THE UNIT GROUP OF $F S_{3}$

R.K. SHARMA, J.B. SRIVASTAVA, AND MANJU KHAN

Abstract

In this paper we give a complete characterization of the unit group $\mathscr{U}\left(F S_{3}\right)$ of the group algebra $F S_{3}$ of the symmetric group S_{3} of degree 3 over a finite field F. Moreover, over the prime field \mathbb{Z}_{2} and \mathbb{Z}_{3}, presentation of the unit groups of group algebras $\mathbb{Z}_{2} S_{3}$ and $\mathbb{Z}_{3} S_{3}$ in terms of generators and relators have also been obtained.

1. Introduction

Let $F G$ denote the group algebra of a group G over a field F . For a normal subgroup H of G, the natural homomorphism $g \mapsto g H: G \longrightarrow G / H$ can be extended to an F-algebra homomorphism from $F G$ onto $F[G / H]$ defined by $\sum_{g \in G} a_{g} g \mapsto \sum_{g \in G} a_{g} g H$. Kernel of this homomorphism, denoted by $\omega(H)$, is an ideal of $F G$ generated by $\{h-1 \mid h \in H\}$. Thus, $F G / \omega(H) \cong F[G / H]$. The augmentation ideal, $\omega(F G)$, of the group algebra $F G$ is defined by

$$
\omega(F G)=\left\{\sum_{g \in G} a_{g} g \mid a_{g} \in F, \sum_{g \in G} a_{g}=0\right\} .
$$

Clearly, $\omega(G)=\omega(F G)$. In general, $\omega(H)=\omega(F H) F G=F G \omega(F H)$. Also $F G / \omega(G) \cong F$ implies that the Jacobson radical $J(F G) \subseteq \omega(F G)$. It is known that, the natural homomorphism $x \mapsto x+J(F G): F G \longrightarrow F G / J(F G)$ induces an epimorphism: $\mathscr{U}(F G) \longrightarrow \mathscr{U}(F G / J(F G))$ with kernel $1+J(F G)$ so that $\mathscr{U}(F G) /(1+J(F G)) \cong \mathscr{U}(F G / J(F G))$.

This is also known that for any prime p and for any positive integer n, there is a monic irreducible polynomial of degree n over $\mathbb{Z}_{p}[7]$.

Here we shall use the presentation of S_{3} as

$$
S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}=\tau^{2}=1, \tau \sigma=\sigma^{2} \tau\right\rangle .
$$

Thus, the elements of S_{3} are $\left\{1, \sigma, \sigma^{2}, \tau, \sigma \tau, \sigma^{2} \tau\right\}$. The alternating group A_{3} of degree 3 is given by $A_{3}=\left\{1, \sigma, \sigma^{2}\right\}$. The distinct conjugacy classes of S_{3}

[^0]are $\mathscr{C}_{0}=\{1\}, \mathscr{C}_{1}=\left\{\sigma, \sigma^{2}\right\}$ and $\mathscr{C}_{2}=\left\{\tau, \sigma \tau, \sigma^{2} \tau\right\}$. Hence, $\left\{\widehat{\mathscr{C}}_{0}, \widehat{\mathscr{C}_{1}}, \widehat{\mathscr{C}_{2}}\right\}$ form a basis of center $\mathcal{Z}\left(F S_{3}\right)$ of $F S_{3}$ (cf. Lemma 4.1.1 of [5]), where $\widehat{\mathscr{C}}_{i}$ denotes the class sum.
We shall use V_{1} for the unit subgroup $1+J\left(F S_{3}\right)$.
The unit group of integral group ring $\mathbb{Z} S_{3}$ has been studied by Hughes and Pearson [2] and by Allen and Hobby [1]. The unit group has been discussed in terms of the bicyclic units by Jespers and Parmenter [3]. Sharma et al. [6] studied chains of subgroups of the unit group $\mathscr{U}\left(\mathbb{Z} S_{3}\right)$. However, so far it seems the structure of the unit group $\mathscr{U}\left(F S_{3}\right)$, for char $F=p>0$ is not known.

This paper gives a complete characterization of the unit group $\mathscr{U}\left(F S_{3}\right)$ over a finite field F. Also we give the presentation of the unit groups of group algebras $\mathbb{Z}_{2} S_{3}$ and $\mathbb{Z}_{3} S_{3}$ over the prime field \mathbb{Z}_{2} and \mathbb{Z}_{3} in terms of generators and relators.

2. The Unit Group of $F S_{3}$

In this Section, the following theorems gives a complete structure of the unit group $\mathscr{U}\left(F S_{3}\right)$ over an arbitrary finite field F.

Let char $F=p$ and $|F|=p^{n}$.
Theorem 2.1. If $p=2$, then $\mathscr{U}\left(F S_{3}\right) / V_{1} \cong G L(2, F) \times F^{*}$ and V_{1} is central elementary abelian 2-group of order 2^{n}, where $G L(2, F)$ denotes the general linear group of degree 2 over F.

Theorem 2.2. If $p=3$ and $\mathcal{Z}\left(V_{1}\right)$ is the center of V_{1}, then $\mathcal{Z}\left(V_{1}\right)$ and $V_{1} / \mathcal{Z}\left(V_{1}\right)$ both are elementary abelian 3-groups.

Theorem 2.3. If $p>3$, then

$$
\mathscr{U}\left(F S_{3}\right) \cong G L(2, F) \times F^{*} \times F^{*}
$$

Proof of the Theorem 2.1. We define a matrix representation of S_{3},

$$
\rho: S_{3} \longrightarrow \mathbb{M}(2, F) \oplus F
$$

by the assignment

$$
\sigma \mapsto\left(\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right), 1\right)
$$

and

$$
\tau \mapsto\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right)
$$

Thus, ρ can be extended to an F-algebra homomorphism

$$
\rho^{*}: F S_{3} \longrightarrow \mathbb{M}(2, F) \oplus F
$$

Let $x=\alpha_{0}+\alpha_{1} \sigma+\alpha_{2} \sigma^{2}+\alpha_{3} \tau+\alpha_{4} \sigma \tau+\alpha_{5} \sigma^{2} \tau \in \operatorname{Ker} \rho^{*}$, where α_{i} 's $\in F$. Therefore, $\rho^{*}(x)=0$ gives the following system of equations:

$$
\begin{aligned}
\alpha_{0}+\alpha_{2}+\alpha_{3}+\alpha_{5} & =0 \\
\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4} & =0 \\
\alpha_{1}+\alpha_{2}+\alpha_{4}+\alpha_{5} & =0 \\
\alpha_{0}+\alpha_{1}+\alpha_{3}+\alpha_{5} & =0 \\
\alpha_{0}+\alpha_{1}+\alpha_{2}+\alpha_{3}+\alpha_{4}+\alpha_{5} & =0
\end{aligned}
$$

By solving this system of equations we get all α_{i} 's are same. Thus,

$$
\operatorname{Ker} \rho^{*}=\left\{\alpha\left(1+\sigma+\sigma^{2}+\tau+\sigma \tau+\sigma^{2} \tau\right) \mid \alpha \in F\right\} .
$$

If \widehat{S}_{3} is the sum of all elements in S_{3}, then $\widehat{S}_{3}^{2}=0$, because F is a field of characteristic 2. It follows that $\operatorname{Ker} \rho^{*}$ is a nilpotent ideal of $F S_{3}$. Hence, Ker $\rho^{*} \subseteq J\left(F S_{3}\right)$. Since, ρ^{*} is onto, we have $\rho^{*}\left(J\left(F S_{3}\right)\right) \subseteq J(\mathbb{M}(2, F) \oplus$ $F)=0$ and hence $J\left(F S_{3}\right) \subseteq \operatorname{Ker} \rho^{*}$. Hence, $J\left(F S_{3}\right)=\operatorname{Ker} \rho^{*}=F \widehat{S}_{3}$ and so $F S_{3} / J\left(F S_{3}\right) \cong \mathbb{M}(2, F) \oplus F$. It follows that $\mathscr{U}\left(F S_{3}\right) / V_{1} \cong \mathscr{U}\left(F S_{3} / J\left(F S_{3}\right)\right) \cong$ $G L(2, F) \times F^{*}$.

Further, assume $f(X)$ is a monic irreducible polynomial of degree n over the field \mathbb{Z}_{2}. Then $\mathbb{Z}_{2}[X] /\langle f(X)\rangle \cong F$. Assume ξ is the residue class of $X \bmod \langle f(X)\rangle$. So the structure of V_{1} is

$$
V_{1}=\prod_{i=0}^{n-1}\left\langle 1+\xi^{i} x \mid x=\widehat{S_{3}}\right\rangle,
$$

a central subgroup of order 2^{n}.
Proof of the Theorem 2.2. Since A_{3} is a normal subgroup of S_{3} and $\left[S_{3}: A_{3}\right]=$ 2, which is invertible in F , we have $J\left(F S_{3}\right)=J\left(F A_{3}\right) F S_{3}$ (cf. Lemma 7.2.7 of [5]). Further, since char $F=3$ and A_{3} is a 3-group, we get $J\left(F A_{3}\right)=\omega\left(F A_{3}\right)$ (cf. Lemma 8.1.17 of [5]). Consequently,

$$
J\left(F S_{3}\right)=\omega\left(F A_{3}\right) F S_{3}=\omega\left(A_{3}\right)
$$

Hence,

$$
F S_{3} / J\left(F S_{3}\right)=F S_{3} / \omega\left(A_{3}\right) \cong F\left[S_{3} / A_{3}\right] \cong F C_{2} \cong F \oplus F .
$$

Thus,

$$
\mathscr{U}\left(F S_{3}\right) / V_{1} \cong \mathscr{U}\left(F S_{3} / J\left(F S_{3}\right)\right) \cong F^{*} \times F^{*} .
$$

Now, $V_{1}=1+J\left(F S_{3}\right)=1+\omega\left(A_{3}\right)=1+\omega\left(F A_{3}\right) F S_{3}$ and $\omega\left(F A_{3}\right)^{3}=0$, then $\omega\left(A_{3}\right)^{3}=0$. Thus, every non identity element of V_{1} is of order 3 . For $\alpha \in F$ and $x=1+\sigma+\sigma^{2}$, let $u_{\alpha}=1+\alpha x$ and $v_{\alpha}=1+\alpha x \tau$. Both u_{α} and v_{α} are central elements of $F S_{3}$ as well as elements of V_{1}. Take $U=\left\{u_{\alpha} \mid \alpha \in F\right\}$ and $V=\left\{v_{\alpha} \mid \alpha \in F\right\}$. Since, $u_{\alpha} u_{\beta}=u_{\alpha+\beta}$, and $v_{\alpha} v_{\beta}=v_{\alpha+\beta}$, it follows that both U and V are central subgroups of V_{1}. Further, since all the elements in U and V are distinct we have $|U|=|V|=3^{n}$. If possible, let $u \in U \cap V$, i.e. $u=u_{\alpha}=v_{\beta}$ for some $\alpha, \beta \in F$. Thus, we have $\alpha\left(1+\sigma+\sigma^{2}\right)=\beta\left(1+\sigma+\sigma^{2}\right) \tau$,
which implies that $\alpha=\beta=0$ and so $U \cap V=\{1\}$. Then $U \times V \subseteq \mathcal{Z}\left(V_{1}\right)$, which gives us that $\left|\mathcal{Z}\left(V_{1}\right)\right| \geq 3^{2 n}$.

Assume $w_{\alpha}=1+\alpha(\sigma-1)$ and $t_{\alpha}=1+\alpha(\sigma-1) \tau$ are two noncommuting elements in $V_{1} \backslash Z\left(V_{1}\right)$, where

$$
\begin{aligned}
w_{\alpha}^{2} & =1+2 \alpha(\sigma-1)+\alpha^{2}\left(1+\sigma+\sigma^{2}\right)=w_{2 \alpha} u_{\alpha^{2}} \\
t_{\alpha}^{2} & =1+2 \alpha(\sigma-1) \tau+2 \alpha^{2}\left(1+\sigma+\sigma^{2}\right)=t_{2 \alpha} u_{2 \alpha^{2}}
\end{aligned}
$$

It can be verified that $w_{\alpha} \mathcal{Z}\left(V_{1}\right) w_{\beta} \mathcal{Z}\left(V_{1}\right)=w_{\alpha+\beta} \mathcal{Z}\left(V_{1}\right)$. Therefore, we get that $\left\{w_{\alpha} \mathcal{Z}\left(V_{1}\right) \mid \alpha \in F\right\}$ is a subgroup of $V_{1} / \mathcal{Z}\left(V_{1}\right)$. If possible, let $w_{\alpha} \mathcal{Z}\left(V_{1}\right)=$ $w_{\beta} \mathcal{Z}\left(V_{1}\right)$. Then $w_{\alpha} w_{\beta}^{2} \in \mathcal{Z}\left(V_{1}\right)$, i.e. $w_{\alpha} w_{2 \beta} \in \mathcal{Z}\left(V_{1}\right)$. But, $w_{\alpha} w_{2 \beta}=w_{\alpha+2 \beta}$ $\left(\bmod \mathcal{Z}\left(V_{1}\right)\right)$. Hence, $w_{\alpha} w_{\beta}^{2} \in \mathcal{Z}\left(V_{1}\right)$ implies $\alpha=\beta$. This shows that all the elements in $\left\{w_{\alpha} \mid \alpha \in F\right\}\left(\bmod \mathcal{Z}\left(V_{1}\right)\right)$ are distinct. Thus, the number of elements in $\left\{w_{\alpha} \mathcal{Z}\left(V_{1}\right) \mid \alpha \in F\right\}$ are 3^{n}. Also, since $t_{\alpha} t_{\beta}=t_{\alpha+\beta} u_{2 \alpha \beta}$, by using the similar argument we get $\left\{t_{\alpha} \mathcal{Z}\left(V_{1}\right) \mid \alpha \in F\right\}$ is a subgroup of $V_{1} / \mathcal{Z}\left(V_{1}\right)$ with order 3^{n}. Note that $w_{\alpha} \mathcal{Z}\left(V_{1}\right)$ and $t_{\beta} \mathcal{Z}\left(V_{1}\right)$ commute with each other.

Since, $\omega\left(F A_{3}\right)$ is F-linear combination of $(\sigma-1)$ and $\left(\sigma^{2}-1\right)$, we have $\omega\left(A_{3}\right)$ is F-linear combination of $(\sigma-1),\left(\sigma^{2}-1\right),(\sigma-1) \tau$ and $\left(\sigma^{2}-1\right) \tau$ so that any element $1+x$ in V_{1}, for $x \in \omega\left(A_{3}\right)$, can be written as

$$
1+x=1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)+\alpha_{2}(\sigma-1) \tau+\alpha_{3}\left(\sigma^{2}-1\right) \tau
$$

where α_{i} 's $\in F$. Now,

$$
\begin{aligned}
1+\alpha_{1}\left(\sigma^{2}-1\right) & =1+2 \alpha_{1}(\sigma-1)+\alpha_{1}\left(1+\sigma+\sigma^{2}\right) \\
& =\left(1+2 \alpha_{1}(\sigma-1)\right)\left(1+\alpha_{1}\left(1+\sigma+\sigma^{2}\right)\right) \\
& =w_{2 \alpha_{1}} u_{\alpha_{1}}
\end{aligned}
$$

and so,

$$
\begin{aligned}
\left(1+\alpha_{0}(\sigma-1)\right) & \left(1+\alpha_{1}\left(\sigma^{2}-1\right)\right) \\
& =1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)+2 \alpha_{0} \alpha_{1}\left(1+\sigma+\sigma^{2}\right) \\
& =\left(1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)\right) u_{2 \alpha_{0} \alpha_{1}} .
\end{aligned}
$$

Thus, $\left(1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)\right)=w_{\alpha_{0}} w_{2 \alpha_{1}} u_{\alpha_{1}} u_{\alpha_{0} \alpha_{1}}$. Further,

$$
\begin{aligned}
\left(1+\alpha_{0}(\sigma-1)\right. & \left.+\alpha_{1}\left(\sigma^{2}-1\right)\right)\left(1+\alpha_{2}(\sigma-1) \tau\right) \\
& =\left(1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)+\alpha_{2}(\sigma-1) \tau\right) \times \\
& \times\left(1+\alpha_{0} \alpha_{2}\left(1+\sigma+\sigma^{2}\right) \tau\right)\left(1+2 \alpha_{1} \alpha_{2}\left(1+\sigma+\sigma^{2}\right) \tau\right) \\
& =\left(1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)+\alpha_{2}(\sigma-1) \tau\right) v_{\alpha_{0} \alpha_{2}} v_{2 \alpha_{1} \alpha_{2}}
\end{aligned}
$$

Thus, $\left(1+\alpha_{0}(\sigma-1)+\alpha_{1}\left(\sigma^{2}-1\right)+\alpha_{2}(\sigma-1) \tau\right)=w_{\alpha_{0}} w_{2 \alpha_{1}} u_{\alpha_{1}} u_{\alpha_{0} \alpha_{1}} t_{\alpha_{2}} v_{2 \alpha_{0} \alpha_{2}} v_{\alpha_{1} \alpha_{2}}$. In similar way one can show that any element of V_{1} can be expressed as a linear combination of $w_{\alpha}\left(\bmod \mathcal{Z}\left(V_{1}\right)\right), t_{\alpha}\left(\bmod \mathcal{Z}\left(V_{1}\right)\right)$, for $\alpha \in F$.

If possible, let $w_{\alpha} \mathcal{Z}\left(V_{1}\right)=t_{\beta} \mathcal{Z}\left(V_{1}\right)$ for some $\alpha, \beta \in F$. Then $w_{\alpha} t_{\beta}^{2} \in \mathcal{Z}\left(V_{1}\right)$, i.e. $w_{\alpha} t_{2 \beta} \in \mathcal{Z}\left(V_{1}\right)$. But,

$$
\begin{aligned}
w_{\alpha} t_{2 \beta} & =(1+\alpha(\sigma-1))(1+2 \beta(\sigma-1) \tau) \\
& =(1+\alpha(\sigma-1)+2 \beta(\sigma-1) \tau)\left(\bmod \mathcal{Z}\left(V_{1}\right)\right)
\end{aligned}
$$

Then $w_{\alpha} t_{2 \beta} \in \mathcal{Z}\left(V_{1}\right)$ when $\alpha=\beta=0$. Thus,

$$
\left\{w_{\alpha} \mathcal{Z}\left(V_{1}\right) \mid \alpha \in F\right\} \cap\left\{t_{\alpha} \mathcal{Z}\left(V_{1}\right) \mid \alpha \in F\right\}=\mathcal{Z}\left(V_{1}\right)
$$

Hence, the order of $V_{1} / \mathcal{Z}\left(V_{1}\right)$ is $3^{2 n}$, so that the order of $\mathcal{Z}\left(V_{1}\right)$ is $3^{2 n}$.
Let $f(X)$ be a monic irreducible polynomial of degree n in $\mathbb{Z}_{3}[X]$. Therefore, $\mathbb{Z}_{3}[X] /\langle f(X)\rangle \cong F$. Further, since order of each u_{α}, v_{α} is $3, \mathcal{Z}\left(V_{1}\right)$ is an elementary abelian 3 -group and the structure of $\mathcal{Z}\left(V_{1}\right)$ is given as

$$
\mathcal{Z}\left(V_{1}\right)=\prod_{i=0}^{n-1}\left\langle 1+\alpha^{i} x\right\rangle \times \prod_{j=0}^{n-1}\left\langle 1+\alpha^{j} x \tau\right\rangle
$$

where α is residue class of X modulo $\langle f(X)\rangle$.
The presentation of $V_{1} / \mathcal{Z}\left(V_{1}\right)$ is given by

$$
V_{1} / \mathcal{Z}\left(V_{1}\right)=\prod_{i=0}^{n-1}\left\langle\left(1+\alpha^{i}(\sigma-1) \mathcal{Z}\left(V_{1}\right)\right\rangle \times \prod_{j=0}^{n-1}\left\langle\left(1+\alpha^{j}(\sigma-1) \tau\right) \mathcal{Z}\left(V_{1}\right)\right\rangle\right.
$$

Proof of the Theorem 2.3. Since $p \nmid\left|S_{3}\right|$, by Maschke's theorem $F S_{3}$ is a semisimple Artinian algebra over F. Then by Wedderburn structure theorem we get

$$
F S_{3} \cong \bigoplus_{i=1}^{r} \mathbb{M}\left(n_{i}, D_{i}\right)
$$

where D_{i} 's are finite dimensional division algebras over F. Since F is a finite field, D_{i} 's are finite division algebras, and hence they are fields. In this case denote D_{i} by F_{i}. Thus,

$$
F S_{3} \cong \bigoplus_{i=1}^{r} \mathbb{M}\left(n_{i}, F_{i}\right)
$$

where F_{i} 's are finite field extension of F.
Since, $\operatorname{dim}_{F}\left(F S_{3}\right)=3, F S_{3}$ is noncommutative, and not simple, the possible structures of the group algebra $F S_{3}$ are given by

$$
\begin{aligned}
& F S_{3} \cong \mathbb{M}(2, F) \oplus F \oplus F \text { or } \\
& F S_{3} \cong \mathbb{M}(2, F) \oplus F_{2}
\end{aligned}
$$

where F_{2} is a quadratic extension of F. No other case is possible. Since, if $\mathbb{M}\left(2, F_{2}\right)$ occurs in the right hand side in the place of $\mathbb{M}(2, F)$, but then $\operatorname{dim}_{F}\left(\mathbb{M}\left(2, F_{2}\right)\right)=8$, a contradiction. Therefore, only $\mathbb{M}(2, F)$ will occur in the right hand side. Since $\operatorname{dim}_{F}\left(F S_{3}\right)=6$, we get $\mathbb{M}(2, F)$ to be a direct
summand of $F S_{3}$ of codimension 2. So only two cases as mentioned above may arise.

We will prove that second case is not possible. If possible, let second case holds. In this case $\mathscr{U}\left(F S_{3}\right) \cong G L(2, F) \times F_{2}^{*}$. In F_{2}^{*}, there is an element of order $p^{2 n}-1$, i.e. there is an element in the center of $\mathscr{U}\left(F S_{3}\right)$ of order $p^{2 n}-1$. Now, $\mathcal{Z}\left(F S_{3}\right)$ is F-linear combination of $\widehat{\mathscr{C}}, \widehat{\mathscr{C}}_{1}$ and $\widehat{\mathscr{C}}_{2}$, so any element $x \in \mathcal{Z}\left(F S_{3}\right)$ can be written as $x=\alpha_{0} \widehat{\mathscr{C}_{0}}+\alpha_{1} \widehat{\mathscr{C}_{1}}+\alpha_{2} \widehat{\mathscr{C}_{2}}$, where $\alpha_{i} \in F$. Since, $p>3$, we get either $3 \mid\left(p^{n}-1\right)$ or $3 \mid\left(p^{n}+1\right)$. In both the cases it can be verified that $\left(\widehat{\mathscr{C}_{1}}\right)^{p^{n}}=\widehat{\mathscr{C}_{1}}$ and $\left(\widehat{\mathscr{C}_{2}}\right)^{p^{n}}=\widehat{\mathscr{C}_{2}}$. This gives $x^{p^{n}}=\left(\alpha_{0}+\alpha_{1} \widehat{\mathscr{C}_{1}}+\alpha_{2} \widehat{\mathscr{C}_{2}}\right)^{p^{n}}=$ $\alpha_{0}+\alpha_{1} \widehat{\mathscr{C}_{1}}+\alpha_{2} \widehat{\mathscr{C}_{2}}=x$. Hence, $x^{p^{n}}=x$ for all $x \in \mathcal{Z}\left(F S_{3}\right)$. But then $\mathscr{U}\left(\mathcal{Z}\left(F S_{3}\right)\right)$) is a group of exponent ($p^{n}-1$), a contradiction. Hence, second case does not arise. Thus,

$$
F S_{3} \cong \mathbb{M}(2, F) \oplus F \oplus F
$$

Hence,

$$
\mathscr{U}\left(F S_{3}\right) \cong G L(2, F) \times F^{*} \times F^{*}
$$

3. Unit Groups of $\mathbb{Z}_{2} S_{3}$ and $\mathbb{Z}_{3} S_{3}$

In this section we give presentation of the unit group $\mathscr{U}\left(\mathbb{Z}_{p} S_{3}\right)$ for the prime field \mathbb{Z}_{p}, when $p=2,3$.

Theorem 3.1. The unit group $\mathscr{U}\left(\mathbb{Z}_{2} S_{3}\right)$ is isomorphic to D_{12}, the dihedral group of order 12. In particular, if $S_{3}=\left\langle\sigma, \tau \mid \sigma^{3}=\tau^{2}=1, \tau \sigma=\sigma^{2} \tau\right\rangle$ then $\mathscr{U}\left(\mathbb{Z}_{2} S_{3}\right)=\left\langle\omega, \tau \mid \omega^{6}=\tau^{2}=1, \tau \omega=\omega^{5} \tau\right\rangle$, where $\omega=1+\sigma^{2}+\tau+\sigma \tau+\sigma^{2} \tau$.
Proof. Any element of even length in $\mathbb{Z}_{2} S_{3}$ cannot be a unit, since any such element belongs to the augmentation ideal $\omega\left(\mathbb{Z}_{2} S_{3}\right)$. Elements of length 1 are trivial units in $\mathbb{Z}_{2} S_{3}$. Let $x=g_{1}+g_{2}+g_{3} \in \mathbb{Z}_{2} S_{3}$, be an element of length 3. Then $x=g_{1}\left(1+g_{1}^{-1} g_{2}+g_{1}^{-1} g_{3}\right)$ is a unit if and only if $1+g_{1}^{-1} g_{2}+g_{1}^{-1} g_{3}$ is a unit. Hence, we can assume that any element of length 3 is of the form $x=1+g_{1}+g_{2}$ for some non-identity elements $g_{1}, g_{2} \in S_{3}$. The following two cases arise:

Case 1. Elements g_{1} and g_{2} commute with each other. First, note that, $x^{2}=\left(1+g_{1}+g_{2}\right)^{2}=1+g_{1}^{2}+g_{2}^{2}$. Since σ and σ^{2} are the only elements of S_{3} which commute each other, we get $x=1+g_{1}+g_{2}=1+\sigma+\sigma^{2}$. Since, x is an idempotent, it can not be a unit.

Case 2. If g_{1} and g_{2} do not commute with each other, then also x can not be a unit in $\mathbb{Z}_{2} S_{3}$. For that, take $g_{1}, g_{2} \in\left\{\tau, \sigma \tau, \sigma^{2} \tau\right\}$, then $x^{2}=1+g_{1} g_{2}+g_{2} g_{1}=$ $1+\sigma+\sigma^{2}$, an idempotent; hence x^{2} and therefore x cannot be a unit. Next, assume $g_{1} \in\left\{\tau, \sigma \tau, \sigma^{2} \tau\right\}$ and $g_{2} \in\left\{\sigma, \sigma^{2}\right\}$, then $x^{2}=g_{2}^{2}+g_{1} g_{2}+g_{2} g_{1}=$ $g_{2}^{2}\left(1+g_{2} g_{1} g_{2}+g_{2}^{2} g_{1}\right)$. If x is a unit then $y=1+g_{2} g_{1} g_{2}+g_{2}^{2} g_{1}$ is also a unit. But, this is not possible, because $g_{2} g_{1} g_{2}$ and $g_{2}^{2} g_{1} \in\left\{\tau, \sigma \tau, \sigma^{2} \tau\right\}$. Hence, no element of length 3 is a unit.

This leaves only one case to explore, namely the elements of length 5. All elements of length 5 are units. These are given by

$$
\begin{aligned}
u_{1} & =u_{1}^{-1}=1+\sigma+\sigma^{2}+\sigma \tau+\sigma^{2} \tau ; \\
u_{2} & =u_{2}^{-1}=1+\sigma+\sigma^{2}+\tau+\sigma \tau ; \\
u_{3} & =u_{3}^{-1}=1+\sigma+\sigma^{2}+\tau+\sigma^{2} \tau ; \\
v & =v^{-1}=\sigma+\sigma^{2}+\tau+\sigma \tau+\sigma^{2} \tau \text { and } \\
w & =1+\sigma^{2}+\tau+\sigma \tau+\sigma^{2} \tau, \text { with } \\
w^{-1} & =1+\sigma+\tau+\sigma \tau+\sigma^{2} \tau ;
\end{aligned}
$$

Hence, the unit group $\mathscr{U}\left(\mathbb{Z}_{2} S_{3}\right)$ of $\mathbb{Z}_{2} S_{3}$ is

$$
\mathscr{U}\left(\mathbb{Z}_{2} S_{3}\right)=\left\{u_{1}, u_{2}, u_{3}, v, w, w^{-1}, 1, \sigma, \sigma^{2}, \tau, \sigma \tau, \sigma^{2} \tau\right\} .
$$

Further, $w^{2}=\sigma^{2}, w^{3}=\sigma^{2} w=v, w^{4}=\sigma^{4}=\sigma, w^{5}=w \sigma=w^{-1}, w^{6}=1$ and $w \tau=u_{3}, w^{3} \tau=u_{1}$ and $w^{5} \tau=u_{2}$. We get

$$
\mathscr{U}\left(\mathbb{Z}_{2} S_{3}\right)=\left\langle w, \tau \mid w^{6}=\tau^{2}=1, w \tau=\tau w^{5}\right\rangle,
$$

which is a dihedral group of order 12. This completes the proof of this theorem.

Next, we will discuss about the unit group $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$ over the prime field \mathbb{Z}_{3}. For the field \mathbb{Z}_{3}, structure of the unit group $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$ is given as follows:
Theorem 3.2. Let $V_{1}=1+J\left(\mathbb{Z}_{3} S_{3}\right)$ and let $\mathcal{Z}\left(V_{1}\right)$ denotes the center of V_{1}. Then
(i) both the groups $\mathcal{Z}\left(V_{1}\right)$ and $V_{1} / \mathcal{Z}\left(V_{1}\right)$ are isomorphic to $C_{3} \times C_{3}$.
(ii) the unit group $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right) / V_{1}$ is isomorphic to $C_{2} \times C_{2}$. In particular, order of $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$ is 324.

The above theorem is direct consequence of the Theorem 2.2.
Now, we give more precise presentations of the unit group $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$. In fact, we present all units in their canonical forms.

In Example 8, Kulshammer and Sharma [4] showed that

$$
\omega\left(A_{3}\right)=\mathbb{Z}_{3} u+\mathbb{Z}_{3} v+\mathbb{Z}_{3} u v+\mathbb{Z}_{3} v u
$$

for some $u, v \in \mathbb{Z}_{3} S_{3}$. Let $u=\left(\sigma-\sigma^{2}\right)(1-\tau)$ and $v=\left(\sigma-\sigma^{2}\right)(1+\tau)$. Thus, $u v=2\left(1+\sigma+\sigma^{2}\right)+2\left(1+\sigma+\sigma^{2}\right) \tau$ and $v u=2\left(1+\sigma+\sigma^{2}\right)+\left(1+\sigma+\sigma^{2}\right) \tau$ and so $\mathbb{Z}_{3} u+\mathbb{Z}_{3} v+\mathbb{Z}_{3} u v+\mathbb{Z}_{3} v u \subseteq \omega\left(A_{3}\right)$.

Further, $\left\{(1-\sigma),\left(1-\sigma^{2}\right),(1-\sigma) \tau,\left(1-\sigma^{2}\right) \tau\right\}$ form a basis of $\omega\left(A_{3}\right)$. One can see that

$$
\begin{aligned}
1-\sigma & =u v+v u-u-v, \\
1-\sigma^{2} & =u v+v u+u+v, \\
(1-\sigma) \tau & =u v-v u-v+u, \\
\left(1-\sigma^{2}\right) \tau & =u v-v u+v-u .
\end{aligned}
$$

Thus, any element of $\omega\left(A_{3}\right)$ can be expressed as \mathbb{Z}_{3}-linear combination of $u, v, u v$ and $v u$. Hence $\omega\left(A_{3}\right)=\mathbb{Z}_{3} u+\mathbb{Z}_{3} v+\mathbb{Z}_{3} u v+\mathbb{Z}_{3} v u$.

Since $J\left(\mathbb{Z}_{3} S_{3}\right)=\omega\left(A_{3}\right)$, we have

$$
V_{1}=1+J\left(\mathbb{Z}_{3} S_{3}\right)=\left\{1+\alpha_{1} u+\alpha_{2} v+\alpha_{3} u v+\alpha_{4} v u \mid 0 \leq \alpha_{i} \leq 2\right\}
$$

for $i=1,2,3,4$. Let

$$
x=u v+v u, y=u v-v u, \omega_{1}=1+v, \omega_{2}=1+u .
$$

Assume $H_{1}=\langle 1+x, 1+y\rangle$. Now, $1+x, 1+y \in \mathcal{Z}\left(\mathbb{Z}_{3} S_{3}\right)$ and $u^{2}=0, v^{2}=0$ and $u v u=0$, implies $x^{2}=y^{2}=0$. Thus,

$$
H_{1}=\left\langle 1+x \mid(1+x)^{3}=1\right\rangle \times\left\langle 1+y \mid(1+y)^{3}=1\right\rangle \subseteq \mathcal{Z}\left(\mathbb{Z}_{3} S_{3}\right) .
$$

Hence, $H_{1} \subseteq \mathcal{Z}\left(V_{1}\right)$. For the converse, observe that $u v, v u \in \mathcal{Z}\left(\mathbb{Z}_{3} S_{3}\right)$. Therefore, if $z=1+\alpha_{1} u+\alpha_{2} v+\alpha_{3} u v+\alpha_{4} v u \in \mathcal{Z}\left(V_{1}\right)$, then $\alpha_{1} u+\alpha_{2} v$ commutes with every element of V_{1}. In particular, $\alpha_{1} u+\alpha_{2} v$ commutes with $1+v$ but, then it commutes with v also. This implies that $\alpha_{1} u$ commutes with v. This gives that $\alpha_{1} y=\alpha_{1}(u v-v u)=\alpha_{1}(u v)-\alpha_{1}(v u)=\left(\alpha_{1} u\right) v-v\left(\alpha_{1} u\right)=\left(\alpha_{1} u\right) v-\left(\alpha_{1} u\right) v=0$. But, then $\alpha_{1}(1+y)=\alpha_{1}$. Since, $(1+y)$ is a unit, we get $\alpha_{1}=0$. Similarly, we get $\alpha_{2}=0$. Hence, $z=1+\alpha_{3} u v+\alpha_{4} v u$, i.e. $\mathcal{Z}\left(V_{1}\right)=1+\mathbb{Z}_{3} u v+\mathbb{Z}_{3} v u$. Since, $H_{1} \subseteq \mathcal{Z}\left(V_{1}\right)$ and $\left|H_{1}\right|=\left|\mathcal{Z}\left(V_{1}\right)\right|=9$ we get

$$
\begin{aligned}
\mathcal{Z}\left(V_{1}\right) & =1+\mathbb{Z}_{3} u v+\mathbb{Z}_{3} v u \\
& =\left\langle 1+x \mid(1+x)^{3}=1\right\rangle \times\left\langle 1+y \mid(1+y)^{3}=1\right\rangle \\
& =\left\langle 2+\sigma+\sigma^{2} \mid\left(2+\sigma+\sigma^{2}\right)^{3}=1\right\rangle \times \\
& \times\left\langle\left(1+\left(1+\sigma+\sigma^{2}\right) \tau\left|\left(1+\left(1+\sigma+\sigma^{2}\right) \tau\right)^{3}=1\right\rangle .\right.\right.
\end{aligned}
$$

We have so far got that

$$
H_{1}=\left\langle 1+x \mid(1+x)^{3}=1\right\rangle \times\left\langle 1+y \mid(1+y)^{3}=1\right\rangle=\mathcal{Z}\left(V_{1}\right) .
$$

Next, $\omega_{1}, \omega_{2} \notin \mathcal{Z}\left(V_{1}\right)$ as $\omega_{1} \omega_{2} \neq \omega_{2} \omega_{1}$. Otherwise,

$$
(1+v)(1+u)=(1+u)(1+v) \Rightarrow u v-v u=y=x \tau=0 .
$$

But, then $x=1+\sigma+\sigma^{2}=0$, a contradiction. Further, since $v^{2}=0$, $\omega_{1}^{3}=(1+v)^{3}=1$. Similarly, we get $\omega_{2}^{3}=1$. Also,

$$
\left(\omega_{1}, \omega_{2}\right)=\omega_{1}^{-1} \omega_{2}^{-1} \omega_{1} \omega_{2}=\omega_{1}^{2} \omega_{2}^{2} \omega_{1} \omega_{2} .
$$

Observe that $\omega_{1}^{2}=(1+v)^{2}=1+2 v+v^{2}=1+2 v=1-v$. Similarly, $\omega_{2}^{2}=1-u$.
So $\omega_{1}^{2} \omega_{2}^{2}=(1-v)(1-u)=1-u-v+v u$ and

$$
\omega_{1} \omega_{2}=(1+v)(1+u)=1+u+v+v u
$$

and therefore,

$$
\begin{aligned}
\omega_{1}^{2} \omega_{2}^{2} \omega_{1} \omega_{2} & =(1-u-v+v u)(1+u+v+v u) \\
& =(1-u-v)(1+u+v)+v u+v u \text { since } v u \in \mathcal{Z}\left(\mathbb{Z}_{3} S_{3}\right), u^{2}=v^{2}=0 \\
& =1-(u+v)^{2}+2 v u \\
& =1-(u v+v u)-v u \\
& =1-2 v u-u v \\
& =1+v u-u v \\
& =1-y=(1+y)^{2} .
\end{aligned}
$$

The equation $\left(\omega_{1}, \omega_{2}\right)=(1+y)^{2} \in \mathcal{Z}\left(V_{1}\right)$ implies that $\omega_{1} \mathcal{Z}\left(V_{1}\right)$ and $\omega_{2} \mathcal{Z}\left(V_{1}\right)$ commute with each other. Also $\left(\omega_{1} \mathcal{Z}\left(V_{1}\right)\right)^{3}=\left(\omega_{2} \mathcal{Z}\left(V_{1}\right)\right)^{3}=\mathcal{Z}\left(V_{1}\right)$ as

$$
\omega_{1}^{3}=\omega_{2}^{3}=1
$$

Since, $\left|V_{1} / \mathcal{Z}\left(V_{1}\right)\right|=9$, we get $V_{1} / \mathcal{Z}\left(V_{1}\right)=\left\langle\omega_{1} \mathcal{Z}\left(V_{1}\right)\right\rangle \times\left\langle\omega_{2} \mathcal{Z}\left(V_{1}\right)\right\rangle$. This discussion summarizes the following:

Lemma 3.3. Let V_{1} be $1+J\left(\mathbb{Z}_{3} S_{3}\right)$ and $\mathcal{Z}\left(V_{1}\right)$ be its center. Then
(i) $\mathcal{Z}\left(V_{1}\right)=\langle 1+x\rangle \times\langle 1+y\rangle$, where $x=1+\sigma+\sigma^{2}$ and

$$
y=\left(1+\sigma+\sigma^{2}\right) \tau ;(1+x)^{3}=(1+y)^{3}=1
$$

(ii) $\mathcal{Z}\left(V_{1}\right)=\left\{1+\alpha u v+\beta v u \mid \alpha, \beta \in \mathbb{Z}_{3}\right\}$, where $u=\left(\sigma-\sigma^{2}\right)(1-\tau)$, $v=\left(\sigma-\sigma^{2}\right)(1+\tau)$
(iii) $V_{1} \mathcal{Z}\left(V_{1}\right)=\left\langle\omega_{1} \mathcal{Z}\left(V_{1}\right)\right\rangle \times\left\langle\omega_{2} \mathcal{Z}\left(V_{1}\right)\right\rangle$, where $\omega_{1}=1+v, \omega_{2}=1+u$.

This gives
Theorem 3.4. If $x=1+\sigma+\sigma^{2}, y=\left(1+\sigma+\sigma^{2}\right) \tau, u=\left(\sigma-\sigma^{2}\right)(1-\tau)$ and $v=\left(\sigma-\sigma^{2}\right)(1+\tau)$, then
(i) $V_{1}=\left\{1+\alpha_{1} u+\alpha_{2} v+\alpha_{3} u v+\alpha_{4} v u \mid \alpha_{i} \in \mathbb{Z}_{3}\right.$ for $\left.i=1,2,3,4\right\}$
(ii)

$$
\begin{aligned}
& V_{1}=\langle 1+x, 1+y, 1+v, 1+u| \\
& \quad(1+x)^{3}=(1+y)^{3}=(1+v)^{3}=(1+u)^{3}=1 \\
& \quad(1+u)(1+v)=(1+y)(1+v)(1+u) \\
& \quad \text { and } 1+x, 1+y \text { commute with every generator }\rangle
\end{aligned}
$$

(iii) $V_{1}=\left\{(1+x)^{i}(1+y)^{j}(1+v)^{k}(1+u)^{l} \mid 0 \leq i, j, k, l \leq 2\right\}$;
(iv) $V_{1}=[H] K$, the semidirect product of H by K, where

$$
H=\langle 1+x\rangle \times\langle 1+y\rangle \times\langle 1+v\rangle
$$

and $K=\langle 1+u\rangle$ or $\langle\sigma\rangle$;
(v) $V_{1}=W \times\langle 1+x\rangle$ where

$$
W=\langle 1+u, 1+v\rangle=[\langle 1+y\rangle \times\langle 1+v\rangle]\langle 1+u\rangle .
$$

Proof. Proof of Part (i) directly follows from our earlier discussion. First, we prove part (iv). Observe that $H=\langle 1+x, 1+y, 1+v\rangle=\langle 1+x\rangle \times\langle 1+y\rangle \times\langle 1+v\rangle$ is an abelian subgroup of the form $C_{3} \times C_{3} \times C_{3}$ of V_{1}, because $\langle 1+x\rangle \times\langle 1+y\rangle=$ $H_{1}=\mathcal{Z}\left(V_{1}\right)$. It is known that for a finite group G of order $|G|$, if p is the smallest prime such that p divides $|G|$, then a subgroup of index p is normal in G. Hence, $H \unlhd V_{1}$. Already we have checked that $(1+v)(1+u) \neq(1+u)(1+v)$. Hence $(1+u) \notin H$. Thus, $V_{1}=H K$ and $H \cap K=\{1\}$, where $K=\langle 1+u\rangle$. Therefore, $V_{1}=[H]\langle 1+u\rangle$, the semi direct product of H and $\langle 1+u\rangle$. Further, observe that

$$
\begin{aligned}
(1+u) & (1+v)(1+y) \\
& =(1+u+v+u v)(1+u v-v u) \\
& =1+(u+v+u v)+(u v-v u), \text { since } u^{2}=v^{2}=0 \text { and } u v \in \mathcal{Z}\left(\mathbb{Z}_{3} S_{3}\right) \\
& =1+\left(\sigma-\sigma^{2}\right)(1-\tau)+\left(\sigma-\sigma^{2}\right)(1+\tau)+2\left(1+\sigma+\sigma^{2}\right) \\
& =1+2\left(\sigma-\sigma^{2}\right)+2\left(1+\sigma+\sigma^{2}\right) \\
& =1+2(1+2 \sigma) \\
& =\sigma .
\end{aligned}
$$

The equation $\sigma=(1+u)(1+v)(1+y)$ gives that $\sigma \in\langle(1+y),(1+v),(1+u)\rangle$.
Also $\sigma(1+v) \neq(1+v) \sigma \Rightarrow \sigma \notin H$. Hence, $\sigma \in[H]\langle 1+u\rangle$. This proves that $[H]\langle\sigma\rangle \subseteq[H]\langle 1+u\rangle$.

For the converse, observe that $(1+u)(1+v)=(1+y)(1+v)(1+u)$.

$$
\begin{aligned}
(1+y)(1+v) & =(1+u v-v u)(1+v) \\
& =1+v+(u v-v u)+(u v-v u) v \\
& =1+v+u v-v u
\end{aligned}
$$

Hence,

$$
\begin{aligned}
(1+y)(1+v)(1+u) & =(1+v+u v-v u)(1+u) \\
& =1+v+u v-v u+u+v u+(u v-v u) u \\
& =1+u+v+u v \\
& =(1+u)(1+v) .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
(1+y)(1+v)^{2} \sigma & =(1+y)(1+v)^{2}(1+u)(1+v)(1+y) \\
& =(1+y)^{2}(1+v)^{2}\{(1+u)(1+v)\} \\
& =(1+y)^{2}(1+v)^{2}\{(1+y)(1+v)(1+u)\} \\
& =(1+y)^{3}(1+v)^{3}(1+u) \\
& =(1+u) .
\end{aligned}
$$

The equation $(1+u)=(1+y)(1+v)^{2} \sigma$ gives that $1+u \in[H]\langle\sigma\rangle$. But, then $[H]\langle 1+u\rangle \subseteq[H]\langle\sigma\rangle$. Hence, $V_{1}=[H]\langle 1+u\rangle=[H]\langle\sigma\rangle$. This proves part (iv).

Now, for part $(i i)$, observe that each of $(1+x),(1+y),(1+v),(1+u)$ is a unit of order 3. Also $(1+u)(1+v)=(1+y)(1+v)(1+u)$ and that $(1+x),(1+y)$ commute with each generator. This proves part (ii) as

$$
V_{1}=[H]\langle 1+u\rangle=\langle 1+x, 1+y, 1+u, 1+v\rangle .
$$

The canonical form of part (iii) now, follows from part (ii). For the proof of the part (v), observe that $W=\langle 1+u, 1+v\rangle$ is a nonabelian normal subgroup of V_{1} of order 27. The following relations can be verified:

$$
(1+u)^{3}=(1+v)^{3}=1 \text { and } 1+y=((1+u),(1+v)) \in \mathcal{Z}\left(V_{1}\right) .
$$

Hence,

$$
W=\langle 1+u, 1+v\rangle=\langle 1+u, 1+v, 1+y\rangle
$$

satisfies the following relations:

$$
\begin{aligned}
(1+u)^{3} & =(1+v)^{3}=(1+y)^{3}=1, \\
(1+u)(1+v) & =(1+v)(1+u)(1+y), \\
(1+u)(1+y) & =(1+y)(1+u), \\
(1+v)(1+y) & =(1+y)(1+v) .
\end{aligned}
$$

It can be easily seen that $W=[\langle 1+v, 1+y\rangle]\langle 1+u\rangle$, the semidirect product of $\langle 1+v, 1+y\rangle$ by $\langle 1+u\rangle$. Further, $1+x \notin W$ otherwise $1+x \in \mathcal{Z}(W)=\langle 1+y\rangle$, a contradiction. Hence, $V_{1}=W \times\langle 1+x\rangle$. The proof of the theorem is now complete.

Further, V_{1} is a 3 -group, τ and -1 are units in $\mathbb{Z}_{3} S_{3}$ of order 2 , we get $\tau,-1 \notin$ V_{1}. Also, V_{1} is a normal subgroup of $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$ of index 4 with $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right) / V_{1} \cong$ $C_{2} \times C_{2}$. Hence we can explicitly write all the units as follows:

Theorem 3.5. The unit group

$$
\begin{aligned}
\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right) & =\left[V_{1}\right](\langle-1\rangle \times\langle\tau\rangle)=\left(\pm V_{1}\right) \cup\left(\pm V_{1} \tau\right) \\
& =\left\{ \pm\left(1+\alpha_{1} u+\alpha_{2} v+\alpha_{3} u v+\alpha_{4} v u\right),\right. \\
& \left. \pm\left(1+\alpha_{1}^{\prime} u+\alpha_{2}^{\prime} v+\alpha_{3}^{\prime} u v+\alpha_{4}^{\prime} v u\right) \tau \mid \alpha_{i}, \alpha_{i}^{\prime} \in \mathbb{Z}_{3}\right\} .
\end{aligned}
$$

We can write a presentation of the unit group as follows:

Theorem 3.6.

$$
\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)=\left\{(1+x)^{i}(1+y)^{j} \omega_{1}^{k} \omega_{2}^{l}(-1)^{m} \tau^{n} \mid 0 \leq i, j, k, l \leq 2 ; 0 \leq m, n \leq 1\right\} .
$$

The canonical form obtained here uses 6 generators. Let $u_{1}=2+u+v+u v+$ $v u, u_{2}=1+u+v+u v+v u, u_{3}=\tau+u+v+u v+v u$, and $u_{4}=1+u$. They can be re-written as $u_{1}=-\sigma^{2}, u_{2}=-\left(1+\sigma^{2}\right), u_{3}=1-\sigma^{2}+\tau, u_{4}=1+\left(\sigma-\sigma^{2}\right)(1-\tau)$. The following relations can be verified:

$$
\begin{aligned}
\omega_{1} & =u_{1}^{4} u_{2}^{2} u_{3}^{4} u_{4}^{2}, \omega_{2}=u_{4}, 1+x=u_{1}^{2} u_{2}^{2}, \\
(1+y) & =u_{1}^{2} u_{2}^{2} u_{3}^{4},-1=u_{1}^{3}, \tau=u_{2}^{2} u_{3} u_{4} .
\end{aligned}
$$

For example

$$
\begin{aligned}
u_{1}^{4}= & \left(-\sigma^{2}\right)^{4}=\sigma^{8}=\sigma^{2} \\
u_{2}^{2}= & \left\{-\left(1+\sigma^{2}\right)\right\}^{2}=\left(1+\sigma^{2}\right)^{2}=1+\sigma+2 \sigma^{2}=1+\sigma-\sigma^{2} \\
u_{3}^{2}= & \left(1-\sigma^{2}+\tau\right)^{2}=\left(1-\sigma^{2}\right)^{2}+\tau^{2}+\left(1-\sigma^{2}\right) \tau+\tau\left(1-\sigma^{2}\right) \\
= & \left(1+\sigma^{4}-2 \sigma^{2}\right)+\tau^{2}+\left(1-\sigma^{2}\right) \tau+(1-\sigma) \tau \\
= & \left(1+\sigma+\sigma^{2}\right)+1+\left(2-\sigma-\sigma^{2}\right) \tau \\
= & \left(2+\sigma+\sigma^{2}\right)-\left(1+\sigma+\sigma^{2}\right) \tau \\
= & 1+\left(1+\sigma+\sigma^{2}\right)-\left(1+\sigma+\sigma^{2}\right) \tau \\
= & 1+x-y . \\
u_{3}^{4}= & (1+x-y)^{2}=1+x^{2}+y^{2}+2 x-2 y-2 x y \\
= & 1-x+y=1-x+x \tau \\
& \quad \text { since } x, y \in \mathcal{Z}\left(\mathcal{Z}_{3} S_{3}\right), \quad x^{2}=0, y^{2}=0, \text { and } y=x \tau \\
= & 1-x(1-\tau)=1-\left(1+\sigma+\sigma^{2}\right)(1-\tau),
\end{aligned}
$$

Since, $(1-\tau)\left(\sigma-\sigma^{2}\right)=\left(\sigma-\sigma^{2}\right)-\left(\sigma^{2}-\sigma\right) \tau=\left(\sigma-\sigma^{2}\right)(1+\tau)$, we get

$$
\begin{aligned}
u_{4}^{2} & =\left\{1+\left(\sigma-\sigma^{2}\right)(1-\tau)\right\}^{2} \\
& =1+2\left(\sigma-\sigma^{2}\right)(1-\tau)+\left(\sigma-\sigma^{2}\right)(1-\tau)\left(\sigma-\sigma^{2}\right)(1-\tau) \\
& =1+2\left(\sigma-\sigma^{2}\right)(1-\tau)=1-\left(\sigma-\sigma^{2}\right)(1-\tau)
\end{aligned}
$$

Now,

$$
\begin{aligned}
u_{1}^{4} u_{2}^{2} & =\sigma^{2}\left(1+\sigma-\sigma^{2}\right)=\sigma^{2}+1-\sigma=1-\sigma+\sigma^{2}, \\
u_{1}^{4} u_{2}^{2} u_{3}^{4} & =\left(1-\sigma+\sigma^{2}\right)\left\{1-\left(1+\sigma+\sigma^{2}\right)(1-\tau)\right\} \\
& =\left(1-\sigma+\sigma^{2}\right)-\left(1-\sigma+\sigma^{2}\right)\left(1+\sigma+\sigma^{2}\right)(1-\tau) \\
& =\left(1-\sigma+\sigma^{2}\right)-\left(1+\sigma+\sigma^{2}\right)(1-\tau), \\
u_{1}^{4} u_{2}^{2} u_{3}^{4} u_{4}^{2} & =\left\{\left(1-\sigma+\sigma^{2}\right)-\left(1+\sigma+\sigma^{2}\right)(1-\tau)\right\}\left\{1-\left(\sigma-\sigma^{2}\right)(1-\tau)\right\} \\
& =\left(1-\sigma+\sigma^{2}\right)-\left(1-\sigma+\sigma^{2}\right)\left(\sigma-\sigma^{2}\right)(1-\tau)-\left(1+\sigma+\sigma^{2}\right)(1-\tau) \\
& +\left(1+\sigma+\sigma^{2}\right)(1-\tau)\left(\sigma-\sigma^{2}\right)(1-\tau) .
\end{aligned}
$$

Since, $(1-\tau)\left(\sigma-\sigma^{2}\right)=\left(\sigma-\sigma^{2}\right)(1+\tau)$, we get $\left(1+\sigma+\sigma^{2}\right)(1-\tau)\left(\sigma-\sigma^{2}\right)(1-\tau)=$ 0 . Further $\left(1-\sigma+\sigma^{2}\right)\left(\sigma-\sigma^{2}\right)=-1+\sigma^{2}$.

Combining, we get

$$
\begin{aligned}
u_{1}^{4} u_{2}^{2} u_{3}^{4} u_{4}^{2} & =\left(1-\sigma+\sigma^{2}\right)-\left(-1+\sigma^{2}\right)(1-\tau)-\left(1+\sigma+\sigma^{2}\right)(1-\tau) \\
& =\left(1-\sigma+\sigma^{2}\right)-\left(\sigma-\sigma^{2}\right)(1-\tau) \\
& =1-2\left(\sigma-\sigma^{2}\right)+\left(\sigma-\sigma^{2}\right) \tau \\
& =1+\left(\sigma-\sigma^{2}\right)+\left(\sigma-\sigma^{2}\right) \tau=1+\left(\sigma-\sigma^{2}\right)(1+\tau) \\
& =\omega_{1} .
\end{aligned}
$$

Hence, $u_{1}^{4} u_{2}^{2} u_{3}^{4} u_{4}^{2}=\omega_{1}$.
This proves the first relation, namely $u_{1}^{4} u_{2}^{2} u_{3}^{4} u_{4}^{2}=\omega_{1}$. Similarly, other relations can be proved. Hence, $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right) \subseteq\left\langle u_{1}, u_{2}, u_{3}, u_{4}\right\rangle$.

Further the following relations can be shown to hold among $u_{i}^{\prime} s$:

$$
\begin{gathered}
u_{1}^{6}=u_{3}^{6}=u_{2}^{3}=u_{4}^{3}=1, u_{1} u_{2}=u_{2} u_{1}, u_{3} u_{1}=u_{1} u_{2}^{2} u_{3}^{5} \\
u_{3} u_{2}=u_{2}^{2} u_{3}^{3}, u_{4} u_{3}=u_{1}^{2} u_{2}^{2} u_{3}^{5} u_{4}^{2}, u_{4} u_{1}=u_{1}^{5} u_{2} u_{3}^{2} u_{4}, u_{4} u_{2}=u_{1}^{2} u_{3}^{4} u_{4}
\end{gathered}
$$

and that u_{1}^{3}, u_{3}^{2} commute with each u_{i}. The group $\left\langle u_{1}, u_{2}, u_{3}, u_{4}\right\rangle$ is obviously contained in $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$. We have obtained canonical form presentation of the unit group $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)$ as follows:

Theorem 3.7. $\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)=\left\{u_{1}^{i} u_{2}^{j} u_{3}^{k} u_{4}^{l} \mid 0 \leq i, k \leq 5,0 \leq j, l \leq 2\right\}$, where $u_{1}=-\sigma^{2}, u_{2}=-\left(1+\sigma^{2}\right), u_{3}=1-\sigma^{2}+\tau, u_{4}=1+\left(\sigma-\overline{\sigma^{2}}\right)(1-\tau)$ and they satisfy the following relations:

$$
\begin{aligned}
& u_{1}^{6}=u_{3}^{6}=u_{2}^{3}=u_{4}^{3}=1, \\
& u_{1} u_{2}=u_{2} u_{1}, u_{3} u_{1}=u_{1} u_{2}^{2} u_{3}^{5}, \\
& u_{3} u_{2}=u_{2}^{2} u_{3}^{3}, u_{4} u_{3}=u_{1}^{2} u_{2}^{2} u_{3}^{5} u_{4}^{2}, \\
& u_{4} u_{1}=u_{1}^{5} u_{2} u_{3}^{2} u_{4}, u_{4} u_{2}=u_{1}^{2} u_{3}^{4} u_{4} \\
& \text { and } u_{1}^{3}, u_{3}^{2} \text { commute with each } u_{i} .
\end{aligned}
$$

We can also write a presentation of the unit group in terms of 3- generators as follows:

Theorem 3.8. The unit group

$$
\begin{aligned}
\mathscr{U}\left(\mathbb{Z}_{3} S_{3}\right)=\left\langle v_{1}, v_{2}, v_{3}\right| & v_{1}^{6}=v_{2}^{6}=v_{3}^{3}=1, v_{3} v_{2}=v_{1} v_{2} v_{1} v_{3}^{2} \\
& v_{3} v_{1}=v_{2} v_{1}^{5} v_{2}^{5} v_{3}, v_{2} v_{1}=v_{1}^{2} v_{2} v_{1}^{2} v_{2} v_{1} v_{2}^{-1} v_{1}^{2} \\
& \left.v_{1}^{3} \text { and } v_{2}^{2} \text { commute with each } v_{i}\right\rangle .
\end{aligned}
$$

This can be done by taking $v_{1}=u_{1}, v_{2}=u_{3}, v_{3}=u_{4}$ in the presentation given in the earlier theorem.

References

[1] P. J. Allen and C. Hobby. A note on the unit group of $\mathbf{Z} S_{3}$. Proc. Amer. Math. Soc., 99(1):9-14, 1987.
[2] I. Hughes and K. R. Pearson. The group of units of the integral group ring $Z S_{3}$. Canad. Math. Bull., 15:529-534, 1972.
[3] E. Jespers and M. M. Parmenter. Bicyclic units in Z S_{3}. Bull. Soc. Math. Belg. Sér. B, 44(2):141-146, 1992.
[4] B. Külshammer and R. K. Sharma. Lie centrally metabelian group rings in characteristic 3. J. Algebra, 180(1):111-120, 1996.
[5] D. S. Passman. The algebraic structure of group rings. Pure and Applied Mathematics. Wiley-Interscience [John Wiley \& Sons], New York, 1977.
[6] R. K. Sharma, S. Gangopadhyay, and V. Vetrivel. On units in $\mathbf{Z} S_{3}$. Comm. Algebra, 25(7):2285-2299, 1997.
[7] Z.-X. Wan. Lectures on finite fields and Galois rings. World Scientific Publishing Co. Inc., River Edge, NJ, 2003.

Received July 9, 2007.

Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi- 110016
E-mail address: rksharma@maths.iitd.ac.in
E-mail address: jbsrivas@maths.iitd.ac.in
E-mail address: manjukhan.iitd@gmail.com

[^0]: 2000 Mathematics Subject Classification. 16U60, 20C05.
 Key words and phrases. Unit Group; Group algebra.

