MAXIMAL (C, α, β) OPERATORS OF TWO-DIMENSIONAL WALSH-FOURIER SERIES

USHANGI GOGINAVA

Abstract

The main aim of this paper is to prove that for the boundedness of the maximal operator $\sigma_{*}^{\alpha, \beta}$ from the Hardy space $H_{p}\left(I^{2}\right)$ to the space $L_{p}\left(I^{2}\right)$ the assumption $p>\max \{1 /(\alpha+1), 1 /(\beta+1)\}$ is essential.

We denote the set of non-negative integers by \mathbf{N}. For a set $X \neq \emptyset$ let X^{2} be its Cartesian product $X \times X$ taken with itself. By a dyadic interval in $I:=[0,1)$ we mean one of the form $\left[l 2^{-k},(l+1) 2^{-k}\right)$ for some $k \in \mathbf{N}, 0 \leq l<2^{k}$. Given $k \in \mathbf{N}$ and $x \in[0,1)$, let $I_{k}(x)$ denote the dyadic interval of length 2^{-k} which contains the point x. The Cartesian product of two dyadic intervals is said to be a rectangle. Clearly, the dyadic rectangle of area $2^{-n} \times 2^{-m}$ containing $\left(x^{1}, x^{2}\right) \in I^{2}$ is given by $I_{n, m}\left(x^{1}, x^{2}\right):=I_{n}\left(x^{1}\right) \times I_{m}\left(x^{2}\right)$. We also use the notation mes (A) for the Lebesgue measure of any measurable set A.

Let $r_{0}(x)$ be a function defined by

$$
\begin{aligned}
r_{0}(x) & =\left\{\begin{aligned}
1, & \text { if } x \in[0,1 / 2), \\
-1, & \text { if } x \in[1 / 2,1),
\end{aligned}\right. \\
r_{0}(x+1) & =r_{0}(x) .
\end{aligned}
$$

The Rademacher system is defined by

$$
r_{n}(x)=r_{0}\left(2^{n} x\right), n \geq 1 \text { and } x \in[0,1)
$$

Let w_{0}, w_{1}, \ldots represent the Walsh functions, i.e. $w_{0}(x)=1$ and if

$$
n=2^{n_{1}}+\cdots+2^{n_{r}}
$$

is a positive integer with $n_{1}>n_{2}>\cdots>n_{r}$ then

$$
w_{n}(x)=r_{n_{1}}(x) \cdots r_{n_{r}}(x) .
$$

The Walsh-Dirichlet kernel is defined by

$$
D_{n}(x)=\sum_{k=0}^{n-1} w_{k}(x) .
$$

Recall that

$$
D_{2^{n}}(x)= \begin{cases}2^{n}, & \text { if } x \in\left[0,2^{-n}\right) \\ 0, & \text { if } x \in\left[2^{-n}, 1\right)\end{cases}
$$

The Kronecker product ($w_{n, m}: n, m \in \mathbf{N}$) of two Walsh systems is said to be the two-dimensional Walsh system. Thus

$$
w_{n, m}\left(x^{1}, x^{2}\right):=w_{n}\left(x^{1}\right) w_{m}\left(x^{2}\right) .
$$

The partial sums of the two-dimensional Walsh-Fourier series are defined as follows:

$$
S_{n, m} f\left(x^{1}, x^{2}\right)=\sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \widehat{f}(i, j) w_{i, j}\left(x^{1}, x^{2}\right),
$$

where the number

$$
\widehat{f}(i, j)=\int_{I} f\left(u^{1}, u^{2}\right) w_{i, j}\left(u^{1}, u^{2}\right) d u^{1} d u^{2}
$$

is said to be the (i, j) th Walsh-Fourier coefficient of the function f.
The norm (or quasinorm) of the space $L_{p}\left(I^{2}\right)$ is defined by

$$
\|f\|_{p}:=\left(\int_{I^{2}}\left|f\left(x^{1}, x^{2}\right)\right|^{p} d x^{1} d x^{2}\right)^{1 / p} \quad(0<p<+\infty)
$$

The σ-algebra generated by the dyadic rectangles $\left\{I_{n, m}\left(x^{1}, x^{2}\right): x, y \in I\right\}$ will be denoted by $F_{n, m}(n, m \in \mathbf{N})$, more precisely,
$F_{n, m}=\sigma\left\{\left[k 2^{-n},(k+1) 2^{-n}\right) \times\left[l 2^{-m},(l+1) 2^{-m}\right): 0 \leq k<2^{n}, 0 \leq l<2^{m}\right\}$, where $\sigma(A)$ denotes the σ-algebra generated by an arbitrary set system A.

Denote by $f=\left(f^{(n, m)}, n \in \mathbf{N}\right)$ two-parameter martingale with respect to $\left(F_{n, m}, n, m \in \mathbf{N}\right)$ (for details see, e.g. [6, 9]). The maximal function of a martingale f is defined by

$$
f^{*}=\sup _{n, m \in \mathbf{N}}\left|f^{(n, m)}\right|
$$

In case $f \in L_{1}\left(I^{2}\right)$, the maximal function can also be given by

$$
f^{*}\left(x^{1}, x^{2}\right)=\sup _{n, m \in N} \frac{1}{\operatorname{mes}\left(I_{n}\left(x^{1}\right) \times I_{m}\left(x^{2}\right)\right)}\left|\int_{I_{n}\left(x^{1}\right) \times I_{m}\left(x^{2}\right)} f(u, v) d u d v\right|
$$

$\left(x^{1}, x^{2}\right) \in I^{2}$.

For $0<p<\infty$ the Hardy martingale space $H_{p}\left(I^{2}\right)$ consists all martingales for which

$$
\|f\|_{H_{p}}:=\left\|f^{*}\right\|_{p}<\infty .
$$

If $f \in L_{1}\left(I^{2}\right)$ then it is easy to show that the sequence ($S_{2^{n}, 2^{m}}(f): n, m \in \mathbf{N}$) is a martingale. If f is a martingale, that is $f=\left(f^{(n, m)}: n, m \in \mathbf{N}\right)$ then the Walsh-Fourier coefficients must be defined in a little bit different way:

$$
\widehat{f}(i, j)=\lim _{k, l \rightarrow \infty} \int_{I^{2}} f^{(k, l)}\left(x^{1}, x^{2}\right) w_{i}\left(x^{1}\right) w_{j}\left(x^{2}\right) d x^{1} d x^{2}
$$

The Walsh-Fourier coefficients of the function $f \in L_{1}\left(I^{2}\right)$ are the same as the ones of the martingale $\left(S_{2^{n}, 2^{m}}(f): n, m \in \mathbf{N}\right)$ obtained from the function f.

The (C, α, β) means of the two-dimensional Walsh-Fourier series of the martingale f is given by

$$
\sigma_{n, m}^{\alpha, \beta}\left(f, x^{1}, x^{2}\right)=\frac{1}{A_{n-1}^{\alpha}} \frac{1}{A_{m-1}^{\beta}} \sum_{i=1}^{n} \sum_{j=1}^{m} A_{n-i}^{\alpha-1} A_{m-j}^{\beta-1} S_{i, j} f\left(x^{1}, x^{2}\right),
$$

where

$$
A_{n}^{\alpha}:=\frac{(1+\alpha) \ldots(n+\alpha)}{n!}
$$

for any $n \in \mathbf{N}, \alpha \neq-1,-2, \ldots$. It is known ([10]) that $A_{n}^{\alpha} \sim n^{\alpha}$.
For the martingale f we consider the maximal operator

$$
\sigma_{*}^{\alpha, \beta} f=\sup _{n, m}\left|\sigma_{n, m}^{\alpha, \beta}\left(f, x^{1}, x^{2}\right)\right| .
$$

The (C, α) kernel defined by

$$
K_{n}^{\alpha}(x):=\frac{1}{A_{n-1}^{\alpha}} \sum_{k=1}^{n} A_{n-j}^{\alpha-1} D_{k}(x) .
$$

In the one-dimensional case, Fine [1] proved that the (C, α) means $\sigma_{n}^{\alpha} f$ of a function $f \in L(I)$ converge a.e. to f as $n \rightarrow \infty$. The maximal operator $\sigma_{*}^{\alpha} f:=$ $\sup _{n}\left|\sigma_{n}^{\alpha} f\right| \quad(0<\alpha<1)$ of the (C, α) means of the Walsh-Paley Fourier series was investigated by Weisz [8]. In his paper Weisz proved the boundedness of $\sigma_{*}^{\alpha}: H_{p} \rightarrow L_{p}$ when $p>1 /(1+\alpha)$. The author [3] showed that in Theorem of Weisz the assumption $p>1 /(\alpha+1)$ is essential. In particular, we proved that the maximal operator σ_{*}^{α} of the (C, α) means of the Walsh-Paley Fourier series is not bounded from the Hardy space $H_{1 /(\alpha+1)}(I)$ to the space $L_{1 /(\alpha+1)}(I)$.

For double Walsh-Fourier series it is known [5] that the (C, α, β) means $\sigma_{n, m}^{\alpha, \beta} f \rightarrow f$ in L_{p} norm as $n, m \rightarrow \infty$ whenever $f \in L_{p}\left(I^{2}\right)$ for some $1 \leq p<\infty$.

On the other hand, in 1992 Móricz, Schipp and Wade [4] proved with respect to the Walsh-Paley system that

$$
\sigma_{n, m} f=\frac{1}{n m} \sum_{i=1}^{n} \sum_{k=1}^{m} S_{i, k}(f) \rightarrow f
$$

a.e. for each $f \in L \log ^{+} L\left([0,1)^{2}\right)$, when $\min \{n, m\} \rightarrow \infty$. In 2000 Gát proved [2] that the theorem of Móricz, Schipp and Wade above can not be improved. Namely, let $\delta:[0,+\infty) \rightarrow[0,+\infty)$ be a measurable function with property $\lim _{t \rightarrow \infty} \delta(t)=0$. Gát proved [2] the existence of a function $f \in L^{1}\left(I^{2}\right)$ such that $f \in L \log ^{+} L \delta(L)$, and $\sigma_{n, m} f$ does not converge to f a.e. as $\min \{n, m\} \rightarrow \infty$. That is, the maximal convergence space for the $(C, 1)$ means of two-dimensional partial sums is $L \log ^{+} L\left(I^{2}\right)$. Weisz [7] investigated the maximal operator of (C, α, β) means of two-dimensional Walsh-Fourier series and proved that the maximal operator $\sigma_{*}^{\alpha, \beta} f$ is bounded from $H_{p}\left(I^{2}\right)$ to $L_{p}\left(I^{2}\right)$ if $1 /(1+\alpha), 1 /(1+\beta)<p<\infty$. In [7] Weisz conjectured that for the boundedness of the maximal operator $\sigma_{*}^{\alpha, \beta}$ from the Hardy space $H_{p}(I)$ to the space $L_{p}(I)$ the assumption $p>1 /(\alpha+1), 1 /(1+\beta)$ is essential. We give answer to the question and prove that the maximal operator $\sigma_{*}^{\alpha, \beta}$ of the $(C, \alpha, \beta)(0<\alpha \leq \beta \leq 1)$ means of the two-dimensional Walsh-Fourier series is not bounded from the Hardy space $H_{1 /(\alpha+1)}\left(I^{2}\right)$ to the space $L_{1 /(\alpha+1)}\left(I^{2}\right)$. The following is true.
Theorem 1. Let $0<\alpha \leq \beta \leq 1$. Then the maximal operator $\sigma_{*}^{\alpha, \beta}$ of the (C, α, β) means of the two-dimensional Walsh-Fourier series is not bounded from the Hardy space $H_{1 /(\alpha+1)}\left(I^{2}\right)$ to the space $L_{1 /(\alpha+1)}\left(I^{2}\right)$.

In order to prove Theorem 1 we need the following lemma.
Lemma 1. ([3]) Let $n \in \mathbf{N}$ and $0<\alpha \leq 1$. Then

$$
\int_{I} \max _{1 \leq N \leq 2^{n}}\left(A_{N-1}^{\alpha}\left|K_{N}^{\alpha}(x)\right|\right)^{1 /(\alpha+1)} d x \geq c(\alpha) \frac{n}{\log (n+2)}
$$

Proof of Theorem 1. Let

$$
f_{n}\left(x^{1}, x^{2}\right):=\left[D_{2^{n+1}}\left(x^{1}\right)-D_{2^{n}}\left(x^{1}\right)\right] w_{2^{n}-1}\left(x^{2}\right) .
$$

Since

$$
\begin{aligned}
\widehat{f}_{n}(\nu, \mu) & =\int_{I}\left[D_{2^{n+1}}\left(u^{1}\right)-D_{2^{n}}\left(u^{1}\right)\right] w_{\nu}\left(u^{1}\right) d u^{1} \int_{I} w_{2^{n}-1}\left(u^{2}\right) w_{\mu}\left(u^{2}\right) d u^{2} \\
& = \begin{cases}1, & \text { if } \nu=2^{n}, \ldots, 2^{n+1}-1, \mu=2^{n}-1, \\
0, & \text { otherwise },\end{cases}
\end{aligned}
$$

we can write

$$
\begin{equation*}
S_{i, j} f_{n}\left(x^{1}, x^{2}\right)=\sum_{\nu=0}^{i-1} \widehat{f}_{n}\left(\nu, 2^{n}-1\right) w_{\nu}\left(x^{1}\right) w_{2^{n}-1}\left(x^{2}\right) \tag{1}
\end{equation*}
$$

$$
= \begin{cases}{\left[D_{i}\left(x^{1}\right)-D_{2^{n}}\left(x^{1}\right)\right] w_{2^{n}-1}\left(x^{2}\right),} & \text { if } i=2^{n}+1, \ldots, 2^{n+1}-1, j \geq 2^{n}, \\ f_{n}\left(x^{1}, x^{2}\right), & \text { if } i \geq 2^{n+1}, j \geq 2^{n}, \\ 0, & \text { otherwise } .\end{cases}
$$

We have

$$
\begin{gather*}
f_{n}^{*}\left(x^{1}, x^{2}\right)=\sup _{i, j}\left|S_{2^{i}, 2^{j}} f_{n}\left(x^{1}, x^{2}\right)\right|=\left|f_{n}\left(x^{1}, x^{2}\right)\right|, \\
\left\|f_{n}\right\|_{H_{p}}=\left\|f_{n}^{*}\right\|_{p}=\left\|D_{2^{n}}\right\|_{p}=2^{n(1-1 / p)} . \tag{2}
\end{gather*}
$$

Let $1 \leq N<2^{n}$. Then from (1) we obtain

$$
\begin{aligned}
& \quad \sigma_{2^{n}+N, 2^{n+1}}^{\alpha} f_{n}\left(x^{1}, x^{2}\right)= \\
& = \\
& =\frac{1}{A_{2^{n}+N-1}^{\alpha}} \frac{1}{A_{2^{n+1}-1}^{\beta}}\left|\sum_{i=1}^{2^{n}+N} \sum_{j=1}^{2^{n+1}} A_{2^{n}+N-i}^{\alpha-1} A_{2^{n+1}-j}^{\beta-1} S_{i, j} f_{n}\left(x^{1}, x^{2}\right)\right| \\
& = \\
& =\frac{1}{A_{2^{n}+N-1}^{\alpha}} \frac{1}{A_{2^{n+1}-1}^{\beta}}\left|\sum_{i=2^{n}+1}^{2^{n}+N} \sum_{j=2^{n}}^{2^{n+1}} A_{2^{n}+N-i}^{\alpha-1} A_{2^{n+1}-j}^{\beta-1} S_{i, j} f_{n}\left(x^{1}, x^{2}\right)\right| \\
& \quad \times\left|\sum_{i=2^{n}+1}^{\beta} \sum_{j=2^{n}}^{2^{n}+N} A_{2^{n}+N-i}^{\alpha-1} A_{2^{n+1}-j}^{\beta-1}\left[D_{i}\left(x^{1}\right)-D_{2^{n}}\left(x^{1}\right)\right] w_{2^{n}-1}\left(x^{2}\right)\right| \\
& \geq \\
& \geq \frac{c(\alpha, \beta)}{2^{n \alpha} 2^{n \beta} \beta}\left|\sum_{i=1}^{N} A_{N-i}^{\alpha-1}\left[D_{i+2^{n}}\left(x^{1}\right)-D_{2^{n}}\left(x^{1}\right)\right]\right|\left|\sum_{j=0}^{2^{n}} A_{2^{n}-j}^{\beta-1}\right| \\
& \geq \\
& \geq \frac{c(\alpha, \beta)}{2^{n \alpha}}\left|\sum_{i=1}^{N} A_{N-i}^{\alpha-1}\left[D_{i+2^{n}}\left(x^{1}\right)-D_{2^{n}}\left(x^{1}\right)\right]\right| \\
& = \\
& =\frac{c(\alpha, \beta)}{2^{n \alpha}}\left|\sum_{i=1}^{N} A_{N-i}^{\alpha-1} D_{i}\left(x^{1}\right)\right| .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\sigma_{*}^{\alpha, \beta} f_{n}\left(x^{1}, x^{2}\right) & \geq \sup _{1 \leq N \leq 2^{n}}\left|\sigma_{2^{n}+N, 2^{n+1}}^{\alpha} f_{n}\left(x^{1}, x^{2}\right)\right| \\
& \geq \frac{c(\alpha, \beta)}{2^{n \alpha}} \sup _{1 \leq N \leq 2^{n}}\left|\sum_{i=1}^{N} A_{N-i}^{\alpha-1} D_{i}\left(x^{1}\right)\right| .
\end{aligned}
$$

Then from Lemma 1 and (2) we get

$$
\frac{\left\|\sigma_{*}^{\alpha, \beta} f_{n}\right\|_{1 /(\alpha+1)}}{\left\|f_{n}\right\|_{H_{1 /(\alpha+1)}}} \geq \frac{c(\alpha, \beta)}{2^{n \alpha} 2^{-n \alpha}}\left(\int_{I} \sup _{1 \leq N \leq 2^{n}}\left(A_{N-1}^{\alpha}\left|K_{N}^{\alpha}(x)\right|\right)^{1 /(\alpha+1)} d x\right)^{\alpha+1}
$$

$$
\geq c(\alpha, \beta)\left(\frac{n}{\log (n+2)}\right)^{\alpha+1} \rightarrow \infty \text { as } n \rightarrow \infty
$$

Theorem 1 is proved.

References

[1] N. J. Fine. Cesàro summability of Walsh-Fourier series. Proc. Nat. Acad. Sci. U.S.A., 41:588-591, 1955.
[2] G. Gát. On the divergence of the $(C, 1)$ means of double Walsh-Fourier series. Proc. Amer. Math. Soc., 128(6):1711-1720, 2000.
[3] U. Goginava. The maximal operator of the (C, α) means of the Walsh-Fourier series. Ann. Univ. Sci. Budapest. Sect. Comput., 26:127-135, 2006.
[4] F. Móricz, F. Schipp, and W. R. Wade. Cesàro summability of double Walsh-Fourier series. Trans. Amer. Math. Soc., 329(1):131-140, 1992.
[5] W. R. Wade. A growth estimate for Cesàro partial sums of multiple Walsh-Fourier series. In A. Haar memorial conference, Vol. I, II (Budapest, 1985), volume 49 of Colloq. Math. Soc. János Bolyai, pages 975-991. North-Holland, Amsterdam, 1987.
[6] F. Weisz. Martingale Hardy spaces and their applications in Fourier analysis, volume 1568 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1994.
[7] F. Weisz. The maximal (C, α, β) operator of two-parameter Walsh-Fourier series. J. Fourier Anal. Appl., 6(4):389-401, 2000.
[8] F. Weisz. (C, α) summability of Walsh-Fourier series. Anal. Math., 27(2):141-155, 2001.
[9] F. Weisz. Summability of multi-dimensional Fourier series and Hardy spaces, volume 541 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, 2002.
[10] A. Zygmund. Trigonometric series. 2nd ed. Vol. I. Cambridge University Press, New York, 1959.

Received August 28, 200%.

Institute of Mathematics,
Faculty of Exact and Natural Sciences,
Tbilisi State University,
Chavchavadze str. 1,
Tbilisi 0128,
Georgia
E-mail address: u.goginava@math.sci.tsu.ge

