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A NOTE ON SPACES WITH LOCALLY COUNTABLE
WEAK-BASES

ZHAOWEN LI AND XIAOMIN LI

Abstract. In this paper, we show that a regular space with a locally
countable weak-base is g-metrizable. Secondly, we establish the relation-
ships between spaces with a locally countable weak-base (resp. spaces with
a locally countable weak-base consisting of ℵ0-subspaces) and metric spaces
(resp. locally separable metric spaces) by means of compact-covering maps,
1-sequence-covering maps, compact maps, π-maps and ss-maps, and show
that all these characterizations are mutually equivalent. Thirdly, we show
that 1-sequence-covering, quotient, ss-maps preserve spaces with a locally
countable weak base.

1. Introduction

Weak-bases were introduced by A.V. Arhangel’skii [1]. Spaces with a locally
countable weak-base were discussed in [8, 14, 18], and some results were given.
For example:

Theorem A ([14]). A regular space has a locally countable weak-base if and
only if it is a quotient, π(or compact), ss-image of a metric space.

Theorem B ([8]). A regular space has a locally countable weak base if and
only if it is a 1-sequence-covering, quotient, ss-image of a metric space.

A space is a locally separable metric space if and only if it is a regular
space with a locally countable base [2]. Thus, one may investigate the further
properties of locally separable metric spaces by means of the discussion of
properties of spaces with a locally countable weak-base. From the classical
Nagata-Smirnov metrization theorem we know that a regular space with a
locally countable base has a σ-locally finite base. So, the following question
can be raised:
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Question 1. Is a regular space with a locally countable weak-base a space with
a σ-locally finite weak-base?

Since a space with a locally countable weak-base is a generalization of a
locally separable metric space, and since our purpose is to bring out proper-
ties of locally separable metric spaces by means of that of the space with a
locally countable weak-base, according to Alexandroff’s hypothesis, the follow-
ing question can be raised:

Question 2. By means of what map can we establish the relationship between
spaces with a locally countable weak space and locally separable metric spaces?

In this paper, we show that a regular space with a locally countable weak-
base has a σ-locally finite weak base. Secondly, we further discuss spaces with
a locally countable weak-base by means of compact-covering maps, 1-sequence-
covering maps, π-maps, compact-map and ss-maps. Thirdly, we show that 1-
sequence-covering, quotient, ss-maps preserve spaces with a locally countable
weak-base.

In the following, all spaces are regular, all maps are continuous and sur-
jective. N denotes the set of all natural numbers. ω denotes N ∪ {0}.
For a family P of subsets of a space X and a map f : X → Y , denote
f(P) = {f(P ) : P ∈ P}. Readers can refer to [23, 13] for unstated defini-
tions.

Definition 1.1. Let f : X → Y be a map.

(1) f is a compact-covering map ([20]) if each compact subset of Y is the
image of some compact subset of X.

(2) f is a 1-sequence-covering map ([12]) if for each y ∈ Y , there exists x ∈
f−1(y) satisfying the following condition: whenever {yn} is a sequence
of Y converging to a point y in Y , then there exists a sequence {xn} of
X converging to a point x in X such that each xn ∈ f−1(yn).

(3) f is a strong sequence-covering map ([11]) if each convergent sequence
(including its limit point) of Y is the image of some convergent se-
quence(including its limit point) of X.

(4) f is a sequence-covering map [5] if each convergent sequence(including
its limit point) of Y is the image of some compact subset of X.

(5) f is a π-map if (X, d) is a metric space and for each y ∈ Y and its open
neighborhood V in Y, d(f−1(y), X\f−1(V )) > 0 ([22]).

(6) f is an ss-map ([14]) if for each y ∈ Y , there exists a open neighborhood
V of y in Y such that f−1(V ) is separable in X.

It is clear that
1-sequence-covering maps ⇒ strong sequence-covering maps

⇓
compact-covering maps ⇒ sequence-covering maps.

Every compact map on a metric space is a π-map.
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Definition 1.2. Let P be a cover of a space X.

(1) P is a network X if for whenever x ∈ V with V open in X, then
x ∈ P ⊂ V for some P ∈ P .

(2) P is a k-network for X if for each compact subset K of X and its
open neighborhood V , there exists a finite subfamily P ′ of P such that
K ⊂ P ′ ⊂ V ([21]).

(3) P is a cs-network for X if for each x ∈ X, its open neighborhood
and a sequence {xn} converging to x, there exist P ∈ P such that
{xn : n ≥ m} ∪ {x} ⊂ P ⊂ V for some m ∈ N ([6]).

A space is a cosmic space if it has a countable network ([20]).
A space is an ℵ0-space if it has a countable k-network, and it is equivalent

to a space with a countable cs-network ([20]).
A space X is an ℵ-space if X has a σ-locally finite k-network ([21]).

Definition 1.3 ([4]). For a space X and x ∈ P ⊂ X, P is a sequential
neighborhood of x in X if whenever xn → x, then {xn : x ≥ m} ∪ {x} ⊂ P
for some m ∈ N . P is a sequential open set of X if for each x ∈ P , P is a
sequential neighborhood of x in X.

A space X is a sequential space if each sequential open set of X is open in
X.

Definition 1.4. Let P = ∪{Px : x ∈ X} be a family of subsets of a space X
satisfying that for each x ∈ X,

(1) Px is a network of x in X.
(2) If U, V ∈ Px, then W ⊂ U ∩ V for some W ∈ Px.

P is a weak-base for X if G ⊂ X such that for each x ∈ G, there exists
P ∈ Px satisfying P ⊂ G, then G is open in X. P is an sn-network ([12])
(i.e., an sequential neighborhood network) for X if each element of Px is a
sequential neighborhood of x in X, here Px is an sn-network of x in X.

A space X is a g-first countable space (resp. a sn-first countable space [13])
if X has a weak-base (resp. a sn-network) P such that each Px is countable
([1]).

A space X is a g-second countable space if X has a countable weak-base
([1]).

A space X is a g-metrizable space if X has a σ-locally finite weak-base ([23]).
For a space, weak-base ⇒ sn-network ⇒ cs-network. An sn-network for a

sequential space is a weak-base (see [12]).
We have the following implications for a space X [23, 24, 13, 3].

metrizable ⇒ g-metrizable ⇐⇒ symmetrizable +ℵ-space ⇐⇒ g-first
countable+ℵ-space ⇒ symmetrizable ⇒ k-space ⇐ sequential space ⇐

g-first countable ⇒ sn-first countable ⇒ α4-space.
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2. Result

Lemma 2.1 ([14]). The following are equivalent for a space X:

(1) X has a locally countable weak-base.
(2) X is a g-first countable space with a locally countable k-network.
(3) X is a topological sum of g-second countable spaces.

Theorem 2.2. A space has a locally countable weak-base if and only if it is a
locally Lindelöf, g-metrizable space.

Proof. The ‘if’ part is obvious, because every σ-locally finite cover in any locally
Lindelöf space is locally countable.

The ‘only if’ part: Suppose a space X has a locally countable weak-base.
Then X is a g-first countable space with a locally countable k-network by
Lemma 2.1, and so X is a k-space with a locally countable k-network. By
Theorem 1 in [9], X is an ℵ -space. Thus X is g-metrizable by Theorem 2.4
in [3]. By Lemma 2.1, X is a topological sum of g-second countable spaces.
Since g-second countable spaces is Lindelöf, then X is locally Lindelöf. ¤

From Theorem 2.2 and Theorem 1.13 in [23], the following holds.

Corollary 2.3. Let X be a space with a locally countable weak-base. If (1) or
(2) below holds, then X is metrizable.

(1) X is a Fréchet space.
(2) X is a q-space.

Lemma 2.4 ([24]). Suppose (X, d) is a metric space and f : X → Y is a
quotient map. Then Y is a symmetric space if and only if f is a π-map.

Theorem 2.5. The following are equivalent for a space X:

(1) X has a locally countable weak-base.
(2) X is a compact-covering, 1-sequence-covering, quotient, π, ss-image of

a metric space.
(3) X is a quotient, π, ss-image of a metric space.
(4) X is a 1-sequence-covering, quotient, ss-image of a metric space.

Proof. (1) ⇒ (2). Suppose P is a locally countable weak-base for X, then P
is a sn-network for X. Denote P = {Pα : α ∈ A}. For each i ∈ N , let Ai be a
copy of A, and it is endowed with discrete topology. Put

M=

{
α = (αn) ∈

∏
n∈N

An : {Pαn : n ∈ N} is a network of some point xα in X

}

and give M the subspace topology induced from the product topology of the
product space

∏
n∈N

An. The point xα is unique in M because X is T2. We

define f : M → X by f(α) = xα. Obviously, M is a metric space.
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(i) f is an ss-map.
Let P = ∪{Px : x ∈ X} be a locally countable sn-network for X,

and Px = {Pαn : n ∈ N}, α = (αn), then α ∈ M and f(α) = x.
Thus f is surjective. For each α = (αn) ∈ M , we have f(α) = xα.
If U is an open neighborhood of xα in X, then there exists n ∈ N
with xα ∈ Pαn ⊂ U because {Pαn : n ∈ N} is a network of xα in
X. Put W = {β ∈ M : the n-th coordinate of β is αn}, then W is
an open neighborhood V of x in X such that {α ∈ A : V ∩ Pα 6=}
is countable. Put L =

( ∏
n∈N

{α ∈ An : V ∩ Pα 6=}
)
∩ M , then L is a

second countable subspace of M , and so L is a hereditarily separable
subspace of M . Since f−1(V ) ⊂ L, thus f−1(V ) is a separable subspace
of M . Hence f is an ss-map.

(ii) f is a 1-sequence-covering map.
Put β = (αi), then β ∈ f−1(x). Denote Bn = {(γi) ∈ M : if

i ≤ n, then γi = αi}. Then {Bn : n ∈ N} is a monotonic decreasing
neighborhood base of β in M . For each n ∈ N , it is easy to check that
f(Bn) =

⋂
i≤n

Pαi
. For a convergent sequence {xj} of X with xj → x,

since f(Bn) is a sequential neighborhood of x in X, there exists i(n) ∈
N such that if i ≥ i(n), then xi ∈ f(Bn). Thus f−1(xi) ∩Bn 6=. We
may assume 1 < i(n) < i(n + 1). For each j ∈ N , let

βj ∈
{

f−1(xj), if j < i(1),
f−1(xj) ∩Bn, if i(n) ≤ j < i(n + 1), n ∈ N.

Then it is easy to show that the sequence {βj} converges to β in M .
Hence f is 1-sequence-covering.

(iii) f is a compact-covering map.
For each compact subset K of X. Since X has a locally countable

k-network F by Lemma 2.1, then {F ∩ K : F ∈ F} is a countable
k-network for subspace K. Thus K is metrizable because a compact
spaces with a countable k-network is metrizable. Similar to the proof
of Theorem 2 in [11], we can prove that f is compact-covering.

(iv) f is a quotient map.
By (ii) and Proposition 2.1.16(2) in [10], f is a quotient map.

(v) f is a π-map.

By (iv), Theorem 2.2 and Lemma 2.4, f is a π-map.
(2) ⇒ (3) and (2) ⇒ (4) are obvious.
(3) ⇒ (1). Suppose X is a quotient, π, ss-image of a metric space. By

Lemma 2.4, X is a symmetric space, so X is a g-first countable space. By
Corollary 2.8.9 in [10], X has a locally countable k-network. Hence X has a
locally countable weak-base by Lemma 2.1.

(4) ⇒ (1). Suppose f : M → X is a 1-sequence-covering, quotient, ss-map,
where M is a metric space. Let B be a σ-locally finite base for M . For each
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x ∈ X, there exists βx ∈ f−1(x) satisfying Definition 1.1(2). Put

Px = {f(B) : βx ∈ B ∈ B},
P = ∪{Px : x ∈ X}.

Then, it is easy to check that P is a locally countable sn-network for X. Since
X is a sequential space, thus P is a locally countable weak-base. ¤

Theorem 2.6. The following are equivalent for a space X:

(1) X has a locally countable weak-base consisting of cosmic subspaces.
(2) X has a locally countable weak-base consisting of ℵ0-subspaces.
(3) X is a compact-covering, 1-sequence-covering, quotient, π, ss-image of

a locally separable metric space.
(4) X is a 1-sequence-covering, quotient, ss-image of a locally separable

metric space.

Proof. (1) ⇒ (2) follows from Theorem 7(2) in [19].
(2) ⇒ (3). Let P be a locally countable weak base for X consisting of

ℵ0-subspaces. Denote P = {Pα : α ∈ ∧}. For each α ∈ ∧
, Pα is an ℵ0-

subspace, then Pα has a countable cs-network. For each x ∈ Pα, {Pβ ∩ Pα :
x ∈ Pβ and β ∈ ∧} is a countable sn-network of x in subspace Pα, then Pα

is a sn-first countable space, and so Pα is an α4-space (see [13]). By Theorem
3.18 in [13], Pα has a countable sn-network. Let Pα be a countable sn-network
for subspace Pα. Denote Pα = {Ba : a ∈ Aα}, here Aα is countable. Endow
Aα with discrete topology. Put

Mα={β = (ai) ∈ Aω
α:{Bai

: i ∈ N} forms a network at some point x(β) in Pα}
and endow Mα with the subspace topology induced from the product topology
of the usual product space Aω

α, then Mα is a separable metric space. Define
fα : Mα → Pα by fα(β) = x(β) for each β ∈ Mα. As in the proof of Theorem
2.5, we can prove that fα is a compact-covering, 1-sequence-covering map. Put

M =
⊕

α∈V
Mα, Z =

⊕

α∈V
Pα and f =

⊕

α∈V
fα : M → Z.

Then, M is a locally separable metric space and f is a compact -covering,
1-sequence-covering map. Define g : Z → X a natural map, and let h =
g ◦ f : M → X. Then g is a compact-covering, 1-sequence-covering map, and
so h is a compact-covering, 1-sequence-covering map (see [7, Theorem 2.3,
Corollary 2.4]). Because X is a sequential space, then h is a quotient map.
Thus, h is a π-map by Lemma 2.4.

For each x ∈ X, since P is locally countable, there exists an open neigh-
borhood U of x in X such that {α ∈ ∧

: Pα ∩ U 6= Φ} is countable. Because
h−1(U) ⊂ ⊕{Mα : α ∈ ∧

and Pα ∩ U 6= Φ}, then f−1(U) is separable in M .
Hence h is an ss-map.

(3) ⇒ (4) is clear.
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(4) ⇒ (1). Let f : M → X be a 1-sequence-covering, quotient, ss-map,
where M is a locally separable metric space. Suppose B is a σ-locally finite
base for M consisting of separable subspace, then f(B) consists of cosmic
subspaces. For each x ∈ X, there exists βx ∈ f−1(x) satisfying Definition
1.1(2). Put

Px = {f(B) : βx ∈ B ∈ B},
P = ∪{Px : x ∈ X}.

Obviously, P ⊂ f(B). Thus, P is a locally countable weak-base of cosmic
subspaces. ¤

Theorem 2.7. The following are equivalent for a space X:

(1) X has locally countable weak-base.
(2) X is a compact-covering, quotient, compact, ss-image of a locally sep-

arable metric space.
(3) X is a quotient, compact, ss-image of a locally separable metric space.
(4) X is a quotient, π, ss-image of a locally separable metric space.
(5) X is a 1-sequence-covering, quotient, ss-image of a locally separable

metric space.

Proof. (1) ⇒ (2). Suppose X has a locally countable weak-base. By Lemma
2.1, X is a topological sum of g-second countable spaces. Let X =

⊕
α∈V

Xα,

where each Xα is a g-second countable space. By Corollary 4.7 in [16], there
are a separable metric space Mα and a compact-covering, quotient, compact
map fα from Mα onto Xα. Put

M =
⊕

α∈V
Mα and f =

⊕

α∈V
fα : M → X.

Then, M is a locally separable metric space and f is a quotient, compact,
ss-map. It will suffice to show that f is a compact-covering map.

For each compact subset K of X, K ⊂
n⋃

i=1

Xαi
for some finitely many αi ∈ ∧.

Since every Xαi
is both open and closed in X, K ∩Xαi

is compact in Xαi
, and

so fαi
(Li) = K ∩Xαi

for some compact subset Li of Mαi
for each i ≤ n. Let

L =
n⊕

i=1

Li. Then L is compact in M with f(L) = K. Hence f is compact-

covering.
(2) ⇒ (3) ⇒ (4) are clear.
(4) ⇒ (1) is similar to the proof of Theorem 2.5 (3)⇒(1).
(1) ⇒ (5). Suppose X has a locally countable weak-base. By Lemma 2.1,

X is a topological sum of g-second countable spaces. Let X =
⊕
α∈V

Xα, where

each Xα is g-second countable. As in the proof of Theorem 2.6 (2) ⇒ (3),
there are a separable metric space Mα and a 1-sequence-covering map fα from
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Mα onto Xα. Put

M =
⊕
α∈∧

Mα and f =
⊕
α∈∧

fα : M → X.

Then, M is a locally separable metric space and f is a 1-sequence-covering,
quotient, ss-map from M onto X. Thus X is a 1-sequence-covering, quotient,
ss-image of a locally separable metric space.

(5) ⇒ (1) is similar to the proof of Theorem 2.5 (4) ⇒ (1). ¤
Remark 2.8. A compact-covering, quotient, compact image of a locally com-
pact metric space 6⇒ a space with a point-countable cs-network; see Example
9.8 in [5] or Example 2.9.27 in [10]. Thus, the condition “ss-” in Theorem 2.7
(1) ∼ (4) cannot be omitted.

By Theorem 2.5-2.7, we have

Corollary 2.9. The following conditions (a) ∼ (c) are mutually equivalent for
a space X:

(a) Theorem 2.5 (1) ∼ (4).
(b) Theorem 2.6 (1) ∼ (4).
(c) Theorem 2.7 (2) ∼ (4).

Lemma 2.10 ([14]). Suppose Y is a quotient ss-image of a sequential space X
with a locally countable k-network, then Y has a locally countable k-network.

Theorem 2.11. Let f : X → Y be a 1-sequence-covering, quotient, ss-map
such that X has a locally countable weak-base, then Y has a locally countable
weak-base.

Proof. Let f : X → Y be a 1-sequence-covering, quotient, ss-map, where X
has a locally countable weak-base. By Lemma 2.1, X is a sequential space with
a locally countable k-network. Thus, Y has a locally countable k-network by
Lemma 2.10. Since 1-sequence-covering quotient maps preserve g-first count-
able spaces([17, Corollary 3]), then Y is g-first countable. By Lemma 2.1, Y
has a locally countable weak-base. ¤
Remark 2.12. The space of Example 2.14(1) in [24] has a countable weak-base,
but its image under a perfect map is not g-first countable. Thus, spaces with a
locally countable weak-base are not necessarily preserved under perfect maps.
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