing the two sides and using the fact that (N, +) is abelian, we get

$$\delta(a) \ \gamma \sigma(c) \beta \sigma(b) - \delta(a) \gamma \sigma(b) \beta \sigma(c) = \delta(b) \gamma \tau(a) \beta \sigma(c) - \delta(b) \gamma \sigma(c) \beta \tau(a)$$

or

$$\delta(a)\gamma\sigma([c,b]_{\beta}) = \delta(b)\gamma([\tau(a),\sigma(c)]_{\beta}),$$

for all $a, b, c \in N$ and $\beta, \gamma \in \Gamma$.

Now, suppose that N is not commutative, and choose $b, c \in N$ such that $[c, b] \neq 0$, and $a = \delta(x) \in Z$.

Then for all $x \in N$ and $\gamma \in \Gamma$, we get $\delta^2(x)\gamma\sigma([c, b]) = 0$.

Now, by Lemma (2.3), we see that central element $\delta^2(x)$ can not be a divisor of zero, which implies that $\delta^2(x) = 0$ for all $x \in N$. By Lemma (2.4), this can not happen for non trivial δ . Thus, $\sigma([c, b]) = 0$, for all $b, c \in N$. Hence, N is a commutative ring, as σ is an automorphism of N.

Theorem 2.8. Let N be a prime Γ -near ring with a nonzero $\Gamma - (\sigma, \tau)$ derivation δ such that $\sigma\gamma\delta = \delta\gamma\sigma$ and $\tau\gamma\delta = \delta\gamma\tau$. If $[\delta(x), \delta(y)]_{\gamma} = 0$, for all $x, y \in N$ and $\gamma \in \Gamma$, then (N, +) is abelian. Moreover, if N is 2-torsion free, then N is a commutative ring.

Proof. By hypothesis we have, $\delta(x+x)\gamma\delta(x+y) = \delta(x+y)\gamma\delta(x+x)$ for all $x, y \in N$ and $\gamma \in \Gamma$. This implies that

$$\delta(x)\gamma\delta(x) + \delta(x)\gamma\delta(y) = \delta(x)\gamma\delta(x) + \delta(y)\gamma\delta(x)$$

for all $x, y \in N$ and $\gamma \in \Gamma$. Hence, $\delta(x)\gamma\delta(x, y) = 0$ for all $x, y \in N$ and $\gamma \in \Gamma$, which implies $\delta(x)\gamma\delta(c) = 0$ for all $x \in N, \gamma \in \Gamma$ and the additive commutator c. Now, by Lemma (2.3), we have $\delta(c) = 0$, for all additive commutators c. Now, N is a left near ring and c an additive commutator. Therefore, $x\gamma c$ is also an additive commutator for all $x \in N$. Therefore, $\delta(x\gamma c) = 0$ for all $x \in N$, $\gamma \in \Gamma$ and for all additive commutators c. Therefore, by Lemma (2.3), c = 0. Hence, (N, +) is abelian.

Now, assume that N is 2-torsion free, $\sigma\gamma\delta = \delta\gamma\sigma$ and $\tau\gamma\delta = \delta\gamma\tau$. Then by Lemma (2.1) and Lemma (2.2) we have

(2.7)
$$\begin{aligned} \delta(\delta(x)\gamma y)\gamma\delta(z) &= \delta^2(x)\gamma\sigma(y)\gamma\delta(z) + \tau(\delta(x))\gamma\delta(y))\gamma\delta(z) \\ \delta^2(x)\gamma\sigma(y)\gamma\delta(z) &= \delta(\delta(x)\gamma y)\gamma\delta(z) - \tau(\delta(x))\gamma\delta(y))\gamma\delta(z). \end{aligned}$$

Now; $\delta(x)\gamma\delta(y) = \delta(y)\gamma\delta(x)$, for all $x, y, z \in N$, and $\gamma \in \Gamma$. Therefore,

(2.8)

$$\delta(\delta(x)\gamma y)\gamma\delta(z) = \delta(z)\gamma\delta(\delta(x)\gamma y)$$

$$= \delta(z)\gamma\delta^{2}(x)\gamma\sigma(y) + \delta(z)\gamma\tau(\delta(x))\gamma\delta(y)$$

$$= \delta^{2}(x)\gamma\delta(z)\gamma\sigma(y) + \tau(\delta(x))\gamma\delta(y)\gamma\delta(z)$$

for all $x, y, z \in N$ and $\gamma \in \Gamma$.

Combining (2.7) and (2.8), we have for all $x, y, z \in N$ and $\gamma \in \Gamma$

$$\delta^2(x)\gamma\sigma(y)\gamma\delta(z) - \delta^2(x)\gamma\delta(z)\gamma\sigma(y) = 0$$

or

$$\delta^2(x)\gamma(\sigma(y)\gamma\delta(z) - \delta(z)\gamma\sigma(y)) = 0$$

Now, replacing y by $y\gamma a$, we have for all $a, x, y, z \in N$ and $\gamma \in \Gamma$

$$\delta^2(x)\gamma(\sigma(y\gamma a)\gamma\delta(z) - \delta(z)\gamma\sigma(y\gamma a)) = 0$$

or

$$\delta^2(x)\gamma\sigma(y)\gamma(\sigma(a)\gamma\delta(z) - \delta(z)\gamma\sigma(a)) = 0$$

Thus, $\delta^2(x)\gamma N(\sigma(a)\gamma\delta(z) - \delta(z)\gamma\sigma(a)) = 0$ for all $a, x, y, z \in N$ and $\gamma \in \Gamma$. Since, N is prime and σ is an automorphism. Therefore for all $a, x, z \in N$ and $\gamma \in \Gamma$

$$\delta^2(x) = 0$$
, or $\sigma(a)\gamma\delta(z) - \delta(z)\gamma\sigma(a)) = 0$

But, by Lemma 2.4 $\delta^2(x) = 0$ is not possible. Hence,

$$\sigma(a)\gamma\delta(z) - \delta(z)\gamma\sigma(a)) = 0,$$

for all $a, z \in N$ and $\gamma \in \Gamma$.

Therefore, $\delta(N) \subseteq Z$. Hence, by Theorem (2.7), N is commutative.

Theorem 2.9. Let N be a 2-torsion free prime Γ -near ring N, δ_1 be a $\Gamma - (\sigma, \tau)$ -derivation of N and δ_2 be a Γ derivation of N. If $\delta_1(\delta_2(N)) = 0$, then $\delta_1 = 0$, or $\delta_2 = 0$.

Proof. By hypothesis for all $a, b \in N$ and $\gamma \in \Gamma \delta_1(\delta_2(a\gamma b)) = 0$. Therefore, we have

$$0 = \delta_1(\delta_2(a)\gamma b) + a\gamma\delta_2(b)) = \delta_1(\delta_2(a)\gamma b) + \delta_1(a\gamma\delta_2(b))$$

= $\delta_1(\delta_2(a))\gamma\sigma(b) + \tau(\delta_2(a))\gamma\delta_1(b)\delta_1(a)\sigma(\delta_2(b)) + \tau(a)\gamma\delta_1(\delta_2(b))$

Now, for all $a, b \in N$ and $\gamma \in \Gamma$, we have

$$\tau(\delta_2(a))\gamma\delta_1(b) + \delta_1(a)\gamma\sigma(\delta_2(b)) = 0.$$

Replacing a by $\delta_2(a)$, then for all $a, b \in N$ and $\gamma \in \Gamma$, we have

$$\tau(\delta_2^2(a))\gamma\delta_1(b) = 0.$$

Now, Lemma (2.3), implies that $\delta_1 = 0$ or $\delta_2^2 = 0$. If $\delta_2^2 = 0$, then by Lemma (2.4), $\delta_2 = 0$. Hence, this theorem is proved.

Theorem 2.10. Let N be a 2-torsion free prime Γ -near ring N, δ_1 be a Γ derivation of N and δ_2 be a $\Gamma - (\sigma, \tau)$ -derivation of N such that $\tau\gamma\delta_1 = \delta_1\gamma\tau$ and $\tau\gamma\delta_2 = \delta_2\gamma\tau$. If $\delta_1(\delta_2(N)) = 0$, then $\delta_1 = 0$ or $\delta_2 = 0$.

Proof. By hypothesis $\delta_1(\delta_2(a\gamma b)) = 0$, for all $a, b \in N$ and $\gamma \in \Gamma$. Therefore, we have

$$0 = \delta_1(\delta_2(a)\gamma\sigma(b) + \tau(a)\gamma\delta_2(b)) = \delta_1(\delta_2(a)\gamma\sigma(b)) + \delta_1(\tau(a)\gamma\delta_2(b))$$

= $\delta_1(\delta_2(a))\gamma\sigma(b) + \delta_2(a)\gamma\delta_1(\sigma(b)) + \delta_1(\tau(a))\gamma\delta_2(b) + \tau(a)\gamma\delta_1(\delta_2(b)).$

This implies that

$$\delta_2(a)\gamma\delta_1(\sigma(b)) + \delta_1(\tau(a))\gamma\delta_2(b) = 0,$$

for all $a, b \in N$ and $\gamma \in \Gamma$. Replacing a by $\delta_2(a)$, and using the fact that $\tau \gamma \delta_1 = \delta_1 \gamma \tau$ and $\tau \gamma \delta_2 = \delta_2 \gamma \tau$, we have

$$\delta_2^2(a)\gamma\delta_1(\sigma(b))=0$$
, for all $a,b\in N$ and $\gamma\in\Gamma$.

Applying Lemma (2.3), we have $\delta_1 = 0$, or $\delta_2^2 = 0$. If $\delta_2^2 = 0$, then by Lemma (2.4), $\delta_2 = 0$. The proof is complete.

Lastly, we generalize a result of Yong Uk Cho and Young Bae Jun [8, Proposition 3.9] in Prime Γ -near rings.

Theorem 2.11. Let δ be a $\Gamma - (\sigma, \tau)$ -derivation on a zero symmetric prime Γ -near ring N. If there exists a nonzero element $x \in N$ such that $x\gamma\delta(y) = 0$ for all $y \in N$ and $\gamma \in \Gamma$, then $\delta = o$.

Proof. Let x be a nonzero element of N such that

$$x\gamma\delta(y) = 0$$
 for all $y \in N$ and $\gamma \in \Gamma$.

Replacing y by $y\beta z$ we get,

$$0 = x\gamma\delta(y\beta z) = x\gamma(\delta(y)\beta\sigma(z) + \tau(y)\beta\delta(z))$$

= $x\gamma\delta(y)\beta\sigma(z) + x\gamma\tau(y)\beta\delta(z) = x\gamma\tau(y)\beta\delta(z),$

for all $y, z \in N$ and $\beta, \gamma \in \Gamma$.

Therefore, $x\Gamma N\Gamma \delta(z) = 0$. Since, N is prime, implies $\delta(z) = 0$ for all $z \in N$. Hence, $\delta = 0$.

3. Acknowledgements

The authors would like to express their sincere thanks to the referee for encouraging remarks and suggestions

References

- [1] M. Ashraf, A. Ali, and S. Ali. (σ, τ) -derivations on prime near rings. Arch. Math. (Brno), 40(3):281–286, 2004.
- [2] K. I. Beidar, Y. Fong, and X. K. Wang. Posner and Herstein theorems for derivations of 3-prime near-rings. Comm. Algebra, 24(5):1581–1589, 1996.
- [3] H. E. Bell. On derivations in near-rings. II. In Nearrings, nearfields and K-loops (Hamburg, 1995), volume 426 of Math. Appl., pages 191–197. Kluwer Acad. Publ., Dordrecht, 1997.
- [4] H. E. Bell. On derivations in near-rings. II. In Nearrings, nearfields and K-loops (Hamburg, 1995), volume 426 of Math. Appl., pages 191–197. Kluwer Acad. Publ., Dordrecht, 1997.
- [5] H. E. Bell and G. Mason. On derivations in near-rings. In Near-rings and near-fields (Tübingen, 1985), volume 137 of North-Holland Math. Stud., pages 31–35. North-Holland, Amsterdam, 1987.
- [6] H. E. Bell and G. Mason. On derivations in near-rings and rings. Math. J. Okayama Univ., 34:135–144 (1994), 1992.
- [7] G. L. Booth and N. J. Groenewald. Matrix Γ-near-rings. Math. Japon., 38(5):973–979, 1993.
- [8] Y. U. Cho and Y. B. Jun. Gamma-derivations in prime and semiprime gamma-nearrings. Indian J. Pure Appl. Math., 33(10):1489–1494, 2002.
- [9] Ö. Gölbaşi and N. Aydin. Results on prime near-ring with (σ, τ) -derivation. Math. J. Okayama Univ., 46:1–7, 2004.
- [10] A. A. M. Kamal. σ -derivations on prime near-rings. Tamkang J. Math., 32(2):89–93, 2001.
- [11] B. Satnarayan. Contributions to near-ring theory. PhD thesis, Nargarjuna University, 1984.
- [12] X. K. Wang. Derivations in prime near-rings. Proc. Amer. Math. Soc., 121(2):361–366, 1994.

Received on November 11, 2007; accepted on February 15, 2009

SCHOOL OF MATHEMATICS, SMVD UNIVERSITY, P/O KAKRYAL, KATRA, J AND K, INDIA 182320 *E-mail address*: rainaravirr@yahoo.co.in; vijaykumarbhat2000@yahoo.com