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ON THE STABILITY AND THE PERIODICITY PROPERTIES
OF SOLUTIONS OF A CERTAIN THIRD ORDER

NONLINEAR DIFFERENTIAL EQUATION

ANTHONY UYI AFUWAPE, OLUFEMI ADEYINKA ADESINA AND EBOSELE
PETER EBIENDELE

Abstract. The object of this paper is to give sufficient conditions for the
existence of bounded solutions that are globally exponentially stable, pe-
riodic and almost periodic, for a certain third-order non-linear differential
equation. A matrix inequality is obtained and proved to satisfy a general-
ized frequency domain inequality of Yacubovich [10] through the frequency
domain technique.

1. Introduction

In a relatively recent note of J. Chen [12], a suitable Lyapunov function of
the type “quadratic form only” was used to obtain sufficient conditions for the
existence of a solution which is uniformly ultimately bounded, and periodic
(or almost periodic) for the third-order non-linear differential equation:

(1.1) x
′′′

+ F (r)x
′′

+ G(r)x
′
+ H(r)x = e(t),

where

F (r) = 1− ε[1 + kn(ε)r2],

G(r) = 1− ε[1 + km(ε)r2],

H(r) = 1− εkl(ε)r2.

The functions F (r), G(r), H(r) and e(t) are continuous with r2 = x2+x
′2

+x
′′2

.
Moreover k > 0 and ε are real parameters.

Equations of the form (1.1) with various combinations of nonlinear terms
have been of great interest to many mathematicians for decades (see for in-
stance [9] with over 250 references). The reader can find many interesting
expositions in [2, 3, 4, 6, 5, 7, 11, 19, 18, 20, 17]. These equations are not only
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of theoretical interest, but also of a great practical importance as they can
be applied to model automatic control in T.V. systems realized by means of
R-C filters. For instance, it is well known that phase synchronization systems,
modeled, by phase-locked loops (PLL systems), can be described by second
order differential equations, if they include only single-chain R-C filters. How-
ever in several cases, it is useful to employ more complicated filters, leading to
differential equations of higher order, inspite of the decreasing stability of the
corresponding PLL systems (see, e.g. [9]).

In this paper, we would also like to consider the equation (1.1) and find
necessary and sufficient conditions that guarantee the existence of a bounded
solution, which is globally exponentially stable and periodic (or almost peri-
odic). Our method of approach shall be the frequency domain technique. The
frequency domain technique employed in this work is beneficial in applications
and circumvents the limitations experienced in the practical construction of
the well-known method of Lyapunov functions. Besides, it has been asserted
(see e.g. [13]) that no Lyapunov function or its variants can better the fre-
quency domain inequality criteria. This fact is more profound in the works of
Barbǎlat and Halanay [10] and Yacubovich [21, 22]. For more exposition on
the frequency domain method, see [1, 2, 14, 15]. Our approach in this work
has an advantage over the Lyapunov second method used in [12], because the
best choice of Lyapunov function of the type ‘quadratic form plus the integral
of the nonlinear term’ was not used in [12]. Consequently, the results obtained
in [12] cannot better the result obtained in this work.

In an interesting paper, Afuwape [1] derived conditions for the existence
of solutions that are bounded, globally exponentially stable and periodic (or
almost periodic) for special cases of the equation (1.1), when the nonlinear
terms F , G, H and e(t) depend only on one argument. The results obtained
in this work improved some of those contained in [1] and [12]. Our work shall
depend on the generalized Yacubovich’s Theorem [10], which shall be stated
without proof.

Generalised Yacubovich’s Theorem [10]. Consider the system:

(1.2) X ′ = AX −Bϕ(σ) + P (t), σ = C?X

where A is an n× n real matrix, B and C are n×m real matrices with C? as
the transpose of C, ϕ(σ) = colϕj(σj), (j = 1, 2, . . . , m) and P (t) is an n-vector.

Suppose that in the system (1.3), the following assumptions are true:

(i) A is a stable matrix;
(ii) P (t) is bounded for all t in R;

(iii) for some constants µ̂j ≥ 0, (j = 1, 2, . . . , m)

(1.3) 0 ≤ ϕj(σj)− ϕj(σ̂j)

σj − σ̂j

≤ µ̂j, (σj 6= σ̂j);
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(iv) there exists a diagonal matrix D > 0, such that the frequency domain
inequality

(1.4) π(ω) = MD + Re DG(iω) > 0

holds for all ω in R, where G(iω) = C?(iωI − A)−1B is the transfer
function and M = diag( 1

µ̂j
), (j = 1, 2, . . . , m).

Then, the system (1.2) has a unique solution which is bounded in R, globally
exponentially stable and periodic (or almost periodic) whenever P (t) is periodic
(or almost periodic).

The paper is organized in the following way. In section 2 we give some
preliminary notes which will be needed in the next sections. Next, in Section
3 we state the main result of the work and give part of the proof. In the last
section we conclude the proof of the main result.

2. Preliminary Notes

The equation (1.1) can be transformed into its equivalent nonlinear system
by setting

x
′
= y,

y
′
= z,

z
′
= −x− (1− ε)y − (1− ε)z

+ kε[l(ε)x + m(ε)y + n(ε)z](x2 + y2 + z2) + e(t).

(2.1)

This system is a periodic system with period ω say, and satisfies the uniqueness
condition of the solution with respect to the initial value problem on product
space I×F , where t ∈ I, I = [0, +∞), (x, y, z) ∈ F . F is an arbitrary compact
subset of R3.

The linear part of the system (2.1) is the system

x
′
= y,

y
′
= z,

z
′
= −x− (1− ε)y − (1− ε)z,

(2.2)

from which we can derive coefficient matrix A as

(2.3) A(ε) =




0 1 0
0 0 1
−1 −(1− ε) −(1− ε)


 ,

with characteristic polynomial

(2.4) det(λI − A) = λ3 + (1− ε)λ2 + (1− ε)λ + 1.
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The characteristic roots of the equation (2.4) are given as

λ1 = −1,

λ2 =
ε

2
+

(
1−

( ε

2

)2
) 1

2

,

λ3 =
ε

2
−

(
1−

( ε

2

)2
) 1

2

.

(2.5)

Let us note that for a matrix to be stable, all its eigenvalues should have
negative real parts, i.e. Re(λj) < 0. For our case j = 1, 2, 3 and moreover,
A(ε) will be stable if ε ≤ −2. Thus we can have (iωI − A(ε)) to be

(2.6) (iωI − A(ε)) =




iω −1 0
0 iω −1
1 (1− ε) iω + (1− ε)




and

(2.7) det(iωI − A(ε)) := ∆ = ω2(ε− 1) + 1− iω(ω2 + ε− 1),

from which we get

|∆|2 = [ω2(ε− 1) + 1]2 + ω2[ω2 + ε− 1]2.

3. The Main Result

Theorem 3.1. Suppose that in the equation (1.1), there exist positive param-

eters µ1, µ2 and µ3 such that for all ζ, ζ̂ ∈ R, ζ 6= ζ̂ we have

(3.1) 0 ≤ H(ζ)−H(ζ̂)

ζ − ζ̂
≤ µ1,

(3.2) 0 ≤ G(ζ)−G(ζ̂)

ζ − ζ̂
≤ µ2,

(3.3) 0 ≤ F (ζ)− F (ζ̂)

ζ − ζ̂
≤ µ3,

and the inequality

(3.4) 1− µ1 − τ1µ1

4

(
µ3

τ3

+
µ2

τ2

)
> 6(ε− 1)µ1µ2µ3

is satisfied. Then the equation (1.1) has a solution which is bounded in R,
globally exponentially stable and periodic or almost periodic according as e(t)
is periodic or almost periodic.
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The Proof of the Main Result. Let us set x
′
= y in the equation (1.1) to have

the system (2.1). We can rewrite this in the vector form (1.2):

X ′ = AX −Bϕ(σ) + P (t), σ = C?X

where

A =




0 1 0
0 0 1
−1 −(1− ε) −(1− ε)


 ; B =




0 0 0
0 0 0
1 1 1


 ;

C =




1 0 0
0 1 0
0 0 1


 ; P (t) =




0
0

e(t)


 ; ϕ(σ) =




Ĥ(x)

Ĝ(y)

F̂ (y)


 .

(3.5)

The transfer function G(iω) = C?(iωI − A)−1B of this system thus becomes

(3.6) G(iω) =
1

∆




1 1 1
iω iω iω
−ω2 −ω2 −ω2


 .

On choosing

D =




τ1 0 0
0 τ2 0
0 0 τ3


 and M =




1
µ1

0 0

0 1
µ2

0

0 0 1
µ3


 ,

we obtain the frequency domain inequality (1.4) as

(3.7) π(ω) =




π11 π12 π13

π21 π22 π23

π31 π32 π33


 > 0;

where

π11(ω) = τ1

[
1

µ1

+
ω2(ε− 1) + 1

|∆|2
]

,(3.8)

π22(ω) = τ2

[
1

µ2

− ω2(ω2 + ε− 1)

|∆|2
]

,(3.9)

π33(ω) = τ3

[
1

µ3

− ω2(ω2(ε− 1) + 1)

|∆|2
]

,(3.10)

π12(ω) =
τ1∆̄− iωτ2∆

|∆|2 = π̄21(ω),(3.11)

π13 =

(
∆̄− ω2τ3∆

)

2|∆|2 = π̄13,(3.12)

π23 =

(
iωτ2∆̄− ω2τ3∆

)

2|∆|2 = π̄32.(3.13)
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For us to show that the inequality (3.7) is valid, it suffices to use the Sylvester’s
criteria which demand that the principal minors of π(ω) in (3.7) be strictly
positive. We shall now prove these in a series of lemma.

Lemma 1. For all ω in R, πii(ω) > 0, (i = 1, 2, 3).

Proof. For i = 1, π11(ω) in the equation (3.8) will be positive for all ω in R
if

(3.14) µ1 < −v(ε− 1) + 1− v(v + ε− 1)2

v(ε− 1) + 1
, ω2 = v.

Let

S1(v) = −v(ε− 1) + 1− v(v + ε− 1)2

v(ε− 1) + 1
,

then v1 = 0, v2 = 1 − ε and v3 = − 1
ε−1

are the roots of the equations v(v +

ε − 1)2 = 0 and (v(ε − 1) + 1)2 = 0 respectively. We shall denote by m1, the
minimum of S1(v) and let this minimum be attained at say, v = v0. Then

S1
′
(v0) = 0. Thus, S1

′
(v0) can be zero in the interval [v1, v2]. Obviously the

points v1 and v2 are the minimum points of S1(v). If we substitute v = v1

and v = v2 respectively in the inequality (3.14), we shall have S1(v1) = 1 and
S1(v2) = ε2 − 2ε + 2. We note that there is an asymptote at v = v3 for S1(v).
Thus the minimum value of S1(v) = m1 and it is attainable in the interval
[v1, v2]. Hence π11(ω) > 0.

Next, for i = 2, π22(ω) in the equation (3.9) will be positive for all ω in R,
if we can show that

(3.15) µ2 < v(v + ε− 1) +
(v(ε− 1) + 1)2

v(v + ε− 1)
.

Let

S2(v) = µ2 < v(v + ε− 1) +
(v(ε− 1) + 1)2

v(v + ε− 1)
.

We note that there are asymptotes at S2(v1) and S2(v2). The maximum that
S2(v) can attain is at say v = v0. Let m2 = S2(v0) be this maximum which is
attainable at v = v3, and given by

(3.16) S2(v3) =
ε(1− (ε− 1))

(ε− 1)2
.

Thus π22(ω) > 0.
Next, for i = 2, π33(ω) in the equation (3.10) will be positive for all ω in R

if we can show that

(3.17) µ3 <
v(ε− 1) + 1

v
+

(v + ε− 1)

v(ε− 1) + 1
.

This is possible if we let

S3(v) =
v(ε− 1) + 1

v
+

(v + ε− 1)

v(ε− 1) + 1
,
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and show that it has a maximum which is always negative. Let v = v0 be the
point at which this maximum (denoted by m3) is attained. Observe that at
S3(v1) and S3(v3), there are asymptotes, hence the maximum is not attainable
at these points. At the point v = v2,

(3.18) S3(v2) =
ε(2− ε)

1− ε
,

and the maximum is attainable there. Thus π33(ω) > 0.

Lemma 2. For all ω in R,

πii(ω)πjj(ω)− |πij(ω)|2 > 0, (i 6= j; i, j, = 1, 2, 3).

Proof. For i = 1 and j = 2, we derive from the inequality (3.7),

(3.19) πa(ω) =

(
π11 π12

π21 π22

)
> 0.

For us to show that the inequality (3.19) is satisfied, it suffices to use Sylvester’s
criteria which assert that the principal minors of the matrix in (3.19) and
det πa(ω) be positive definite. It has already been shown in the proof of the
Lemma 1 that both π11(ω) and π22(ω) are positive. It remains to show that
det πa(ω) in the inequality (3.19) is positive definite.

On simplifying the inequality (3.19), we have

πa(ω) = π11π22 − |π12|2

=
τ1τ2

µ1µ2

− ω2 τ1τ2(ω
2 + ε− 1)

µ1|∆|2
+

τ1τ2(ω
2 + (ε− 1) + 1)

µ2|∆|2

− τ 2
1 + ω2τ2

2

4|∆|2 > 0.

(3.20)

Further simplifications give

πa(ω) =
τ1τ2

µ1µ2

(
ω6 + ω4

) [
(ε− 1)2 + 2(ε− 1)− µ2

]

+ ω2

[
(ε− 1)2 + (2 + µ1 − µ2)(ε− 1)− τ2µ1µ2

4τ1

+

(
µ1 + 1− τ2µ1µ2

4τ1

)]
> 0.

This will be true if
(µ1 − µ2)(ε− 1)− τ2

4τ1

µ1µ2

and
4(1 + µ1)

µ1µ2

>
τ1

τ2

.

Hence we have
µ1µ2

4(1 + µ1)
<

τ2

τ1

<
4(µ1 − µ2)

µ1µ2

,
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which imply that (µ1µ2)
2 < 16(µ1 − µ2)(1 + µ1). Thus πa(ω) > 0.

Next is to show that

(3.21) πb(ω) =

(
π11 π13

π31 π33

)
> 0.

On following the above arguments, we only need to show that det πb(ω)
in (3.21) is positive definite so as to satisfy Sylvester’s criteria, since, it has
already been proved in the Lemma 1 that π11 and π13 are respectively positive.
On simplifying the inequality (3.21), we obtain

πb(ω) = π11π33 − |π13|2

=
τ1τ3

µ1µ3

− ω2τ1τ3(ω
2(ε− 1) + 1)

µ1|∆|2
+

τ1τ3(ω
2(ε− 1) + 1)

µ3|∆|2

− τ1
2 + ω4τ3

2

4|∆|2 + ω2 τ1τ3(ω
2(ε− 1) + 1)2 − 2ω4τ1τ3(ω

2 + ε− 1)

|∆|4 > 0,

from which we have

|∆|4 + |∆|2
[
(ω2(ε− 1) + 1)(µ1 − µ3)

1

4

(
τ1

τ3

+ ω2 4τ3

τ1

)]
µ1µ3

>
[
2ω4(ω2 + ε− 1)2 − ω2(ω2(ε− 1) + 1)2

]
µ1µ3.

(3.22)

For the inequality (3.22) to be valid, it suffices to show that the minimum of
its left hand side is positive and is greater than the maximum of the right hand
side. The maximum of the right hand side is −2µ1µ3 and the minimum of the
left hand side is 1 + µ1 − τ1µ1µ3

4τ3
. Thus we have

1 + µ1 − τ1µ1µ3

4τ3

> −2µ1µ3,

which implies that
4(1 + µ1)

µ1µ3

+ 8 >
τ1

τ3

.

Hence πb(ω) > 0.
At last, we shall show that

(3.23) πc(ω) =

(
π22 π23

π32 π33

)
> 0.

On using the preceding arguments, we have

πc(ω) = π22π33 − |π23|2

=
τ2τ3

µ2µ3

− ω2τ2τ3(ω
2(ε− 1) + 1)

µ2|∆|2
− ω2τ2τ3(ω

2 + ε− 1)

µ3|∆|2

− ω2(τ2
2 + ω2τ3

2)

4|∆|2 > 0,
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which reduces to

ω6 + ω4[(ε− 1)2 + (ε− 1)− µ2 − τ3µ2µ3

4τ2

]

+ ω2[(ε− 1)2 + (2− µ2)(ε− 1)− µ3 − τ2µ2µ3

4τ3

] + 1 > 0.
(3.24)

The inequality (3.24) holds if

(ε− 1)− µ2

µ2µ3

>
τ3

4τ2

and
(2− µ2)(ε− 1)− µ3

µ2µ3

>
τ2

4τ3

.

This is possible since

µ2µ3

4((ε− 1)− µ3)
<

τ2

τ3

< 4

(
(2− µ2)(ε− 1)− µ3

µ2µ3

)
,

from which we have (µ2µ3)
2 < 16[((2− µ2)(ε− 1)− µ3)((ε− 1)− µ2). ¤

4. Conclusion to the Proof of the Main Result

It now remains to show that from the inequality (3.7),

det π(ω) = π11

(
π22π33 − |π23|2

)
+ π22

(
π11π33 − |π31|2

)

+ π33

(
π11π22 − |π12|2

)− 2π11π22π33

+ 2 Re(π12π23π31) > 0.

(4.1)

This is equivalent on further simplifications to

det π(ω) =
τ1τ2τ3

µ1µ2µ3

− 1

|∆|2
(

ω2

µ1µ2

τ1τ2τ3(ω
2(ε− 1) + 1)

+
ω2τ1

4µ1

(τ2
2 + ω2τ3

2) +
τ2

4µ2

(τ1
2 + ω4τ3

2)

+
τ1

4µ3

(τ1
2 + ω2τ2

2)− ω2τ1τ2τ3

µ1µ3

(ω2 + ε− 1)

+
τ1τ2τ3

µ2µ3

(ω2(ε− 1) + 1)

)
+

ω2τ1τ2τ3

µ2|∆|4
(
ω2(ε− 1) + 1)2

−2ω2(ω2 + ε− 1)2 +
µ2

4τ1τ3

(τ1
2 + ω4τ3

2)(ω2 + ε− 1)

)

ω4

|∆|6 (ω2 + ε− 1)
(
2ω2(ω2 + ε− 1)2

−3(ω2(ε− 1) + 1)2
)
τ1τ2τ3 > 0.

(4.2)
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For ω2 = 0, det π(ω) is positive if

1− µ1 >
µ1τ1

4

[
µ3

τ3

+
µ2

τ2

]
.

For ω2 6= 0, det π(ω) will be positive if we can show that

|∆|6 − |∆|4
(

ω2µ3[ω
2(ε− 1) + 1] + ω2 µ2µ3

4τ2τ3

(τ2
2 + ω2τ3

2)

+
µ1µ3

4τ1τ3

(τ1
2 + ω4τ3

2) +
µ1µ2

4τ1τ2

(τ1
2 + ω2τ2

2)− ω2µ2(ω
2 + ε− 1)

+µ1[ω
2(ε− 1) + 1]

) |∆|2 (
ω2µ1µ3[ω

2(ε− 1) + 1]2

−2ω2µ1µ3(ω
2 + ε− 1)2 + ω2(τ1

2 + ω)(ω2 + ε− 1)µ1µ2µ3

)

> ω4(ω2 + ε− 1)
(
3[ω3(ε− 1) + 1]2 − 2ω2(ω2 + ε− 1)2

)
µ1µ2µ3.

(4.3)

The inequality (4.3) will hold if we can show that the minimum of its left
hand side, is strictly greater than the maximum of its right hand side. The
minimum of the left hand side of the inequality (4.3) is

1− µ1 − µ1τ1

4

(
µ3

τ3

+
µ2

τ2

)
,

while the maximum of the right hand side is 6(ε−1)µ1µ2µ3. Thus the inequality
(4.3) holds if

(1− µ1)− µ1τ1

4

(
µ3

τ3

+
µ2

τ2

)
> 6(ε− 1)µ1µ2µ3.

This is possible by using Lemmas 1 and 2. The conclusions to the proof follow
from the generalized theorem of Yacubovich.
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