THE BEST CONSTANT FOR CARLEMAN'S INEQUALITY OF FINITE TYPE

YU-DONG WU, ZHI-HUA ZHANG, AND ZHI-GANG WANG
Dedicated to Mr. Bi-Fan Li on the occasion of his 53rd birthday.

Abstract

In this short note, we consider the best constant for Carleman's inequality of finite type by means of weight coefficient and nonlinear algebraic equation system. The result presented here give a part of answer this problem.

1. Introduction and Main Result

The following Carleman's inequality (see [3, 9]) is well-known:

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(a_{1} a_{2} \cdots a_{k}\right)^{\frac{1}{k}}<e \sum_{k=1}^{\infty} a_{k}, \tag{1.1}
\end{equation*}
$$

where

$$
a_{k} \geqq 0 \quad \text { and } \quad 0<\sum_{k=1}^{\infty} a_{k}<\infty .
$$

For some recent investigations of Carleman's inequality, see (for example) the works by Alzer [1, 2], Yang and Debnath [15], Yan and Sun [14], Li [11], Yang [17, 16], Yuan [18], Chen [6], Duncan and McGregor [8], Chen et al. [4], Chen and Qi [5], Yue [19] and Liu and Zhu [12].

The finite type of (1.1) is

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{1} a_{2} \cdots a_{k}\right)^{\frac{1}{k}}<e \sum_{k=1}^{n} a_{k} . \tag{1.2}
\end{equation*}
$$

[^0]We know that the coefficient e of (1.1) is the best possible. However, in (1.2), the coefficient e is not the best possible one. In 1963, de Brujin [7] improved on e with asymptotic methods in analysis as follows:

$$
C_{n}=e-\frac{2 \pi^{2} e}{(\ln n)^{2}}+O\left(\frac{1}{(\ln n)^{3}}\right) \quad(n \in \mathbb{N}:=\{1,2,3, \ldots\}) .
$$

In a recent paper, Johansson et al. [10] improved on e to $e^{1-\frac{1}{n}}$. In this short note, we shall refine $e^{1-\frac{1}{n}}$ in our following main result.
Theorem 1. The best constant C_{n} for the following inequality:

$$
\begin{equation*}
\sum_{k=1}^{n}\left(a_{1} a_{2} \cdots a_{k}\right)^{\frac{1}{k}} \leqq C_{n} \sum_{k=1}^{n} a_{k} \quad(n \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

is the solution of the nonlinear algebraic equation:

$$
\left\{\begin{array}{l}
1+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\cdots+\frac{x_{n-1}}{n-1}+\frac{x_{n}}{n}=C_{n} \tag{1.4}\\
\frac{x_{2}}{2}+\frac{x_{3}}{3}+\cdots+\frac{x_{n-1}}{n-1}+\frac{x_{n}}{n}=C_{n} x_{2}^{2} \\
\quad \vdots \\
\frac{x_{n-1}}{n-1}+\frac{x_{n}}{n}=C_{n} \cdot \frac{x_{n-1}^{n-1}}{x_{n-2}^{n-2}}, \\
\frac{x_{n}}{n}=C_{n} \cdot \frac{x_{n}^{n}}{x_{n-1}^{n-1}},
\end{array}\right.
$$

or the ratiocinate equation system:

$$
\left\{\begin{array}{l}
y_{0}=C_{n} \tag{1.5}\\
y_{n-1}=\frac{1}{n} \\
y_{i-1}-\left(\frac{y_{i}}{C_{n}}\right)^{\frac{1}{i}} y_{i}=\frac{1}{i}
\end{array}\right.
$$

where $1 \leqq i \leqq n-1$.

2. Proof of Theorem 1

By applying AM-GM inequality, we can easily obtain

$$
\begin{align*}
\sum_{k=1}^{n}\left(a_{1} a_{2} \cdots a_{k}\right)^{\frac{1}{k}} & =\sum_{k=1}^{n}\left(\frac{\left(\lambda_{1} a_{1}\right)\left(\lambda_{2} a_{2}\right) \cdots\left(\lambda_{k} a_{k}\right)}{\lambda_{1} \lambda_{2} \cdots \lambda_{k}}\right)^{\frac{1}{k}} \\
& \leqq \sum_{k=1}^{n} \frac{1}{\left(\lambda_{1} \lambda_{2} \cdots \lambda_{k}\right)^{\frac{1}{k}}}\left(\frac{1}{k} \sum_{j=1}^{k} \lambda_{j} a_{j}\right) \tag{2.1}\\
& =\sum_{i=1}^{n}\left(\sum_{k=i}^{n} \frac{\lambda_{i}}{k\left(\lambda_{1} \lambda_{2} \cdots \lambda_{k}\right)^{\frac{1}{k}}} a_{i}\right) \\
& =C_{n} \sum_{k=1}^{n} a_{k} .
\end{align*}
$$

It follows from the last two expressions of (2.1) that

$$
\left\{\begin{array}{l}
1+\frac{\lambda_{1}}{2\left(\lambda_{1} \lambda_{2}\right)^{\frac{1}{2}}}+\frac{\lambda_{1}}{3\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{\frac{1}{3}}}+\cdots \tag{2.2}\\
\quad+\frac{\lambda_{1}}{(n-1)\left(\lambda_{1} \lambda_{1} \cdots \lambda_{n-1}\right)^{\frac{1}{n-1}}}+\frac{\lambda_{1}}{n\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right)^{\frac{1}{n}}}=C_{n}, \\
\frac{\lambda_{2}}{2\left(\lambda_{1} \lambda_{2}\right)^{\frac{1}{2}}}+\frac{\lambda_{2}}{3\left(\lambda_{1} \lambda_{2} \lambda_{3}\right)^{\frac{1}{3}}}+\cdots \\
\quad+\frac{\lambda_{2}}{(n-1)\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}\right)^{\frac{1}{n-1}}}+\frac{\lambda_{2}}{n\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right)^{\frac{1}{n}}}=C_{n}, \\
\quad \vdots \\
\frac{\lambda_{n-1}}{(n-1)\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n-1}\right)^{\frac{1}{n-1}}}+\frac{\lambda_{n-1}}{n\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right)^{\frac{1}{n}}}=C_{n}, \\
\frac{\lambda_{n}}{n\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right)^{\frac{1}{n}}}=C_{n} .
\end{array}\right.
$$

Now, we set

$$
\frac{1}{\lambda_{1}}=x_{1}, \quad \frac{1}{\left(\lambda_{1} \lambda_{2}\right)^{\frac{1}{2}}}=x_{2}, \quad \cdots, \quad \frac{1}{\left(\lambda_{1} \lambda_{2} \cdots \lambda_{n}\right)^{\frac{1}{n}}}=x_{n}
$$

then

$$
\frac{1}{\lambda_{1}}=x_{1}, \quad \frac{1}{\lambda_{2}}=\frac{x_{2}^{2}}{x_{1}}, \quad \cdots, \quad \frac{1}{\lambda_{n}}=\frac{x_{n}^{n}}{x_{n-1}^{n-1}}
$$

We also know that (2.2) can be rewritten as the following nonlinear algebraic equation system:

$$
\left\{\begin{array}{l}
x_{1}+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\cdots+\frac{x_{n-1}}{n-1}+\frac{x_{n}}{n}=C_{n} x_{1}, \tag{2.3}\\
\frac{x_{2}}{2}+\frac{x_{3}}{3}+\cdots+\frac{x_{n-1}}{n-1}+\frac{x_{n}}{n}=C_{n} \cdot \frac{x_{2}^{2}}{x_{1}}, \\
\quad \vdots \\
\frac{x_{n-1}}{n-1}+\frac{x_{n}}{n}=C_{n} \cdot \frac{x_{n-1}^{n-1}}{x_{n-2}}, \\
\frac{x_{n}}{n}=C_{n} \cdot \frac{x_{n}^{n}}{x_{n-1}^{n-1}} .
\end{array}\right.
$$

Since the nonlinear algebraic equation system (2.3) is homogeneous for $x_{i}(1 \leqq$ $i \leqq n$), we can set $x_{1}=1$, hence, (2.3) reduces to (1.4).

If we set

$$
y_{i-1}=C_{n}\left(\frac{x_{i}}{x_{i-1}}\right)^{i-1} \quad \text { and } \quad y_{0}=C_{n}
$$

we know that the nonlinear algebraic equation system (2.3) can be written as (1.5).

3. Remarks and Observations

Remark 2. When $n=2$, the nonlinear algebraic equation system (1.4) reduces to

$$
\left\{\begin{array}{l}
1+\frac{x_{2}}{2}=C_{2} \\
\frac{x_{2}}{2}=C_{2} x_{2}^{2}
\end{array}\right.
$$

It's easy to get

$$
C_{2}=\frac{\sqrt{2}+1}{2} .
$$

Remark 3. When $n=3$, the nonlinear algebraic equation system (1.4) becomes

$$
\left\{\begin{array}{l}
1+\frac{x_{2}}{2}+\frac{x_{3}}{3}=C_{3}, \tag{3.1}\\
\frac{x_{2}}{2}+\frac{x_{3}}{3}=C_{3} x_{2}^{2}, \\
\frac{x_{3}}{3}=C_{3} \frac{x_{3}^{3}}{x_{2}^{2}} .
\end{array}\right.
$$

For

$$
x_{2}>0 \quad \text { and } \quad x_{3}>0,
$$

we know that (3.1) can be written as follows:

$$
\left\{\begin{array}{l}
1+\frac{x_{2}}{2}+\frac{x_{3}}{3}-C_{3}=0, \tag{3.2}\\
\frac{x_{2}}{2}+\frac{x_{3}}{3}-C_{3} x_{2}^{2}=0, \\
\frac{x_{2}^{2}}{3}-C_{3} x_{3}^{2}=0
\end{array}\right.
$$

By applying Wu's method (see [13]), we find that the solutions of (3.2) are the union of the solutions of the following nonlinear algebraic equation systems:

$$
\left\{\begin{array} { l }
{ x _ { 2 } = 0 , } \\
{ x _ { 3 } = 0 , } \\
{ C _ { 3 } - 1 = 0 , }
\end{array} \quad \left\{\begin{array}{l}
2 x_{2}-1=0 \\
4 x_{3}-1=0 \\
3 C_{3}-4=0
\end{array}\right.\right.
$$

and

$$
\left\{\begin{array}{l}
108 C_{3}^{3}-108 C_{3}^{2}-108 C_{3}^{2} x_{2}+27 C_{3}-4=0, \\
108 C_{3}^{3}-108 C_{3}^{2}-72 C_{3}^{2} x_{3}-27 C_{3}+4=0, \\
3888 C_{3}^{5}-2592 C_{3}^{4}-1512 C_{3}^{3}-360 C_{3}^{2}+51 C_{3}-4=0 .
\end{array}\right.
$$

It's not difficult to find that only the following equation system satisfies our restricted conditions on $x_{k}(k=2,3)$ and C_{3},

$$
\left\{\begin{array}{l}
2 x_{2}-1=0 \\
4 x_{3}-1=0 \\
3 C_{3}-4=0
\end{array}\right.
$$

Thus, we get

$$
C_{3}=\frac{4}{3} .
$$

Remark 4. When $n=4$, the nonlinear algebraic equation system (1.4) can be written as follows:

$$
\left\{\begin{array}{l}
1+\frac{x_{2}}{2}+\frac{x_{3}}{3}+\frac{x_{4}}{4}=C_{4}, \tag{3.3}\\
\frac{x_{2}}{2}+\frac{x_{3}}{3}+\frac{x_{4}}{4}=C_{4} x_{2}^{2}, \\
\frac{x_{3}}{3}+\frac{x_{4}}{4}=C_{4} \frac{x_{3}^{3}}{x_{2}^{2}}, \\
\frac{x_{4}}{4}=C_{4} \frac{x_{4}^{4}}{x_{3}^{3}} .
\end{array}\right.
$$

By similarly applying the method of Remark 3 and using (1.5), we know that C_{4} in (3.3) is the largest positive root of the following equation:

$$
\begin{align*}
& 109049173118505959030784 C_{4}^{24}-654295038711035754184704 C_{4}^{23} \tag{3.4}\\
&+1472163837099830446915584 C_{4}^{22}-1387347813563214701002752 C_{4}^{21} \\
&+220843507713085418766336 C_{4}^{20}+361130725214496730644480 C_{4}^{19} \\
&+18738444188050884919296 C_{4}^{18}-149735761790067869220864 C_{4}^{17} \\
&-20033038006659651207168 C_{4}^{16}+14417509185682352898048 C_{4}^{15} \\
&+16905530303693690241024 C_{4}^{14}-2098418839125516877824 C_{4}^{13} \\
&-198705178996352483328 C_{4}^{12}+427447433656163893248 C_{4}^{11} \\
&+41447678188009291776 C_{4}^{10}-2629784260986273792 C_{4}^{9} \\
&+660475521813381120 C_{4}^{8}+342213608420278272 C_{4}^{7} \\
&+42624005978423296 C_{4}^{6}-201976270848000 C_{4}^{5} \\
&+274965186525696 C_{4}^{4}+12841816536576 C_{4}^{3} \\
&+373658292864 C_{4}^{2}+22039921152 C_{4}+387420489=0 .
\end{align*}
$$

Therefore, we find from (3.4) that

$$
C_{4} \approx 1.420844385 .
$$

Remark 5. When $n \geqq 5$, we fail to obtain C_{n} is one of the roots of certain algebraic equation. But in view of (1.5) and the numerical method of equation (with the function fsolve() in mathematical software Maple 10), we can get the following approximate results for $5 \leqq n \leqq 12$:

n	C_{n}	n	C_{n}
5	1.486353229	9	1.645509523
6	1.537937557	10	1.671759812
7	1.580037211	11	1.694891445
8	1.615322400	12	1.715500223

With the aid of the numerical method of equation, we also can get the approximate results of $C_{n}(n \geqq 13)$. Since the computations are too complex, we here choose to omit the details.

Remark 6. Clearly, our results of $C_{n}(2 \leqq n \leqq 12)$ are improvements of the corresponding results obtained by Johansson et al. [10].

Finally, by virtue of the results obtained by de Brujin [7], we know that $C_{n}(n \in \mathbb{N})$ in Theorem 1 are monotonous and bounded for $n \in \mathbb{N}$. Here, we pose the following problem.

Problem 7. What are the best $f(n)$ and $g(n)$ in the following inequality?

$$
f(n) \leqq C_{n+1}-C_{n} \leqq g(n) \quad(n \in \mathbb{N})
$$

where C_{n} and C_{n+1} are given by Theorem 1 .

4. Acknowledgements

The authors would like to thank Professor N.G. de Brujin and Jian Chen for their kindly help in sending several references to them.

References

[1] H. Alzer. Refinement of a Carleman-type inequality. Studia Sci. Math. Hungar., 32(3-4):361-366, 1996.
[2] H. Alzer. A refinement of Carleman's inequality. J. Approx. Theory, 95(3):497-499, 1998.
[3] T. Carleman. Sur les fonctions quasi-analytiques. Helsingfors: Akadem. Buchh. (5. Kongreß Skandinav. Mathematiker in Helsingfors vom 4. bis 7. Juli 1922), 1923.
[4] C.-P. Chen, W.-S. Cheung, and F. Qi. Note on weighted Carleman-type inequality. Int. J. Math. Math. Sci., (3):475-481, 2005.
[5] C.-P. Chen and F. Qi. On further sharpening of carleman inequality. College Math. J., 21:88-90, 2005. in Chinese.
[6] H. Chen. On an infinite series for $(1+1 / x)^{x}$ and its application. Int. J. Math. Math. Sci., 29(11):675-680, 2002.
[7] N. G. de Bruijn. Carleman's inequality for finite series. Nederl. Akad. Wetensch. Proc. Ser. A $66=$ Indag, Math., 25:505-514, 1963.
[8] J. Duncan and C. M. McGregor. Carleman's inequality. Amer. Math. Monthly, 110(5):424-431, 2003.
[9] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge, at the University Press, 1952. 2d ed.
[10] M. Johansson, L.-E. Persson, and A. Wedestig. Carleman's inequality-history, proofs and some new generalizations. JIPAM. J. Inequal. Pure Appl. Math., 4(3):Article 53, 19 pp. (electronic), 2003.
[11] J.-L. Li. Notes on an inequality involving the constant e. J. Math. Anal. Appl., 250(2):722-725, 2000.
[12] H.-P. Liu and L. Zhu. New strengthened Carleman's inequality and Hardy's inequality. J. Inequal. Appl., 2007. Art. ID 84104, 7 pages.
[13] W.-T. Wu. Mathematics mechanization, volume 489 of Mathematics and its Applications. Kluwer Academic Publishers Group, Dordrecht, 2000. Mechanical geometry theorem-proving, mechanical geometry problem-solving and polynomial equationssolving.
[14] P. Yan and G. Sun. A strengthened Carleman's inequality. J. Math. Anal. Appl., 240(1):290-293, 1999.
[15] B. Yang and L. Debnath. Some inequalities involving the constant e, and an application to Carleman's inequality. J. Math. Anal. Appl., 223(1):347-353, 1998.
[16] X. Yang. Approximations for constant e and their applications. J. Math. Anal. Appl., 262(2):651-659, 2001.
[17] X. Yang. On Carleman's inequality. J. Math. Anal. Appl., 253(2):691-694, 2001.
[18] B.-Q. Yuan. Refinements of Carleman's inequality. JIPAM. J. Inequal. Pure Appl. Math., 2(2):Article 21, 4 pp. (electronic), 2001.
[19] H. Yue. A strengthened Carleman's inequality. Commun. Math. Anal., 1(2):115-119, 2006.

Received January 09, 2008.

```
Yu-Dong Wu,
Department of Mathematics,
Xinchang High School,
Xinchang,
Zhejiang 312500,
People's Republic of China
E-mail address: yudong.wu@yahoo.com.cn
Zhi-Hua Zhang,
Department of Mathematics,
Zixing Educational Research Section,
Chenzhou,
Hunan 423400,
People's Republic of China
E-mail address: zxzh1234@163.com
Zhi-Gang Wang,
School of Mathematics and Computing Science,
Changsha University of Science and Technology,
Changsha,
Hunan 410076,
People's Republic of China
E-mail address: zhigwang@163.com
```


[^0]: 2000 Mathematics Subject Classification. Primary 26D15; Secondary 65H10.
 Key words and phrases. Carleman's inequality; Best constant; Nonlinear algebraic equation system; AM-GM inequality; Wu's method.

 The present investigation was supported by the Scientific Research Fund of Hunan Provincial Education Department under Grant 08C118 of People's Republic of China.

