ON D SO THAT $x^{2}-D y^{2}$ REPRESENTS m AND $-m$ AND NOT - 1

JOHN P. ROBERTSON

Abstract

For $m=25,100, p, 2 p, 4 p$, or $2 p^{2}$, where p is prime, we show that there is at most one positive nonsquare integer D so that the form $x^{2}-D y^{2}$ primitively represents m and $-m$ and does not represent -1 . We give support for a conjecture that for any $m>1$ not listed above, there are infinitely many D so that the form $x^{2}-D y^{2}$ primitively represents m and $-m$ and does not represent -1 .

1. Introduction

It is well known that if $F=x^{2}-D y^{2}$ represents m and -1 , then F represents $-m[13$, p. 14]. It is also well known that there are D and m so that F represents m and $-m$, but does not represent -1 , for example $D=34, m=33$.

The article [11] shows that for any integer $m \neq 0, \pm 2$ there are infinitely many D so that $x^{2}-D y^{2}$ primitively represents $m,-m$, and -1 . In this article we show that for certain integers m there are only finitely many D so that $x^{2}-D y^{2}$ primitively represents m and $-m$, and does not represent -1 . Based on empirical evidence, I conjecture that for any integer $m>1$ that is not $25,100, p, 2 p, 4 p$, or $2 p^{2}$, for p a prime, there are infinitely many D so that $x^{2}-D y^{2}$ primitively represents m and $-m$ and does not represent -1 .

Given an integer m, call an integer $D>0$, not a square, good if $x^{2}-D y^{2}$ primitively represents m and $-m$ and does not represent -1 . For the following we give proofs or references in the literature:

- For $m=2,4,25$, or 100 there are no good D.
- For $m=8, D=8$ is the only good D.
- For $m=p, 2 p$, or $4 p$, for p an odd prime, there are no $\operatorname{good} D$.
- For $m=2 p^{2}$, for p an odd prime, if there is no solution to $x^{2}-2 p^{2} y^{2}=$ -1 , there is a unique good D, namely $D=2 p^{2}$; otherwise there are no good D.

[^0]- If $m=p^{\alpha}, 2 p^{\alpha}$, or $4 p^{\alpha}, p$ is an odd prime, $\alpha \in \mathbf{Z}, \alpha>1$, and D is good, then $p^{2} \mid D$.
In addition, for the odd prime p we prove:
- If $p \mid D$ and F represents p and $-p$, then $D=p$.
- If $p \mid D$ and F represents $2 p$ and $-2 p$, then $D=2 p$.
- If $p \mid D$ and F primitively represents $4 p$ and $-4 p$, then $D=p$.

The following theorem, used below, is proved as part of [8, Theorem 2.3] (see also [7, Theorem 3.2] and [3, Lemma 1]). For completeness, we also give a proof.

Theorem 1. If $a, b>0$ are odd integers, $v, w \in \mathbf{N}$, and $a v^{2}-b w^{2}=4$ (resp. -4), then there are integers t, u so that $a t^{2}-b u^{2}=1$ (resp. -1).

Proof. Either both v and w are even or both are odd. If both are even, then for $t=v / 2, u=w / 2, t$ and u are integers and $a t^{2}-b u^{2}=1$ or -1 . Now assume v and w are both odd. Then $v^{2} \equiv w^{2} \equiv 1(\bmod 8)$. In the line below, all congruences are modulo 8 .

$$
a v^{2}-b w^{2} \equiv 4 \Longrightarrow a-b \equiv 4 \Longrightarrow a b \equiv b^{2}+4 b \equiv 1+4=5
$$

so $a b \equiv 5(\bmod 8)$. Let $t=\left(a v^{3}+3 b v w^{2}\right) / 8$ and $u=\left(3 a v^{2} w+b w^{3}\right) / 8$. It is straightforward to check that $a t^{2}-b u^{2}=1$ or -1 . To see that t is an integer, note that $a v^{3}+3 b v w^{2}=v\left(a v^{2}+3 b w^{2}\right)$ and that

$$
a\left(a v^{2}+3 b w^{2}\right) \equiv a(a+3 b) \equiv a^{2}+3 a b \equiv 1+15 \equiv 0 \quad(\bmod 8) .
$$

Because $\operatorname{gcd}(a, 8)=1,8$ must divide $a v^{2}+3 b w^{2}$, and so t is an integer. A similar argument shows that u is an integer.

$$
\text { 2. } m=2,4, \text { OR } 8
$$

Henceforth, D denotes a positive nonsquare integer and F denotes the binary quadratic form $x^{2}-D y^{2}$. Also, m denotes an integer greater than 1 unless otherwise specified.

Perron [10, p. 96] proves the next theorem.
Theorem 2. If F represents 2 and -2 then $D=2$ and F represents -1 .
Theorem 3. If F primitively represents 4 and -4 then F represents -1 .
Proof. Considerations modulo 16 show that if F primitively represents 4 and -4 , then $D \equiv 5(\bmod 8)$ and x and y are odd. The theorem then follows from Theorem 1. See also [8, Theorem 2.3] and [7, Theorem 3.2].

Note that it is not sufficient that F primitively represent -4 . For example, $x^{2}-8 y^{2}$ primitively represents $-4\left(2^{2}-8 \cdot 1^{2}=-4\right)$, but does not represent -1 . In fact, if $D=4 k^{2}+4$, then $x^{2}-D y^{2}$ primitively represents -4 (take $y=1$), but does not represent -1 (because $4 \mid D$). Additional such D include $52,116,164,212,232,244,292,296, \ldots$.

Theorem 4. If F primitively represents 8 and -8 then either $D=8$ or F represents -1 .

Consider first the case where D is even. Let $v_{1}^{2}-D w_{1}^{2}=8$ and $v_{2}^{2}-D w_{2}^{2}=-8$ where $\operatorname{gcd}\left(v_{1}, w_{1}\right)=\operatorname{gcd}\left(v_{2}, w_{2}\right)=1$. Then $2 \mid v_{1}$ and $2 \mid v_{2}$, so $4 \mid D,\left(v_{1} / 2\right)^{2}-$ $(D / 4) w_{1}^{2}=2$, and $\left(v_{2} / 2\right)^{2}-(D / 4) w_{2}^{2}=-2$. By Theorem $2, D / 4=2$, and $D=8$.

Before considering the case where D is odd, we establish two lemmas and another theorem.

Lemma 1. If the complete quotients for the continued fraction expansion of \sqrt{D} are denoted $\left(P_{i}+\sqrt{D}\right) / Q_{i}$ for $i \in \mathbf{Z}, i \geq 0$, where $P_{i} \in \mathbf{Z}, Q_{i} \in \mathbf{N}$, $P_{0}=0$, and $Q_{0}=1$, then Q_{i} and Q_{i+1} cannot both be even .

Proof. Substituting $Q_{i+1} a_{i+1}-P_{i+1}$ for P_{i+2} in $Q_{i+2}=Q_{i}-a_{i+1}\left(P_{i+2}-P_{i+1}\right)$ [10, p. 70] gives

$$
Q_{i}=Q_{i+1} a_{i+1}^{2}+Q_{i+2}-2 P_{i+1} a_{i+1}
$$

If Q_{i+1} and Q_{i+2} are even, then Q_{i} must be even, and working backwards we get $Q_{0}=1$ is even, a contradiction.
Lemma 2. For $D \equiv 1(\bmod 8)$ and $\left(P_{i}+\sqrt{D}\right) / Q_{i}$ as in Lemma 1, in any period of the continued fraction expansion of \sqrt{D}, there are at most two i so that $Q_{i}=8$.

Proof. For $i \geq 1,\left(P_{i}+\sqrt{D}\right) / Q_{i}$ is a reduced quadratic irrational [10, pp. 75 and 83], so

$$
-1<\left(P_{i}-\sqrt{D}\right) / Q_{i}<0
$$

and

$$
\begin{equation*}
\sqrt{D}-Q_{i}<P_{i}<\sqrt{D} \tag{1}
\end{equation*}
$$

Now assume $Q_{i}=8$. As $D-P_{i}^{2}=Q_{i} Q_{i-1}=8 Q_{i-1}$ [10, p. 69], P_{i} is odd. From (1), there is at most one P_{i} in each of the residue classes $1,3,5,7$ modulo 8 . Let $D=8 k+1$. For k even, if $P_{i} \equiv 1$ or $7(\bmod 8)$ then $Q_{i-1}=\left(D-P_{i}^{2}\right) / 8$ is even, while if $P_{i} \equiv 3$ or $5(\bmod 8)$ then Q_{i-1} is odd. For k odd, if $P_{i} \equiv 1$ or 7 $(\bmod 8)$ then Q_{i-1} is odd, while if $P_{i} \equiv 3 \operatorname{or} 5(\bmod 8)$ then Q_{i-1} is even. Because Q_{i-1} must be odd, there are at most two possible values for P_{i} when $Q_{i}=8$.

From [9, Theorem 7.24] we have
Theorem 5. If
$N \in \mathbf{Z},|N|<\sqrt{D}$,
$x^{2}-D y^{2}$ primitively represents N,
ℓ is the length of the period of the continued fraction expansion of \sqrt{D}, $\left(P_{i}+\sqrt{D}\right) / Q_{i}$ is as in Lemma 1, and
A_{i} / B_{i} are the convergents of the continued fraction expansion of \sqrt{D},
then there is an $1 \leq i \leq \ell$ so that $A_{i-1}^{2}-D B_{i-1}^{2}=(-1)^{i-1} Q_{i}=N$. In particular, $Q_{i}=|N|$.

Now we return to the proof of Theorem 4 for D odd. The odd $D<64$ for which F represents 8 and -8 are $D=17$ and 41 , and for both of these F represents -1 . When D is odd, x and y must also both be odd, so $x^{2} \equiv y^{2} \equiv 1$ $(\bmod 8)$. From

$$
1 \equiv x^{2} \equiv D y^{2} \equiv D \quad(\bmod 8)
$$

we have that that $D \equiv 1(\bmod 8)$.
Now assume $D>64$ is not a square and $D \equiv 1(\bmod 8)$. Let P_{i} and Q_{i} be as in Lemma 1, and let $a_{i}=\left\lfloor\left(P_{i}+\sqrt{D}\right) / Q_{i}\right\rfloor$ be the i-th convergent in the continued fraction expansion of \sqrt{D}. Let ℓ be the length of the period of this continued fraction expansion, so $Q_{\ell}=1$ and $P_{i+\ell}=P_{i}$ and $Q_{i+\ell}=Q_{i}$ for $i \geq 1$.
If $x^{2}-D y^{2}$ primitively represents ± 8, then by Theorem $5, Q_{j}=8$ for some $1 \leq j \leq \ell$. By palindromic properties of the sequence $\left\{Q_{i}\right\}$, we also have that $Q_{\ell-j}=8$ [10, p. 81]. Because at most two $Q_{i}=8$ in any period of the continued fraction expansion of \sqrt{D}, there are no $1 \leq i \leq \ell$ so that $Q_{i}=8$ other than $i=j$ and $i=\ell-j$. If $x^{2}-D y^{2}$ does not represent -1 , then ℓ is even, and $(-1)^{i-1}=(-1)^{\ell-i-1}$, so $x^{2}-D y^{2}$ represents exactly one of 8 or -8 . This completes the proof of Theorem 4.

As an aside, we note that methodology similar to that used to prove Theorem 4 can be used to prove Theorems 2 and 3 . For $D \geq 5, D$ odd, there is exactly one reduced quadratic irrational $(P+\sqrt{D}) / 2$ (namely with $P=\lfloor\sqrt{D}\rfloor$ or $P=\lfloor\sqrt{D}\rfloor-1$, whichever is odd). For $D \equiv 1(\bmod 4)$ there are exactly two reduced quadratic irrationals $(P+\sqrt{D}) / 4$.

$$
\text { 3. } m=p, 2 p, 4 p, \text { OR } 2 p^{2} \text { FOR } p \text { AN ODD PRIME }
$$

The following extends [6, Cor. 3.2]. See also [7, 8].
Theorem 6. If $v^{2}-D w^{2}=\delta p^{\alpha}$ and $r^{2}-D s^{2}=-\delta p^{\alpha}$, where $v, w, r, s \in$ $\mathbf{Z}, \alpha \in \mathbf{N}, p$ is an odd prime, $\operatorname{gcd}(v, w)=\operatorname{gcd}(r, s)=1$, and $\delta=1$, 2, or 4 , then

$$
\begin{aligned}
& \text { If } \alpha=1 \text { then } x^{2}-D y^{2} \text { represents }-1 . \\
& \text { If } \alpha>1 \text { then either } x^{2}-D y^{2} \text { represents }-1 \text { or } p^{2} \mid D .
\end{aligned}
$$

Proof. For any $\alpha, \operatorname{gcd}(w, p)=\operatorname{gcd}(s, p)=1$ because otherwise $p \mid v$ or $p \mid r$.
If $\alpha>1$ and $p \mid D$ then $p \mid v$, so $p^{2} \mid v^{2}-\delta p^{\alpha}=D w^{2}$, and $p^{2} \mid D$. For the rest of the proof we assume that either $\alpha=1$ or $p \nmid D$.

We have

$$
v^{2} \equiv D w^{2} \quad\left(\bmod p^{\alpha}\right) \operatorname{and} r^{2} \equiv D s^{2} \quad\left(\bmod p^{\alpha}\right)
$$

so

$$
\left(v w^{-1}\right)^{2} \equiv\left(r s^{-1}\right)^{2} \equiv D \quad\left(\bmod p^{\alpha}\right)
$$

and

$$
v w^{-1} \equiv \pm r s^{-1} \quad\left(\bmod p^{\alpha}\right)
$$

because the equation $X^{2} \equiv D\left(\bmod p^{\alpha}\right)$ has at most two solutions when either $\alpha=1$ or $\operatorname{gcd}(D, p)=1$. Choose signs so that

$$
v w^{-1} \equiv r s^{-1} \quad\left(\bmod p^{\alpha}\right)
$$

Then $v s \equiv r w\left(\bmod p^{\alpha}\right)$ and (multiply by v, substitute $D w^{2}$ for v^{2}, cancel a $w) v r \equiv D w s\left(\bmod p^{\alpha}\right)$.
If $\delta=1$, then for $x=(v r-D w s) / p^{\alpha}, y=(v s-r w) / p^{\alpha}$, we have that $x^{2}-D y^{2}=-1$.

If $\delta=2$, then w and s are odd and, by considerations modulo $16, D \equiv 2$ $(\bmod 8)$ and v and r are even, so $x=(v r-D w s) / 2 p^{\alpha}$ and $y=(v s-r w) / 2 p^{\alpha}$ are both integers, and we have that $x^{2}-D y^{2}=-1$.

If $\delta=4$, then v, w, r, s, and D are all odd, and $D \equiv 5(\bmod 8)$ (by considerations modulo 16) so $x=(v r-D w s) / 4 p^{\alpha}, y=(v s-r w) / 4 p^{\alpha}$ are both integers or both half integers and $x^{2}-D y^{2}=-1$. If x and y are half-integers, then for $X+Y \sqrt{D}=(x+y \sqrt{D})^{3}, X$ and Y are integers and $X^{2}-D Y^{2}=-1$ [3, Lemma 1].

Corollary 1. If $m=2 p^{2}$ where p is an odd prime, and F represents m and $-m$, and does not represent -1 , then $D=2 p^{2}$.

Proof. By Theorem 6, if F does not represent -1 then $p^{2} \mid D$. We then have that $x^{2}-\left(D / p^{2}\right) y^{2}$ represents 2 and -2 . By Theorem $2, D / p^{2}=2$, so $D=2 p^{2}$.

Whether $F=x^{2}-2 p^{2} y^{2}$ represents -1 depends on p. If $p \equiv 3(\bmod 4)$ then F does not represent -1 . If $p \equiv 5(\bmod 8)$ then F does represent $-1[10, \mathrm{p}$. 97], [1, p. 39]. If $p \equiv 1(\bmod 8)$ then F might or might not represent -1 . For example, $x^{2}-2 \cdot 17^{2} y^{2}$ does not represent -1 , while $x^{2}-2 \cdot 137^{2} y^{2}$ represents -1 .

$$
\text { 4. } m=25 \text { OR } 100
$$

First we establish a lemma that will be useful.
Lemma 3. If F represents -1 (resp. -4) then either:
There are $x, y \in \mathbf{Z}$ with $5 \mid y$ and $x^{2}-D y^{2}=-1$ (resp. -4), or $5 \mid y$ for every $x, y \in \mathbf{Z}$ so that $x^{2}-D y^{2}=1$ (resp. 4).
Proof. If $\left\{x_{1}, y_{1}\right\}$ is the minimal positive integral solution to $x^{2}-D y^{2}=-1$ then all positive integral solutions $\left\{x_{n}, y_{n}\right\}$ to $x^{2}-D y^{2}= \pm 1$ are given by

$$
\begin{equation*}
x_{n}+y_{n} \sqrt{D}=\left(x_{1}+y_{1} \sqrt{D}\right)^{n} \tag{2}
\end{equation*}
$$

where $n \in \mathbf{N}, x_{n}^{2}-D y_{n}^{2}=1$ when n is even, and $x_{n}^{2}-D y_{n}^{2}=-1$ when n is odd [9, p. 356].

By the binomial theorem we have that

$$
\begin{equation*}
y_{n}=\sum_{i=0}^{\lfloor(n-1) / 2\rfloor}\binom{n}{2 i+1} x_{1}^{n-2 i-1} y_{1}^{2 i+1} D^{i} \tag{3}
\end{equation*}
$$

An immediate consequence is that if n is even, then $x_{1} \mid y_{n}$. Thus, if $x_{1} \equiv 0$ $(\bmod 5)$ then $5 \mid y$ for every solution to $x^{2}-D y^{2}=1$.
If $x_{1} \equiv 1$ or $4(\bmod 5)$ then $D y_{1}^{2}=x_{1}^{2}+1 \equiv 2(\bmod 5)$, and, by (3)

$$
y_{3}=y_{1}\left(3 x_{1}^{2}+D y_{1}^{2}\right) \equiv y_{1}(3+2) \equiv 0 \quad(\bmod 5) .
$$

Hence $x_{3}^{2}-D y_{3}^{2}=-1$ and $5 \mid y_{3}$.
If $x_{1} \equiv 2$ or $3(\bmod 5)$ then $D y_{1}^{2}=x_{1}^{2}+1 \equiv 0(\bmod 5)$, and, by (3)

$$
y_{5}=y_{1}\left(5 x_{1}^{4}+10 x_{1}^{2} y_{1}^{2} D+y_{1}^{4} D^{2}\right) \equiv y_{1}(0+0+0) \equiv 0 \quad(\bmod 5) .
$$

Hence $x_{5}^{2}-D y_{5}^{2}=-1$ and $5 \mid y_{5}$.
Similar arguments apply when F represents -4 , but note that (2) is replaced by

$$
\frac{1}{2}\left(x_{n}+y_{n} \sqrt{D}\right)=\left(\frac{x_{1}+y_{1} \sqrt{D}}{2}\right)^{n} .
$$

This lemma can also be proved by applying the theory of linear recurrence relations to the sequence of solutions to Pell equations [4, 5].

We will use this to show
Theorem 7. If F primitively represents 25 and -25 (resp. 100 and -100), then F represents -1 .

Proof. First consider the case where F represents 25 and -25 . By Theorem 6 if F does not represent -1 , then $25 \mid D$. Therefore, for any primitive solution to $x^{2}-D y^{2}=25,5 \mid x$ and $5 \nmid y$. Thus, for $D_{1}=D / 25, x^{2}-D_{1} y^{2}=1$ has solutions so that $5 \nmid y$. Since $x^{2}-D_{1} y^{2}=-1$ has solutions, by Lemma 3 it has solutions so that $5 \mid y$. But then $x^{2}-D(y / 5)^{2}=-1$, so F does represent -1 .

Virtually the same argument works when F represents 100 and -100 .

5. Additional results

The following theorem [12, Theorem 8] is used in the proof of Theorem 9.
Theorem 8. If $a, b \in \mathbf{N}, x^{2}-a b y^{2}$ represents -1 , and $a x^{2}-b y^{2}$ represents 1 or -1 , then $a=1$ or $b=1$.

Theorem 9. Let F primitively represent δp and $-\delta p$ where p is an odd prime, $p \mid D$, and $\delta \in\{1,2,4\}$. Then
(a) if $\delta=1$ or 4 then $D=p$.
(b) if $\delta=2$ then $D=2 p$.

Proof. For any x and y so that $x^{2}-D y^{2}= \pm \delta p$, we have that $p \mid x$, so the form $p x^{2}-(D / p) y^{2}$ represents δ and $-\delta$. Also, by Theorem $6, x^{2}-D y^{2}$ represents -1 .

When $\delta=1$, Theorem 8 tells us that $D / p=1$, and $D=p$.
When $\delta=2, D / p$ is even (as we show below), so for any x and y so that $p x^{2}-(D / p) y^{2}= \pm 2$, we have that x is even. It follows that the form $2 p x^{2}-$ $(D / 2 p) y^{2}$ represents 1 and -1 , so by Theorem $8, D / 2 p=1$, and $D=2 p$.

To see that D / p must be even when $\delta=2$, suppose D / p were odd. Then for any representation of 2 by $p x^{2}-(D / p) y^{2}, x$ and y would have the same parity. If they were both even, we would have $4 \mid p x^{2}-(D / p) y^{2}$, but $4 \nmid 2$, so both must be odd. Then $x^{2} \equiv y^{2} \equiv 1(\bmod 8)$ and $p-D / p \equiv 2(\bmod 8)$. A similar argument using the fact that $p x^{2}-(D / p) y^{2}$ represents -2 shows that $p-D / p \equiv-2(\bmod 8)$. Because $2 \not \equiv-2(\bmod 8), D / p$ must be even.

When $\delta=4$, the form $p x^{2}-(D / p) y^{2}$ represents 4 and -4 . By considerations modulo 16 we have $p(D / p)=D \equiv 5(\bmod 8)$, and in particular D / p is odd. Then by Theorem 1 the form $p x^{2}-(D / p) y^{2}$ represents 1 and -1 , so by Theorem $8, D / p=1$, and $D=p$.

6. A conjecture

We begin with some theorems needed to prove the main theorem in this section. Theorem 9 in [4] says, in part
Theorem 10. If $\left\{x_{i}, y_{i}\right\}$ is the sequence of positive solutions to $x^{2}-D y^{2}=1$ (where $\left\{x_{1}, y_{1}\right\}$ is the smallest positive solution), $q>3$ is a prime, $q \mid D$, and $q \nmid y_{1}$, then $q \nmid y_{i}$ for $i<q$ and $q \| y_{q}$.

Theorem 10 in the same paper [4] is
Theorem 11. If q is an odd prime, $\alpha, \lambda \in \mathbf{N},\left\{x_{i}, y_{i}\right\}$ is as in Theorem 10, κ is the smallest index i so that $q^{\alpha} \mid y_{i}, q^{\alpha} \| y_{\kappa}$, and $\operatorname{gcd}(q, \chi)=1$, then $q^{\alpha+\lambda} \| y_{\chi \kappa q^{\lambda}}$.

We have as an immediate consequence
Corollary 2. If $q>3$ is an odd prime, $\alpha \in \mathbf{N},\left\{x_{i}, y_{i}\right\}$ is as in Theorem 10, $q \mid D$, and $q \nmid y_{1}$, then $q^{\alpha} \| y_{p^{\alpha}}$.

The following theorem provides support for the conjecture below.
Theorem 12. If
$x_{1}, y_{1}, t, u \in \mathbf{N}$,
$m \in \mathbf{Z}$,
$x_{1}^{2}-D y_{1}^{2}=m$ with $\operatorname{gcd}\left(x_{1}, y_{1}\right)=1$,
$x^{2}-D y^{2}$ does not represent -1,
$t^{2}-D u^{2}=1$,
$q>3$ is an odd prime, $q \mid D$, and $q \nmid u x_{1}$,
then, for all integers $k \geq 0, x^{2}-D q^{2 k} y^{2}$ primitively represents m and does not represent -1 .

Proof. By Corollary 2, for any k there are t_{k}, u_{k} so that

$$
\begin{equation*}
t_{k}^{2}-D q^{2 k} u_{k}^{2}=1 \tag{4}
\end{equation*}
$$

and $\operatorname{gcd}\left(q, u_{k}\right)=1$.
By hypothesis, the theorem is this true for $k=0$. We assume the theorem for k and show it for $k+1$. Let

$$
\begin{equation*}
x_{1}^{2}-D q^{2 k} y_{1}^{2}=m \tag{5}
\end{equation*}
$$

be a positive primitive solution with $q \nmid x_{1}$, and define $x_{2 n+1}, y_{2 n+1}$ by

$$
\begin{equation*}
x_{2 n+1}+y_{2 n+1} \sqrt{D q^{2 k}}=\left(t_{k}+u_{k} \sqrt{D q^{2 k}}\right)^{2 n}\left(x_{1}+y_{1} \sqrt{D q^{2 k}}\right) . \tag{6}
\end{equation*}
$$

Then

$$
\begin{align*}
& x_{2 n+1}+y_{2 n+1} \sqrt{D q^{2 k}} \tag{7}\\
& \quad \equiv\left(t_{k}^{2 n}+2 n t_{k}^{2 n-1} u_{k} \sqrt{D q^{2 k}}\right)\left(x_{1}+y_{1} \sqrt{D q^{2 k}}\right) \quad(\bmod q)
\end{align*}
$$

and

$$
\begin{equation*}
x_{2 n+1}+y_{2 n+1} \sqrt{D q^{2 k}} \equiv x_{1}+\left(2 n t_{k} u_{k} x_{1}+y_{1}\right) \sqrt{D q^{2 k}} \tag{8}
\end{equation*}
$$

because $q \mid D$, $t_{k}^{2 n} \equiv 1(\bmod q)$, and $t_{k}^{2 n-1} \equiv t_{k}(\bmod q)$. From this we have that

$$
\begin{equation*}
x_{2 n+1} \equiv x_{1} \quad(\bmod q) \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
y_{2 n+1} \equiv 2 n t_{k} u_{k} x_{1}+y_{1} \quad(\bmod q) \tag{10}
\end{equation*}
$$

By hypothesis, $\operatorname{gcd}\left(2 t_{k} u_{k} x_{1}, q\right)=1$, so there is an n so that

$$
\begin{equation*}
2 n t_{k} u_{k} x_{1}+y_{1} \equiv 0 \quad(\bmod q), \tag{11}
\end{equation*}
$$

and so $q \mid y_{2 n+1}$. We then have

$$
\begin{equation*}
x_{2 n+1}^{2}-D q^{2 k+2}\left(\frac{y_{2 n+1}}{q}\right)^{2}=m \tag{12}
\end{equation*}
$$

with $\operatorname{gcd}\left(x_{2 n+1}, q\right)=1$ (by (9)).
To show that this is a primitive solution, it suffices to show that

$$
\operatorname{gcd}\left(x_{2 n+1}, y_{2 n+1}\right)=1
$$

Define t, u by

$$
t+u \sqrt{D q^{2 k}}=\left(t_{k}+u_{k} \sqrt{D q^{2 k}}\right)^{2 n}
$$

so by (6)

$$
x_{2 n+1}+y_{2 n+1} \sqrt{D q^{2 k}}=\left(t+u \sqrt{D q^{2 k}}\right)\left(x_{1}+y_{1} \sqrt{D q^{2 k}}\right)
$$

where

$$
t^{2}-u^{2} D q^{2 k}=1
$$

Then

$$
x_{2 n+1}=t x_{1}+u y_{1} D q^{2 k}
$$

$$
\text { ON } D \text { SO THAT } x^{2}-D y^{2} \text { REPRESENTS } m \text { AND }-m \text { AND NOT }-1
$$

and

$$
y_{2 n+1}=u x_{1}+t y_{1}
$$

so

$$
\begin{align*}
& t x_{2 n+1}-u D^{2 k} y_{2 n+1} \tag{13}\\
& \qquad \begin{aligned}
=t^{2} x_{1}+t u y_{1} D q^{2 k}-\left(t u y_{1} D q^{2 k}+\right. & \left.u^{2} x_{1} D q^{2 k}\right) \\
& =\left(t^{2}-u^{2} D q^{2 k}\right) x_{1}=x_{1}
\end{aligned}
\end{align*}
$$

Similarly,

$$
t y_{2 n+1}-u x_{2 n+1}=y_{1}
$$

Hence any common factor of $x_{2 n+1}$ and $y_{2 n+1}$ divides both x_{1} and y_{1}, so $x_{2 n+1}$ and $y_{2 n+1}$ are relatively prime.

For $1<m \leq 15000, m$ not equal to $25,100, p, 2 p, 4 p, 2 p^{2}$, for p prime, there is a $D<500000$ and $q \mid D$ so that the conditions of the theorem apply for m and $-m$.

Based on this, and other empirical evidence, I conjecture that for any integer $m>1$ that is not $25,100, p, 2 p, 4 p$, or $2 p^{2}$, for p a prime, there are infinitely many D so that $x^{2}-D y^{2}$ primitively represents m and $-m$ and does not represent -1 .

References

[1] B. D. Beach and H. C. Williams. A numerical investigation of the Diophantine equation $x^{2}-d y^{2}=-1$. In Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pages 37-68, Boca Raton, Fla., 1972. Florida Atlantic Univ.
[2] L. E. Dickson. History of the theory of numbers. Vol. I: Divisibility and primality. AMS Chelsea Publishing, 1999.
[3] P. Kaplan and K. S. Williams. Pell's equations $X^{2}-m Y^{2}=-1,-4$ and continued fractions. J. Number Theory, 23(2):169-182, 1986.
[4] D. H. Lehmer. On the multiple solutions of the Pell equation. Ann. of Math. (2), 30(1-4):66-72, 1928/29.
[5] D. H. Lehmer. An extended theory of Lucas' functions. Ann. of Math. (2), 31(3):419448, 1930.
[6] R. A. Mollin. A simple criterion for solvability of both $X^{2}-D Y^{2}=c$ and $x^{2}-D y^{2}=-c$. New York J. Math., 7:87-97 (electronic), 2001.
[7] R. A. Mollin, K. Cheng, and B. Goddard. The Diophantine equation $A X^{2}-B Y^{2}=C$ solved via continued fractions. Acta Math. Univ. Comenian. (N.S.), 71(2):121-138, 2002.
[8] R. A. Mollin and A. J. van der Poorten. Continued fractions, Jacobi symbols, and quadratic Diophantine equations. Canad. Math. Bull., 43(2):218-225, 2000.
[9] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An introduction to the theory of numbers. John Wiley \& Sons Inc., New York, fifth edition, 1991.
[10] O. Perron. Die Lehre von den Kettenbrüchen. Bd I. Elementare Kettenbrüche. B. G. Teubner Verlagsgesellschaft, Stuttgart, 1954. 3te Aufl.
[11] J. P. Robertson. On D so that $x^{2}-D y^{2}= \pm m$. Acta Math. Acad. Paedagog. Nyházi. (N.S.), 22(2):143-148 (electronic), 2006.
[12] D. T. Walker. On the diophantine equation $m X^{2}-n Y^{2}= \pm 1$. Amer. Math. Monthly, 74:504-513, 1967.
[13] A. Weil. Number theory. Modern Birkhäuser Classics. Birkhäuser Boston Inc., Boston, MA, 2007. An approach through history from Hammurapi to Legendre, Reprint of the 1984 edition.

Received on August 31, 2007; accepted on August 03, 2009

Actuarial and Economic Services Division, National Council on Compensation Insurance, Boca Raton, FL 33487, USA
E-mail address: jpr2718@gmail.com

[^0]: 2000 Mathematics Subject Classification. 11D09, 11D85.
 Key words and phrases. Generalized Pell equation, simultaneous Pell equations, representation.

