Acta Mathematica Academiae Paedagogicae Nyíregyháziensis 24 (2008), 209-214 www.emis.de/journals ISSN 1786-0091

USHANGI GOGINAVA

ABSTRACT. The main aim of this paper is to prove that for the boundedness of the maximal operator $\sigma_*^{\alpha,\beta}$ from the Hardy space $H_p(I^2)$ to the space $L_p(I^2)$ the assumption $p > \max\{1/(\alpha+1), 1/(\beta+1)\}$ is essential.

We denote the set of non-negative integers by **N**. For a set $X \neq \emptyset$ let X^2 be its Cartesian product $X \times X$ taken with itself. By a dyadic interval in I := [0, 1)we mean one of the form $[l2^{-k}, (l+1)2^{-k})$ for some $k \in \mathbf{N}, 0 \leq l < 2^k$. Given $k \in \mathbf{N}$ and $x \in [0, 1)$, let $I_k(x)$ denote the dyadic interval of length 2^{-k} which contains the point x. The Cartesian product of two dyadic intervals is said to be a rectangle. Clearly, the dyadic rectangle of area $2^{-n} \times 2^{-m}$ containing $(x^1, x^2) \in I^2$ is given by $I_{n,m}(x^1, x^2) := I_n(x^1) \times I_m(x^2)$. We also use the notation mes (A) for the Lebesgue measure of any measurable set A.

Let $r_0(x)$ be a function defined by

$$r_0(x) = \begin{cases} 1, & \text{if } x \in [0, 1/2), \\ -1, & \text{if } x \in [1/2, 1), \end{cases}$$
$$r_0(x+1) = r_0(x).$$

The Rademacher system is defined by

$$r_n(x) = r_0(2^n x), \ n \ge 1 \text{ and } x \in [0, 1).$$

Let w_0, w_1, \ldots represent the Walsh functions, i.e. $w_0(x) = 1$ and if

$$n = 2^{n_1} + \dots + 2^{n_r}$$

is a positive integer with $n_1 > n_2 > \cdots > n_r$ then

$$w_n(x) = r_{n_1}(x) \cdots r_{n_r}(x).$$

2000 Mathematics Subject Classification. 42C10.

Key words and phrases. Walsh function, Hardy space, Maximal operator.

The Walsh-Dirichlet kernel is defined by

$$D_n(x) = \sum_{k=0}^{n-1} w_k(x).$$

Recall that

$$D_{2^{n}}(x) = \begin{cases} 2^{n}, & \text{if } x \in [0, 2^{-n}), \\ 0, & \text{if } x \in [2^{-n}, 1). \end{cases}$$

The Kronecker product $(w_{n,m} : n, m \in \mathbf{N})$ of two Walsh systems is said to be the two-dimensional Walsh system. Thus

$$w_{n,m}(x^1, x^2) := w_n(x^1) w_m(x^2).$$

The partial sums of the two-dimensional Walsh-Fourier series are defined as follows:

$$S_{n,m}f(x^{1},x^{2}) = \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \widehat{f}(i,j) w_{i,j}(x^{1},x^{2}),$$

where the number

$$\widehat{f}(i,j) = \int_{I} f\left(u^{1}, u^{2}\right) w_{i,j}\left(u^{1}, u^{2}\right) du^{1} du^{2}$$

is said to be the (i, j)th Walsh-Fourier coefficient of the function f.

The norm (or quasinorm) of the space $L_p(I^2)$ is defined by

$$\|f\|_{p} := \left(\int_{I^{2}} \left| f\left(x^{1}, x^{2}\right) \right|^{p} dx^{1} dx^{2} \right)^{1/p} \quad (0$$

The σ -algebra generated by the dyadic rectangles $\{I_{n,m}(x^1, x^2) : x, y \in I\}$ will be denoted by $F_{n,m}(n, m \in \mathbf{N})$, more precisely,

$$F_{n,m} = \sigma \left\{ \left[k2^{-n}, (k+1)2^{-n} \right) \times \left[l2^{-m}, (l+1)2^{-m} \right) : 0 \le k < 2^n, 0 \le l < 2^m \right\},$$

where $\sigma(A)$ denotes the σ -algebra generated by an arbitrary set system A.

Denote by $f = (f^{(n,m)}, n \in \mathbf{N})$ two-parameter martingale with respect to $(F_{n,m}, n, m \in \mathbf{N})$ (for details see, e.g. [6, 9]). The maximal function of a martingale f is defined by

$$f^* = \sup_{n,m \in \mathbf{N}} \left| f^{(n,m)} \right|.$$

ī.

In case $f \in L_1(I^2)$, the maximal function can also be given by

$$f^*(x^1, x^2) = \sup_{n, m \in \mathbb{N}} \frac{1}{\max(I_n(x^1) \times I_m(x^2))} \left| \int_{I_n(x^1) \times I_m(x^2)} f(u, v) \, du \, dv \right|,$$

 $(x^1, x^2) \in I^2.$

210

For $0 the Hardy martingale space <math>H_p(I^2)$ consists all martingales for which

$$\|f\|_{H_p} := \|f^*\|_p < \infty$$

If $f \in L_1(I^2)$ then it is easy to show that the sequence $(S_{2^n,2^m}(f):n,m \in \mathbf{N})$ is a martingale. If f is a martingale, that is $f = (f^{(n,m)}:n,m \in \mathbf{N})$ then the Walsh-Fourier coefficients must be defined in a little bit different way:

$$\widehat{f}(i,j) = \lim_{k,l \to \infty} \int_{I^2} f^{(k,l)}(x^1, x^2) w_i(x^1) w_j(x^2) dx^1 dx^2.$$

The Walsh-Fourier coefficients of the function $f \in L_1(I^2)$ are the same as the ones of the martingale $(S_{2^n,2^m}(f):n,m\in \mathbf{N})$ obtained from the function f.

The (C, α, β) means of the two-dimensional Walsh-Fourier series of the martingale f is given by

$$\sigma_{n,m}^{\alpha,\beta}(f,x^1,x^2) = \frac{1}{A_{n-1}^{\alpha}} \frac{1}{A_{m-1}^{\beta}} \sum_{i=1}^{n} \sum_{j=1}^{m} A_{n-i}^{\alpha-1} A_{m-j}^{\beta-1} S_{i,j} f\left(x^1,x^2\right),$$

where

$$A_n^{\alpha} := \frac{(1+\alpha)\dots(n+\alpha)}{n!}$$

for any $n \in \mathbf{N}, \alpha \neq -1, -2, \dots$ It is known ([10]) that $A_n^{\alpha} \sim n^{\alpha}$. For the martingale f we consider the maximal operator

$$\sigma_*^{\alpha,\beta}f = \sup_{n,m} |\sigma_{n,m}^{\alpha,\beta}(f,x^1,x^2)|$$

The (C, α) kernel defined by

$$K_{n}^{\alpha}(x) := \frac{1}{A_{n-1}^{\alpha}} \sum_{k=1}^{n} A_{n-j}^{\alpha-1} D_{k}(x).$$

In the one-dimensional case, Fine [1] proved that the (C, α) means $\sigma_n^{\alpha} f$ of a function $f \in L(I)$ converge a.e. to f as $n \to \infty$. The maximal operator $\sigma_*^{\alpha} f := \sup_n |\sigma_n^{\alpha} f| \ (0 < \alpha < 1)$ of the (C, α) means of the Walsh-Paley Fourier series was investigated by Weisz [8]. In his paper Weisz proved the boundedness of $\sigma_*^{\alpha} : H_p \to L_p$ when $p > 1/(1 + \alpha)$. The author [3] showed that in Theorem of Weisz the assumption $p > 1/(\alpha + 1)$ is essential. In particular, we proved that the maximal operator σ_*^{α} of the (C, α) means of the Walsh-Paley Fourier series is not bounded from the Hardy space $H_{1/(\alpha+1)}(I)$ to the space $L_{1/(\alpha+1)}(I)$.

For double Walsh-Fourier series it is known [5] that the (C, α, β) means $\sigma_{n,m}^{\alpha,\beta} f \to f$ in L_p norm as $n, m \to \infty$ whenever $f \in L_p(I^2)$ for some $1 \le p < \infty$.

On the other hand, in 1992 Móricz, Schipp and Wade [4] proved with respect to the Walsh-Paley system that

$$\sigma_{n,m}f = \frac{1}{nm} \sum_{i=1}^{n} \sum_{k=1}^{m} S_{i,k}(f) \to f$$

a.e. for each $f \in L \log^+ L([0,1)^2)$, when min $\{n,m\} \to \infty$. In 2000 Gát proved [2] that the theorem of Móricz, Schipp and Wade above can not be improved. Namely, let $\delta : [0, +\infty) \to [0, +\infty)$ be a measurable function with property $\lim_{t\to\infty} \delta(t) = 0$. Gát proved [2] the existence of a function $f \in L^1(I^2)$ such that $f \in L \log^+ L\delta(L)$, and $\sigma_{n,m}f$ does not converge to f a.e. as min $\{n,m\} \to \infty$. That is, the maximal convergence space for the (C, 1)means of two-dimensional partial sums is $L \log^+ L(I^2)$. Weisz [7] investigated the maximal operator of (C, α, β) means of two-dimensional Walsh-Fourier series and proved that the maximal operator $\sigma_*^{\alpha,\beta}f$ is bounded from $H_p(I^2)$ to $L_p(I^2)$ if $1/(1+\alpha), 1/(1+\beta) . In [7] Weisz conjectured that for$ $the boundedness of the maximal operator <math>\sigma_*^{\alpha,\beta}$ from the Hardy space $H_p(I)$ to the space $L_p(I)$ the assumption $p > 1/(\alpha+1), 1/(1+\beta)$ is essential. We give answer to the question and prove that the maximal operator $\sigma_*^{\alpha,\beta}$ of the (C,α,β) ($0 < \alpha \le \beta \le 1$) means of the two-dimensional Walsh-Fourier series is not bounded from the Hardy space $H_{1/(\alpha+1)}(I^2)$ to the space $L_{1/(\alpha+1)}(I^2)$. The following is true.

Theorem 1. Let $0 < \alpha \leq \beta \leq 1$. Then the maximal operator $\sigma_*^{\alpha,\beta}$ of the (C, α, β) means of the two-dimensional Walsh-Fourier series is not bounded from the Hardy space $H_{1/(\alpha+1)}(I^2)$ to the space $L_{1/(\alpha+1)}(I^2)$.

In order to prove Theorem 1 we need the following lemma.

Lemma 1. ([3]) Let $n \in \mathbb{N}$ and $0 < \alpha \leq 1$. Then

$$\int_{I} \max_{1 \le N \le 2^n} \left(A_{N-1}^{\alpha} \left| K_N^{\alpha}(x) \right| \right)^{1/(\alpha+1)} dx \ge c\left(\alpha\right) \frac{n}{\log\left(n+2\right)}$$

Proof of Theorem 1. Let

$$f_n(x^1, x^2) := [D_{2^{n+1}}(x^1) - D_{2^n}(x^1)] w_{2^n-1}(x^2).$$

Since

$$\widehat{f}_{n}(\nu,\mu) = \int_{I} \left[D_{2^{n+1}}(u^{1}) - D_{2^{n}}(u^{1}) \right] w_{\nu}(u^{1}) du^{1} \int_{I} w_{2^{n}-1}(u^{2}) w_{\mu}(u^{2}) du^{2} du$$

we can write

(1)
$$S_{i,j}f_n(x^1, x^2) = \sum_{\nu=0}^{i-1} \widehat{f}_n(\nu, 2^n - 1) w_\nu(x^1) w_{2^n-1}(x^2)$$

$$=\begin{cases} \left[D_{i}\left(x^{1}\right)-D_{2^{n}}\left(x^{1}\right)\right]w_{2^{n}-1}\left(x^{2}\right), & \text{if } i=2^{n}+1,\ldots,2^{n+1}-1, j\geq2^{n}, \\ f_{n}\left(x^{1},x^{2}\right), & \text{if } i\geq2^{n+1}, j\geq2^{n}, \\ 0, & \text{otherwise.} \end{cases} \end{cases}$$

We have

$$f_n^*(x^1, x^2) = \sup_{i,j} |S_{2^i, 2^j} f_n(x^1, x^2)| = |f_n(x^1, x^2)|,$$

(2)
$$||f_n||_{H_p} = ||f_n^*||_p = ||D_{2^n}||_p = 2^{n(1-1/p)}.$$

Let $1 \leq N < 2^n$. Then from (1) we obtain

$$\begin{split} \sigma_{2^{n}+N,2^{n+1}}^{\alpha}f_{n}\left(x^{1},x^{2}\right) &= \\ &= \frac{1}{A_{2^{n}+N-1}^{\alpha}} \frac{1}{A_{2^{n+1}-1}^{\beta}} \left| \sum_{i=1}^{2^{n}+N} \sum_{j=1}^{2^{n+1}} A_{2^{n}+N-i}^{\alpha-1} A_{2^{n+1}-j}^{\beta-1} S_{i,j} f_{n}\left(x^{1},x^{2}\right) \right| \\ &= \frac{1}{A_{2^{n}+N-1}^{\alpha}} \frac{1}{A_{2^{n+1}-1}^{\beta}} \left| \sum_{i=2^{n}+1}^{2^{n}+N} \sum_{j=2^{n}}^{2^{n+1}} A_{2^{n}+N-i}^{\alpha-1} A_{2^{n+1}-j}^{\beta-1} S_{i,j} f_{n}\left(x^{1},x^{2}\right) \right| \\ &= \frac{1}{A_{2^{n}+N-1}^{\alpha}} \frac{1}{A_{2^{n+1}-1}^{\beta}} \times \\ &\times \left| \sum_{i=2^{n}+1}^{2^{n}+N} \sum_{j=2^{n}}^{2^{n+1}} A_{2^{n}+N-i}}^{\alpha-1} A_{2^{n+1}-j}^{\beta-1} \left[D_{i}\left(x^{1}\right) - D_{2^{n}}\left(x^{1}\right) \right] w_{2^{n}-1}\left(x^{2}\right) \right| \\ &\geq \frac{c\left(\alpha,\beta\right)}{2^{n\alpha}2^{n\beta}} \left| \sum_{i=1}^{N} A_{N-i}^{\alpha-1} \left[D_{i+2^{n}}\left(x^{1}\right) - D_{2^{n}}\left(x^{1}\right) \right] \right| \\ &\geq \frac{c\left(\alpha,\beta\right)}{2^{n\alpha}} \left| \sum_{i=1}^{N} A_{N-i}^{\alpha-1} \left[D_{i+2^{n}}\left(x^{1}\right) - D_{2^{n}}\left(x^{1}\right) \right] \right| \\ &= \frac{c\left(\alpha,\beta\right)}{2^{n\alpha}} \left| \sum_{i=1}^{N} A_{N-i}^{\alpha-1} D_{i}\left(x^{1}\right) \right|. \end{split}$$

Therefore,

$$\sigma_{*}^{\alpha,\beta} f_{n}\left(x^{1}, x^{2}\right) \geq \sup_{1 \leq N \leq 2^{n}} \left|\sigma_{2^{n}+N,2^{n+1}}^{\alpha} f_{n}\left(x^{1}, x^{2}\right)\right|$$
$$\geq \frac{c\left(\alpha,\beta\right)}{2^{n\alpha}} \sup_{1 \leq N \leq 2^{n}} \left|\sum_{i=1}^{N} A_{N-i}^{\alpha-1} D_{i}\left(x^{1}\right)\right|.$$

Then from Lemma 1 and (2) we get

$$\frac{\left\|\sigma_{*}^{\alpha,\beta}f_{n}\right\|_{1/(\alpha+1)}}{\left\|f_{n}\right\|_{H_{1/(\alpha+1)}}} \geq \frac{c\left(\alpha,\beta\right)}{2^{n\alpha}2^{-n\alpha}} \left(\int_{I} \sup_{1\leq N\leq 2^{n}} \left(A_{N-1}^{\alpha}\left|K_{N}^{\alpha}\left(x\right)\right|\right)^{1/(\alpha+1)} dx\right)^{\alpha+1}$$

USHANGI GOGINAVA

$$\geq c(\alpha,\beta) \left(\frac{n}{\log(n+2)}\right)^{\alpha+1} \to \infty \text{ as } n \to \infty$$

Theorem 1 is proved.

References

- N. J. Fine. Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. U.S.A., 41:588–591, 1955.
- [2] G. Gát. On the divergence of the (C,1) means of double Walsh-Fourier series. Proc. Amer. Math. Soc., 128(6):1711–1720, 2000.
- [3] U. Goginava. The maximal operator of the (C, α) means of the Walsh-Fourier series. Ann. Univ. Sci. Budapest. Sect. Comput., 26:127–135, 2006.
- [4] F. Móricz, F. Schipp, and W. R. Wade. Cesàro summability of double Walsh-Fourier series. Trans. Amer. Math. Soc., 329(1):131–140, 1992.
- [5] W. R. Wade. A growth estimate for Cesàro partial sums of multiple Walsh-Fourier series. In A. Haar memorial conference, Vol. I, II (Budapest, 1985), volume 49 of Colloq. Math. Soc. János Bolyai, pages 975–991. North-Holland, Amsterdam, 1987.
- [6] F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis, volume 1568 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.
- [7] F. Weisz. The maximal (C, α, β) operator of two-parameter Walsh-Fourier series. J. Fourier Anal. Appl., 6(4):389–401, 2000.
- [8] F. Weisz. (C, α) summability of Walsh-Fourier series. Anal. Math., 27(2):141–155, 2001.
- [9] F. Weisz. Summability of multi-dimensional Fourier series and Hardy spaces, volume 541 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2002.
- [10] A. Zygmund. Trigonometric series. 2nd ed. Vol. I. Cambridge University Press, New York, 1959.

Received August 28, 2007.

INSTITUTE OF MATHEMATICS, FACULTY OF EXACT AND NATURAL SCIENCES, TBILISI STATE UNIVERSITY, CHAVCHAVADZE STR. 1, TBILISI 0128, GEORGIA *E-mail address*: u.goginava@math.sci.tsu.ge

214