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ON 3-MANIFOLD INVARIANTS ARISING FROM
FINITE-DIMENSIONAL HOPF ALGEBRAS

JIANJUN PAUL TIAN

Abstract. We reformulate Kauffman’s method of defining invariants of
3-manifolds intrinsically in terms of right integrals on certain finite dimen-
sional Hopf algebras and define a type of universal invariants of framed
tangles and invariants of 3-manifolds.

1. Introduction

Hopf algebras arise from various settings in mathematics and theoretical
physics. However, it has an interesting and profound connection with topology.
One of the most intriguing area to be explored is perhaps the relationship
between finite-dimensional Hopf algebras, or quantum groups, and invariants
of knots, links and tangles and invariants of 3-manifolds. It appears that the
deepest structural aspect of finite-dimensional Hopf algebras is closely related
to the topological properties of the geometrical counterpart of Hopf algebras.

The purpose of this paper is to unify Kauffman’s method of defining in-
variants of 3-manifolds in term of right integrals on certain Hopf algebras and
Ohtsuki’s method of defining universal invariants of links by using certain
Hopf algebras [4]. Hennings [1] first pointed out a method to obtain invariants
of 3-manifolds by directly using unimodular finite-dimensional Hopf algebras
without representation theory involved. Kauffman and Radford [2] reformu-
lated Hennings’s method for unoriented links to define 3-manifold invariants.
And Ohtsuki also reformulated Hennings’ method by constructing universal
invariants of links to obtain a similar type of 3-manifold invariants. In this
paper, we first construct a regular isotopic invariants for homogeneous framed
tangles using Kauffman’s method, and then obtain a similar type of 3-manifold
invariants. The paper is organized as follows. In section 2, we recall some basic
concepts: quasitriangular Hopf algebras, ribbon Hopf algebras, right integrals
on Hopf algebras and algebraic tensor products space Π(H). In section 3, a
comultiplication for homogeneous tangles is introduced, which is compatible
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with multiplication of homogeneous tangles. After a formal tensor space Π(C)
that corresponds to the set of homogeneous tangles is introduced, a map θ
from the formal tensor space Π(C) to Π(H) is defined. This map will give
isotopic universal invariant of homogeneous tangles. In section 4, we prove
several properties of map θ, we then naturally arrive at a type of invariant
of 3-manifolds. In paper [8], we will give a comprehensive comparison among
these different types of invariants of links and that of 3-manifolds.

2. Ribbon Hopf algebras and right integrals

2.1. Quasitriangular Hopf algebras. Let (H, ·, ∆, η, ε, S) be a finite-dimen-
sional Hopf algebra over a field k, with multiplication ·, comultiplication ∆,
unit η, counit ε, and antipode S. For simplicity, we always say Hopf algebra
H instead of (H, ·, ∆, η, ε, S). We take an element R =

∑
i

αi ⊗ βi ∈ H ⊗ H.

For our purpose, a quasitriangular Hopf algebra is a pair (H,R), where R is
invertible and obeys

τ ◦∆(h) = R(∆(h))R−1, ∀h ∈ H(1)

(∆⊗ id)R = R13 ⊗R23, (id⊗∆)R = R13 ⊗R12(2)

The notation used here

Rtl =
∑

i

1⊗ · · · ⊗ αt ⊗ · · · ⊗ βl ⊗ · · · ⊗ 1,

is an element of H ⊗ · · · ⊗H, which is R in the t− th and l − th factors, and
τ denotes the twist map.

Fundamental properties of finite-dimensional quasitriangular Hopf algebras
(H, R) has been discussed by Majid [3]. Here we will need several of them.
One is the inverse of R, that is

(3) R−1 = (S ⊗ id)(R) = (id⊗ S−1)(R).

Then, consequently we have

(4) R = (S ⊗ S)(R) = (S−1 ⊗ S−1)(R),

where S is the antipode of H.
Now, set u =

∑
i

S(βi)αi, then u is invertible and

(5) u−1 =
∑

i

βiS
2(αi),

(6) ∆(u) = (u⊗ u)(R̃R)−1 = (R̃R)−1(u⊗ u),

(7) S2(h) = uhu−1, ∀h ∈ H

(8) ε(u) = 1,
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where R̃ is τ(R).
Since for all grouplike element g we have

S2(g) = g, ∀g ∈ G(H),

it follows by Equation (7) that u commutes with all grouplike elements of H.

2.2. Ribbon Hopf algebras. A ribbon Hopf algebras is a quasitriangular
Hopf algebras with a designated element that has very special properties in con-
nection with topology of links and 3-manifolds. We denote a finite-dimensional
Ribbon Hopf algebra over K by a triple (H, R, v), where (H, R) is a finite-
dimensional quasitriangular Hopf algebra over K and v ∈ Z(H), the center of
H, satisfies the following relations:

(9) v2 = uS(u),

(10) S(v) = v,

(11) ε(v) = 1,

and

(12) ∆(v) = (v ⊗ v)(R̃R)−1 = (R̃R)−1(v ⊗ v).

Ribbon Hopf algebras were introduced and studied by Reshetikhin and Tu-
raev in [6]. The element v is referred to as a special element or a ribbon element
in the literatures. Because the element u and v are invertible, this notion can
be formulated very simply in terms of grouplike elements in several different
ways [2]. For example, if there exists a grouplike element G in a quasitriangu-
lar Hopf algebra (H, R), so that G−1u is in the center of H and S(u) = G−2u,
then (H,R, v = G−2u) is a ribbon Hopf algebra.

2.3. Right integrals on Hopf algebra. Let H be a Hopf algebra. We call
λ ∈ H∗ is a right integral for H (see [7] for details), if for any f ∈ H∗, λ
satisfies

λf = f(1)λ

or equivalently

(λ⊗ id) ◦∆ = η ◦ λ

We include a theorem from [2] with a slightly modification for our use later,
and also give a remark.

Theorem 2.1 ([2]). Suppose that (H,R) is a unimodular finite-dimensional
quasitriangular Ribbon Hopf algebra with antipode S over the field K, and that
λ is a non-zero right integral for H. When G ∈ G(H), the following two
conditions are equivalent:

S(u) = G−2u, G−1u ∈ Z(H),

µG = λ ·G is cocommutative and µG ◦ S = µG.
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Furthermore, we have the equations

(u−1 ← µG)u = λ(v−1)v,

(S(u)← µG)S(u−1) = λ(v)v−1

where v is G−1u.

Remark 1.

f · h(x) = f(hx), for h, x ∈ H and f ∈ H∗

(h← f) =
∑

(h)

f(h(1))h(2) = (f ⊗ id)∆(h).

2.4. Algebraic tensor product space. Let H be a ribbon Hopf algebra, we
define a formal space which is a direct sum of the formal infinite tensor product
of H and the formal infinite tensor product of quotients of H, and we denote
this formal space by Π(H), call it algebraic tensor product space. Specifically,
Π(H) = ⊗−1

k=−∞Hk/I ⊕⊗∞n=1Hn, where Hn = Hk = H for all n and k, I is the
linear space spanned by αβ − βα, S(h)− h for any α, β, h ∈ H.

Let Sn be the n− th symmetric group. For each σ ∈ Sn, we have a natural
map σ : H⊗n → H⊗n,

σ(w) = wσ(1) ⊗ · · · ⊗ wσ(n) if w = w1 ⊗ · · · ⊗ w1.

Denote
S∞ = S1 ∪ S2 ∪ · · · ∪ Sn ∪ · · · ,

the map σ could be viewed as an element of S∞. Therefore, σ can be extended
to a map on Π(H).

Definition 2.1. For any a, b ∈ Π(H), write them out as

a = w−m ⊗ · · · ⊗ w−1 ⊕ w1 ⊗ · · · ⊗ wn,

b = v−l ⊗ · · · ⊗ v−1 ⊕ v1 ⊗ · · · ⊗ wt,

when t = n, for any σ ∈ Sn, we can define a multiplication

a ·
σ
b = w−m ⊗ · · · ⊗ w−1 ⊗ v−l ⊗ · · · ⊗ v−1 ⊕ w1vσ(1) ⊗ w2vσ(2) · · · ⊗ wnvσ(n),

and define a comultiplication

∆a =
∑

w−m
(1)

⊗ w−m
(2)

⊗ · · · ⊗ w− 1
(1)

⊗ w−1
(2)

⊕ w 1
(1)

⊗ w 1
(2)

· · · ⊗ w n
(1)

⊗ w n
(2)

.

3. Regular Isotopic Invariants of Links (Tangles)

3.1. Homogeneous tangles. A homogeneous tangle is a finite set of seg-
ments and circles which are embedded in R2 × [0, 1], so that one end of each
segment is in R × {0} × {0} and another in R × {0} × {1}. A diagram is
a regular projection of a tangle to R × [0, 1]. At R × {0} of a diagram of a
homogeneous tangle T , we denote each component C1, C2, · · · , Cn, from left
to right. If T has m loops, we represent them with C−1, · · · , C−m. So we
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may give a formal tensor C−m ⊗ · · · ⊗ C−1 ⊕ C1 ⊗ · · · ⊗ Cn to represent T .
For example, Figure 1 show a homogeneous tangle with one loop and three
segments. We will denote the set of all homogeneous tangles by Π.

C−1 ⊕ C1 ⊕ C2 ⊕ C3

C3C2

C−1

C1

Figure 1. An example of homogeneous tangle

Definition 3.1. Let T1, T2 be homogeneous tangles and write them as

T1 = C−m1 ⊗ · · · ⊗ C−1 ⊕ C1 ⊗ · · · ⊗ Cn1

T2 = d−m2 ⊗ · · · ⊗ d−1 ⊕ d1 ⊗ · · · ⊗ dn2

When n1 = n2, we can define tangle multiplication T1 · T2 as a homogeneous
tangle. It has n1(= n2) components with free ends and m1 + m2 loops, and
is obtained by connecting upper end of T1 with lower end of T2 from left to
right. That is,

T1 · T2 = C−m1 ⊗ · · · ⊗ C−1 ⊗ d−m1 ⊗ · · · ⊗ d−1 ⊕ C1dσ(1) ⊗ · · · ⊗ Cn1dσ(n1)

where σ ∈ Sn is determined by T1.

We can also define tangle comultiplication ∆. Let T be a homogeneous
tangle, T = a−m ⊗ · · · ⊗ a−1 ⊕ a1 ⊗ · · · ⊗ an. ∆(T ) is also a homogeneous
tangle that has 2n components with free ends and 2m loops, obtained from T
by taking 2−parallel on each component with blackboard framing of T . Or,
formally,

∆(T ) = a−m ⊗ a−m′ ⊗ · · · ⊗ a−1 ⊗ a−1′ ⊕ a1 ⊗ a1′ ⊗ · · · ⊗ an ⊗ an′ .

We then have a proposition as follows. It seems obvious.

Proposition 3.1. ∆ as a map from the set of all homogeneous tangles, Π to
Π, has a property that

(13) ∆(T1 · T2) = ∆(T1) ·∆(T2)

where T1, T2 ∈ Π.

Definition 3.2. Define a formal tensor space Π(C) as ⊗−1
n=−∞Cn ⊕ ⊗∞n=1Cn,

and an element of Π(C) has at most finite non-vanity terms. Every homo-
geneous tangle diagram can be viewed as an element of Π(C) if we regard
each homogeneous tangle as its formal tensor representation. Π(C) possesses
a multiplication and a comultiplication as Π does.
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3.2. A map from Π(C) to Π(H). Given any homogeneous tangle T ∈ Π,
equip it with a Morse function h, so that its diagram D ∈ Π(C) consists
entirely of crossings, minima, maxima and vertical arcs:

D = C−m ⊗ · · · ⊗ C−1 ⊕ C1 ⊗ · · · ⊗ Cn.

Given a ribbon Hopf algebra (H,R, v = G−1u), we can express universal
element R and its inverse in terms of basis of H as

R =
∑
i∈Λ

αi ⊗ βi, R−1 =
∑
i∈Λ

α
′
i ⊗ β

′
i

where Λ is an index set.
Call a map

ρ : {crossings of D} → Λ

a state. For each state we attach an element of H to strings of D at crossings,
as shown in Figure2:

α
′
ρ(c)

β
′
ρ(c)

βρ(c)

αρ(c)

Figure 2. The assignments

Mark a point on the vertical arc of each component of C−m, · · · , C−1 as
a base point, and each component of C1, · · · , Cn has a natural base point
which is its down end. We define a weight W (ρ) ∈ Hm+n as follows: in each
component, we move algebraic elements in turn to this component’s base point.
When algebraic elements slid across a maxima or minima, they are replaced
by the application of antipode to them if the motion is anti-clockwise, and
replaced by the application of the inverse of antipode to them if the motion
is clockwise. The algebraic elements Wk is obtained by multiplying those
elements which slide to the base point of k − th component. Let dk be the
Whitney degree of the k− th component that is obtained by traversing k− th
component upward from the base point. This is the total turns of the tangent
vector to the component as one traverse it in the upward direction from the
base point, and this is +1 if the traverse is once clockwise and −1 if anti-
clockwise. So the k − th component of w(ρ) is defined Wk(ρ)Gdk . Now, let’s
define a map as follows.
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Define

θ : Π(C)→ Π(H)

θ(T, D) = (π ⊗ · · · ⊗ π ⊗ id⊗ · · · ⊗ id)(
∑

ρ

w(ρ)),

where the sum is taken over all states. I is the vector subspace in H spanned
by αβ − βα, S(h)− h for any α, β, h ∈ H and π : H → H/I is the projection.

Theorem 3.1. θ(T, D) does not depend on the choice of a diagram and base
points of each component.

Proof. The proof is to verify invariance of algebraic results under Reidemeister
moves and crossing maxima or minima. We verify them in two steps.

(i) It is sufficient to check invariance under the following moves as show in
Figure 3, 4, 5 and 6.

I. Figure 3 shows the invariance under Reidemeister move II.

∑
ij S(αj)αi ⊗ βjβi

αi

1⊗ 1

= R−1 ·R = 1⊗ 1

βjS(αj)

βi

Figure 3. Sliding over

II. Figure 4 and Figure 5 show the invariance under Reidemeister move III.

where R̃ = τ(R).

By Equation (1) and (2), we have

R12R13R23 = R23R13R12

therefore,

R̃12R̃13R̃23 = R̃23R̃13R̃12.

III. Figure 6 shows the invariance under deformed crossings.
(ii) It is sufficient to check invariance under one base point across one max-

ima or minima and only in one component Ck, k < 0. So, we just check them
as show in Figure 7 and 8.
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= R̃12R̃13R̃23

=
∑

βk ⊗ αk ⊗ 1 · βj ⊗ 1⊗ αj · 1⊗ βi ⊗ αi

αj

∑
βkβj ⊗ αkβi ⊗ αjαi

βk
αk

βj

βi
αi

Figure 4. Yung-Baxter relation

= R̃23R̃13R̃12

=
∑

1⊗ βk ⊗ αk · βj ⊗ 1⊗ αj · βi ⊗ αi ⊗ 1

αj ∑
βjβi ⊗ βkαi ⊗ αkαj

βk

αk

βj

βi
αi

Figure 5. Yung-Baxter relation

βiS(αi)

∑
αj ⊗ S−1(βj) = R−1

αj βj

βi ∑
S(αj)⊗ βj

αi

Figure 6. Crossings

S−1(wk)G
−dkwkG

dk

Figure 7. Maxima

Algebraically, for maximum showed in Figure 7, we have

π(S−1(wk)G
−dk) = π(S−1(Gdkwk)) = π(Gdkwk) = π(wkG

dk).

Algebraically, for minimum showed in Figure 8, we have

π(S(wk)G
−dk) = π(S(Gdkwk)) = π(Gdkwk) = π(wkG

dk).

By these two steps, we finish the proof. ¤
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wkG
dk

S(wk)G
−dk

Figure 8. Minima

Definition 3.3. We denote θ(T, D) by θ(T ). Then θ(T ) is a regular isotopic
invariant of homogeneous tangle, we call it universal invariant.

Ohtsuki [4] defined so-called universal invariants for oriented framed links.
We here use Kauffman’s method to obtain universal invariants for unoriented
tangles. In a sense, we unify these two methods. However, we will point out
the difference between these invariants in article [8].

4. Invariants of 3-manifolds derived from θ(T )

Proposition 4.1. Let T1, T2 be homogeneous tangles, if they have the same
number of free ends, then

θ(T1·T2) = θ(T1) ·
σ
θ(T2)

where σ is determined by T1.

Proof. It is sufficient to prove the case m1 = m2 = 0 and n = 1, because the
product of algebraic elements is taken along one component. Let’s suppose
that

θ(T1) = w1G
d1 , θ(T2) = w2G

d2 ,

then the product is
θ(T1) · θ(T2) = w1G

d1 · w2G
d2 .

By the definition of the Whitney degree d and the action of the antipode, when
w2 crosses d1 curls, it becomes S2d1(w2). Therefore,

θ(T1 · T2) = w1S
2d1(w2)G

d1+d2 .

By the definition of ribbon Hopf algebras

S2(h) = GhG−1

Gh = S2(h)G

G2h = G(Gh) = S2(S2(h)G)G = S4(h)G2.

(14)

Inductively, for any positive integer d, we have

Gdh = S2d(h)Gd.

And by 14, we have

S(h) = S−1(G−1)S−1(h)S−1(G) = GS−1(h)G−1,

h = GS−2(h)G−1.
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Therefore, we get
G−1h = S−2(h)G−1.

Similarly, for any positive integer d, we have

G−dh = S−2d(h)G−d.

In a word, for any integer d, we have

Gdh = S2d(h)Gd.

Hence,

θ(T1) · θ(T2) = w1G
d1 · w2G

d2 = w1S
2d1(w2)G

d1+d2 = θ(T1 · T2).

The proof is thus completed. ¤
Proposition 4.2. Given T be a homogeneous tangle, then

θ(∆(T )) = ∆(θ(T ))

The proof is too long and too tedious, but basically is verifications on many
cases. It is not given in here.

In order to obtain invariants of 3-manifolds, we seek a map ϕ : H/I → K,
so that ϕ⊗m(θ(T )) is unchangeable under Kirby moves, where T is a link with
m-components. We have local Kirby moves showed in Figure 9 and 10.

T−1
Q+

1

ε = −1

Figure 9. Kirby move with framing -1

ε = +1

Q−1

T +
1

Figure 10. Kirby move with framing +1

We request that

ϕ(θ(T∓
◦ ) = C∓,
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(ϕ⊗ id)(θ(T∓
1 )) = C∓θ(Q±

1 ),

(ϕ⊗ id⊗l)(θ(T∓
l )) = C∓θ(Q±

l ),

(id⊗∆(l−1))(T∓
l ) = T∓

l (naturally).

By the Theorem 2.1, we read out a map ϕ = µ(= λ ·G), and now check its
property

1.
ϕθ(T−

◦ ) = ϕ(v−1G−1) = λ(Gv−1G−1) = λ(v−1);

ϕθ(T+
◦ ) = ϕ(S(v)G−1)) = λ(GS(v)G−1) = λ(v).

2.

(ϕ⊗ id)(θ(T−
1 )) = (ϕ⊗ id)(e

′
jv
−1eiG

−1 ⊗ eje
′
i)

= (ϕ⊗ id)(e
′
j ⊗ ej · ei ⊗ e

′
i · v−1G−1 ⊗ 1)

= (ϕ⊗ id)(R21R12)(u
−1 ⊗ u−1)(1⊗ u)

= (ϕ⊗ id)(∆(u−1))u

= λ(v−1)v = λ(v−1)θ(Q+
1 );

(ϕ⊗ id)(θ(T+
1 )) = (ϕ⊗ id)(S(ej)e

′
ivG−1 ⊗ e

′
jS(ei))

= (ϕ⊗ id)(R21R12)
−1(uG−2 ⊗ uG−2)(1⊗G2u−1)

= (ϕ⊗ id)(∆(S(u)) · (1⊗G2u−1)

= (ϕ⊗ id)∆(S(u) · S(u−1)

= λ(v)v−1 = λ(v)θ(Q−
1 ).

3.

(ϕ⊗ id⊗ id)(θ(T−
2 ))

= (ϕ⊗ id⊗ id)(θ(id⊗∆)(T−
1 ))

= (ϕ⊗ id⊗ id)(id⊗∆)(θ(T−
1 )) by proposition (4.2)

= (ϕ⊗∆)(θ(T−
1 ))

= (id⊗∆)(ϕ⊗ id)(θ(T−
1 ))

= (id⊗∆)(λ(v−1)θ(Q+
1 )) by step 2

= λ(v−1)∆(θ(Q+
1 ))

= λ(v−1)θ(∆(Q+
1 )) by proposition (4.2)

= λ(v−1)θ(Q+
2 ).

Inductively,
(ϕ⊗ id⊗l)(θ(T−

l )) = λ(v−1)θ(Q+
l ).

Similarly, we can obtain

(ϕ⊗ id⊗l)(θ(T+
l )) = λ(v)θ(Q−

l ).
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Now, we arrive at a theorem.

Theorem 4.1. Let M be a 3-manifold obtained by surgery on S3 along a
framed link L. If a map ϕ : H/I → C is µG in the Theorem 2.1, then

w(M) = (λ(v−1))σ+−c(λ(v))−σ+ϕ⊗c(θ(L))

is a topological invariants of M , where c is the number of components of L,
and σ+ is the number of positive eigenvalues of linking matrix of L.

Proof. It is sufficient to check that (λ(v−1))σ+−c(λ(v))−σ+ϕ⊗c(θ(L)) is a con-
stant under Kirby moves.

Suppose that L
′
is the link that is obtained by Kirby moves which delete an

unknotted component with framing ε = 1, then we have

ϕ⊗c(θ(L)) = ϕ⊗(c−1)(θ(L
′
))λ(v),

and
σ+(L

′
) = σ+(L)− 1.

So

ϕ⊗(c−1)(θ(L
′
) · (λ(v−1))σ+(L

′
)−(c−1)(λ(v))−σ+(L

′
)

= (λ(v−1))σ+−c(λ(v))−σ+ · λ(v)ϕ⊗(c−1)(θ(L
′
))

= (λ(v−1))σ+−c(λ(v))−σ+ϕ⊗c(θ(L)).

Similarly, when

ε = −1, σ+(L
′
) = σ+(L),

ϕ⊗(c−1)(θ(L
′
) · (λ(v−1)) = ϕ⊗c(θ(L)),

we have

ϕ⊗(c−1)(θ(L
′
)(λ(v−1))σ+−(c−1)(λ(v))−σ+

= (λ(v−1))σ+−c(λ(v))−σ+λ(v−1)ϕ⊗(c−1)(θ(L
′
))

= (λ(v−1))σ+−c(λ(v))−σ+ϕ⊗c(θ(L)).

Thus we get the proof. ¤
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