```
Acta Mathematica Academiae Paedagogicae Nyíregyháziensis
21 (2005), 127-134
www.emis.de/journals
ISSN 1786-0091
```


CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS II

MASLINA DARUS

Abstract. Let f be analytic in $D=\{z:|z|<1\}$ with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{f(z)} f^{\prime}(z) \neq 0$. Suppose $\delta \geq 0$ and $\gamma>0$. For $0<\beta<1$, the largest $\alpha(\beta, \delta, \gamma)$ is found such that

$$
\begin{aligned}
& \left(\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(\gamma-\delta)\left(\frac{z f^{\prime}(z)}{f(z)}\right)\right) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, \delta, \gamma)} \\
& \Longrightarrow \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta}
\end{aligned}
$$

The result solves the inclusion problem for certain subclass of analytic functions involving starlike and convex functions defined in a sector. Further we investigate the inclusion problem involving addition of powers of convex and starlike functions.

1. Introduction

Let S denote the class of normalised analytic univalent functions f defined by $f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n}$ for $z \in D=\{z:|z|<1\}$. It is well-known [7], [2] that $f \in C(\alpha)$ implies $f \in S^{*}(\beta)$ where

$$
\beta= \begin{cases}\frac{1-2 \alpha}{2^{2-2 \alpha}\left(1-2^{2 \alpha-1}\right)} & \text { if } \alpha \neq \frac{1}{2} \\ \frac{1}{2 \log 2} & \text { if } \alpha=\frac{1}{2}\end{cases}
$$

and $C(\alpha)$ denotes the class of analytic convex functions satisfying

$$
\operatorname{Re}\left(1+\frac{\left.z^{\prime \prime} z\right)}{f^{\prime}(z)}\right)>\alpha
$$

for $0 \leq \alpha<1$ and $S(\beta)$ denotes the class of analytic starlike functions satisfying

$$
\operatorname{Re}\left(\frac{\left.z f^{\prime} z\right)}{f(z)}\right)>\beta
$$

for $0 \leq \beta<1$, and that this result is best possible. Nunokawa and Thomas [5] proved the analogue of this result for function defined via a sector as follows:

[^0]Theorem 1.1. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$. Then for $0<\beta \leq 1$ and $z \in D$,

$$
1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta)}
$$

implies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta} \tag{1.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(\beta)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta}{(1-\beta)^{\frac{1-\beta}{2}}(1+\beta) \frac{1+\beta}{2} \cos \frac{\beta \pi}{2}}\right) \tag{1.2}
\end{equation*}
$$

and $\alpha(\beta)$ given by (1.2) is the largest number such that (1.1) holds.
Subsequently, Marjono and Thomas [3] extended this and proved:
Theorem 1.2. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq 0$, and, $0<\beta \leq 1$ be given. Then for $\delta>0$ and $z \in D$,

$$
\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\delta) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, \delta)}
$$

implies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta} \tag{1.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\alpha(\beta, \delta)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta \delta}{(1-\beta)^{\frac{1-\beta}{2}}(1+\beta)^{\frac{1+\beta}{2}} \cos \frac{\beta \pi}{2}}\right) \tag{1.4}
\end{equation*}
$$

and $\alpha(\beta, \delta)$ given by (1.4) is the largest number such that (1.3) holds.
Recently, Darus [1] gave the following:
Theorem 1.3. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq 0$. Suppose $\lambda \geq 0$ and $\lambda+\mu>0$. Then for $0<\beta \leq 1$,

$$
\lambda\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+\mu \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, \lambda, \mu)}
$$

implies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta} \tag{1.5}
\end{equation*}
$$

for $z \in D$, where
(1.6)

$$
\alpha(\beta, \lambda, \mu)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta \lambda}{(\lambda+\mu)(1-\beta)^{\frac{1-\beta}{2}}(1+\beta)^{\frac{1+\beta}{2}} \cos \frac{\beta \pi}{2}}\right),
$$

and $\alpha(\beta, \lambda, \mu)$ given by (1.6) is the largest number such that (1.5) holds.
Next we consider a more general case involves convex and starlike functions.

2. Result

Theorem 2.1. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq 0$. Suppose $\delta \geq 0$ and $\gamma>0$. For $0<\beta<1$,

$$
\left(\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(\gamma-\delta)\left(\frac{z f^{\prime}(z)}{f(z)}\right)\right) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, \delta, \gamma)}
$$

implies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta} \tag{2.1}
\end{equation*}
$$

for $z \in D$, where
(2.2) $\alpha(\beta, \delta, \gamma)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta \delta}{\gamma(1-\beta)^{\frac{1-\beta}{2}}(1+\beta)^{\frac{1+\beta}{2}} \cos \frac{\beta \pi}{2}}\right)+\beta$,
and $\alpha(\beta, \delta, \gamma)$ given by (2.2) is the largest number such that (2.1) holds.
We shall need the following lemma.
Lemma 1 ([4]). Let F be analytic in \bar{D} and G be analytic and univalent in \bar{D}, with $F(0)=G(0)$. If $F \nprec G$, then there is a point $z_{0} \in D$ and $\zeta_{0} \in \delta D$ such that $F\left(|z|<\left|z_{0}\right|\right) \subset G(D), F\left(z_{0}\right)=G\left(\zeta_{0}\right)$ and $z_{0} F^{\prime}\left(z_{0}\right)=m \zeta_{0} G^{\prime}\left(\zeta_{0}\right)$ for $m \geq 1$.
Proof of Theorem 2.1. Write $p(z)=\frac{z f^{\prime}(z)}{f(z)}$, so that p is analytic in D and $p(0)=1$.
Thus we need to show that

$$
\delta z p^{\prime}(z)+\gamma p(z)^{2} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

implies

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

whenever $\alpha=\alpha(\beta, \delta, \gamma)$.
Let $h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha(\beta)}$ and $q(z)=\left(\frac{1+z}{1-z}\right)^{\beta}$ so that $|\arg h(z)|<\frac{\alpha(\beta) \pi}{2}$ and $|\arg q(z)|<\frac{\beta \pi}{2}$. Suppose that $p \nprec q$, then from Lemma 2.1, there exists $z_{0} \in D$ and
$\zeta_{0} \in \delta D$ such that $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ and $p\left(|z|<\left|z_{0}\right|\right) \subset q(D)$. Since $p\left(z_{0}\right)=q\left(\zeta_{0}\right) \neq 0$, it follows that $\zeta_{0} \neq \pm 1$. Thus we can write $r i=\left(\frac{1+\zeta_{0}}{1-\zeta_{0}}\right)$ for $r \neq 0$. Next assume that $r>0$, (if $r<0$, the proof is similar) and Lemma 2.1 gives

$$
\begin{align*}
\delta z p^{\prime}(z)+\gamma p(z)^{2} & =m \delta \zeta_{0} q^{\prime}\left(\zeta_{0}\right)+\gamma q\left(\zeta_{0}\right)^{2} \\
& =\left(\gamma(r i)^{\beta}+\frac{m \beta \delta\left(1+r^{2}\right) i}{2 r}\right)(r i)^{\beta} \tag{2.3}
\end{align*}
$$

Since $m \geq 1$, taking the arguments, we obtain

$$
\begin{aligned}
& \arg \left(\delta z_{0} p^{\prime}\left(z_{0}\right)+\gamma p\left(z_{0}\right)^{2}\right)=\arctan \left(\tan \frac{\beta \pi}{2}+\frac{m \beta \delta\left(1+r^{2}\right)}{\gamma r^{1+\beta} \cos \frac{\beta \pi}{2}}\right)+\frac{\beta \pi}{2} \\
& \quad \geq \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta \delta\left(1+r^{2}\right)}{\gamma r^{1+\beta} \cos \frac{\beta \pi}{2}}\right)+\frac{\beta \pi}{2} \\
& \quad \geq \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta \delta}{\gamma(1-\beta) \frac{1-\beta}{2}(1+\beta) \frac{1+\beta}{2} \cos \frac{\beta \pi}{2}}\right)+\frac{\beta \pi}{2}, \\
& \quad=\frac{\alpha(\beta, \delta, \gamma) \pi}{2},
\end{aligned}
$$

where a minimum is attained when $r=\left(\frac{1+\beta}{1-\beta}\right)^{\frac{1}{2}}$.
Hence combining the cases $r>0$ and $r<0$ we obtain

$$
\frac{\alpha(\beta, \delta, \gamma) \pi}{2} \leq\left|\arg \left(\delta z_{0} p^{\prime}\left(z_{0}\right)+\gamma p\left(z_{0}\right)^{2}\right)\right| \leq \pi
$$

which contradicts the fact that $|\arg \quad h(z)|<\frac{\alpha(\beta, \delta, \gamma) \pi}{2}$, provided that (2.2) holds.

To show that $\alpha(\beta, \delta, \gamma)$ is exact, take $\alpha(\beta, \delta, \gamma)<\sigma<1$ so that for some $\beta_{0}>\beta$ we can write $\sigma=\alpha\left(\beta_{0}, \delta, \gamma\right)$. Now let $p(z)=\left(\frac{1+z}{1-z}\right)^{\beta_{0}}$. Then from the minimum principle for harmonic functions, it follows that

$$
\inf _{|z|<1} \arg \left(\delta z p^{\prime}(z)+\gamma p(z)^{2}\right)
$$

is attained at some point $z=e^{i \theta}$ for $0<\theta<2 \pi$. Thus

$$
\delta z p^{\prime}(z)+\gamma p(z)^{2}=\left(\gamma\left(\frac{\sin \theta}{1-\cos \theta}\right)^{\beta_{0}} e^{\frac{\beta_{0} \pi i}{2}}+\frac{i \delta \beta_{0}}{\sin \theta}\right)\left(\frac{\sin \theta}{1-\cos \theta}\right)^{\beta_{0}} e^{\frac{\beta_{0} \pi i}{2}},
$$

and so taking $t=\cos \theta$, we obtain

$$
\begin{aligned}
& \arg \left(\delta z p^{\prime}(z)+\gamma p(z)^{2}\right) \\
& \quad=\arctan \left(\tan \frac{\beta_{0} \pi}{2}+\frac{\beta_{0} \delta}{\gamma(1-t) \frac{1-\beta_{0}}{2}(1+t) \frac{1+\beta_{0}}{2} \cos \frac{\beta_{0} \pi}{2}}\right)+\frac{\beta_{0} \pi}{2},
\end{aligned}
$$

and elementary calculation shows that the minimum of this expression is attained when $t=\beta_{0}$. Thus completes the proof of Theorem 2.1.

Particular choices for δ and γ give the following interesting corollaries. First when $\delta=1$ we have
Corollary 2.1. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq$ 0 . Then for $\gamma>0$ and $0<\beta<1$,

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+(\gamma-1)\left(\frac{z f^{\prime}(z)}{f(z)}\right)\right) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, 1, \gamma)}
$$

implies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

for $z \in D$, where

$$
\alpha(\beta, 1, \gamma)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta}{\gamma(1-\beta)^{\frac{1-\beta}{2}}(1+\beta)^{\frac{1+\beta}{2}} \cos \frac{\beta \pi}{2}}\right)+\beta
$$

Similarly, when $\gamma=1$, we obtain
Corollary 2.2. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq$ 0 . Then for $\delta \geq 0$ and $0<\beta<1$,

$$
\left(\delta\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)+(1-\delta)\left(\frac{z f^{\prime}(z)}{f(z)}\right)\right) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, \delta, 1)}
$$

implies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

for $z \in D$, where

$$
\alpha(\beta, \delta, 1)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta \delta}{(1-\beta)^{\frac{1-\beta}{2}}(1+\beta)^{\frac{1+\beta}{2}} \cos \frac{\beta \pi}{2}}\right)+\beta
$$

Finally, when $\delta=\gamma=1$, we have the following interesting result.

Corollary 2.3. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq$ 0 . Then for $0<\beta<1$,

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, 1,1)}
$$

implies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

for $z \in D$, where

$$
\alpha(\beta, 1,1)=\frac{2}{\pi} \arctan \left(\tan \frac{\beta \pi}{2}+\frac{\beta}{(1-\beta)^{\frac{1-\beta}{2}}(1+\beta)^{\frac{1+\beta}{2}} \cos \frac{\beta \pi}{2}}\right)+\beta
$$

Remark 2.1. We note that $\lim _{\beta \rightarrow 1} \alpha(\beta, 1,1)=2$, which suggests from Theorem 2.1 that

$$
\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right) \frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{2}
$$

implies

$$
\frac{z f^{\prime}(z)}{f(z)} \prec \frac{1+z}{1-z}
$$

However if we let $\beta=1$, the right hand side in (2.3) is real and the method of proof in Theorem 2.1 breaks down.

Next we give the following:
Theorem 2.2. Let f be analytic in D, with $f(0)=f^{\prime}(0)-1=0$ and $\frac{f(z)}{z} f^{\prime}(z) \neq 0$. Suppose $\lambda<\beta \mu$ and $0<\lambda \leq 1$. Then for $0<\beta \leq 1$,

$$
\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\mu}+\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda} \prec\left(\frac{1+z}{1-z}\right)^{\alpha(\beta, \lambda, \mu)}
$$

implies

$$
\begin{equation*}
\frac{z f^{\prime}(z)}{f(z)} \prec\left(\frac{1+z}{1-z}\right)^{\beta} \tag{2.4}
\end{equation*}
$$

for $z \in D$, where

$$
\begin{equation*}
\alpha(\beta, \lambda, \mu)=\frac{2}{\pi} \arctan \left(\frac{\tan \frac{\beta \mu \pi}{2}+\frac{(\lambda \beta)^{\lambda} \sin \frac{\lambda \pi}{2}}{(\lambda-\beta \mu)^{\frac{(\lambda-\beta \mu)}{2}}(\lambda+\beta \mu)^{\frac{(\lambda+\beta \mu)}{2}} \cos \frac{\beta \mu \pi}{2}}}{1+\frac{(\lambda \beta)^{\lambda} \cos \frac{\lambda \pi}{2}}{(\lambda-\beta \mu)^{\frac{(\lambda-\beta \mu)}{2}}(\lambda+\beta \mu)^{\frac{(\lambda+\beta \mu)}{2}} \cos \frac{\beta \mu \pi}{2}}}\right) \tag{2.5}
\end{equation*}
$$

and $\alpha(\beta, \lambda, \mu)$ given by (2.5) is the largest number such that (2.4) holds.

Proof. Write $p(z)=\frac{z f^{\prime}(z)}{f(z)}$, so that p is analytic in D and $p(0)=1$. Thus we need to show that

$$
p(z)^{\mu}+\left(\frac{z p^{\prime}(z)}{p(z)}\right)^{\lambda} \prec\left(\frac{1+z}{1-z}\right)^{\alpha}
$$

implies

$$
p(z) \prec\left(\frac{1+z}{1-z}\right)^{\beta}
$$

whenever $\alpha=\alpha(\beta, \lambda, \mu)$.
As before, let $h(z)=\left(\frac{1+z}{1-z}\right)^{\alpha(\beta)}$ and $q(z)=\left(\frac{1+z}{1-z}\right)^{\beta}$ so that

$$
|\arg h(z)|<\frac{\alpha(\beta) \pi}{2}
$$

and $|\arg q(z)|<\frac{\beta \pi}{2}$. Suppose that $p \nprec q$, then from Lemma 2.1, there exists $z_{0} \in D$ and $\zeta_{0} \in \delta D$ such that $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ and $p\left(|z|<\left|z_{0}\right|\right) \subset q(D)$. Since $p\left(z_{0}\right)=q\left(\zeta_{0}\right) \neq 0$, it follows that $\zeta_{0} \neq \pm 1$. Thus we can write $r i=\left(\frac{1+\zeta_{0}}{1-\zeta_{0}}\right)$ for $r \neq 0$. Next assume that $r>0$, (if $r<0$, the proof is similar) and Lemma 2.1 gives

$$
\begin{aligned}
p\left(z_{0}\right)^{\mu}+\left(\frac{z_{0} p^{\prime}\left(z_{0}\right)}{p\left(z_{0}\right)}\right) & =q\left(\zeta_{0}\right)^{\beta \mu}+\left(\frac{m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)}{q\left(\zeta_{0}\right)}\right)^{\lambda} \\
& =(r i)^{\beta \mu}+\left(\frac{m \beta\left(1+r^{2}\right) i}{2 r}\right)^{\lambda}
\end{aligned}
$$

The result now follows by using the same arguments as before.
To show that $\alpha(\beta, \lambda, \mu)$ is exact, we argue as in the proof of Theorem 2.1 so that for some β_{0}, again choose $p(z)=\frac{z f^{\prime}(z)}{f(z)}=\left(\frac{1+z}{1-z}\right)^{\beta_{0}}$ with $z=e^{i \theta}$ for $0<\theta<2 \pi$. Thus with $t=\cos \theta$, we obtain

$$
p(z)^{\mu}+\left(\frac{z p^{\prime}(z)}{p(z)}\right)^{\lambda}=\left(\frac{1+t}{1-t}\right)^{\beta_{0} \mu} e^{\frac{\beta_{0} \mu \pi i}{2}}+\left(\frac{\beta_{0}}{\sqrt{1-t^{2}}}\right)^{\lambda} e^{\frac{\lambda \pi i}{2}} .
$$

and taking arguments, we have

$$
\begin{gathered}
\arg \left(\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\mu}+\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right)^{\lambda}\right) \\
=\arctan \left(\frac{\tan \frac{\beta_{0} \mu \pi}{2}+\frac{\beta_{0}^{\lambda} \sin \frac{\lambda \pi}{2}}{\left(\lambda-\beta_{0} \mu\right)^{\frac{\left(\lambda-\beta_{0} \mu\right)}{2}}\left(\lambda+\beta_{0} \mu\right)^{\frac{\left(\lambda+\beta_{0} \mu\right)}{2}} \cos \frac{\beta_{0} \mu \pi}{2}}}{1+\frac{\beta_{0}^{\lambda} \cos \frac{\lambda \pi}{2}}{\left(\lambda-\beta_{0} \mu\right)^{\frac{\left(\lambda-\beta_{0} \mu\right)}{2}}\left(\lambda+\beta_{0} \mu\right)^{\frac{\left(\lambda+\beta_{0} \mu\right)}{2}} \cos \frac{\beta_{0} \mu \pi}{2}}}\right),
\end{gathered}
$$

and elementary calculation shows that the minimum of this expression is attained when $t=\frac{\beta_{0} \mu}{2}$. Thus the proof of Theorem 2.2 is complete.
Remark 2.2. When $\lambda=\mu=1$ we obtain Theorem 1.1.

References

[1] M. Darus. Certain subclass of analytic functions. J. Inst. Math. Comput. Sci. Math. Ser., 16(2):89-93, 2003.
[2] T. H. MacGregor. A subordination for convex functions of order α. J. London Math. Soc. (2), 9:530-536, 1974/75.
[3] J. Marjono and D. K. Thomas. Subordination on δ-convex functions in a sector. Honam Math. J., 23(1):41-50, 2001.
[4] S. S. Miller and P. T. Mocanu. Differential subordinations and univalent functions. Michigan Math. J., 28(2):157-172, 1981.
[5] M. Nunokawa and D. K. Thomas. On convex and starlike functions in a sector. J. Austral. Math. Soc. Ser. A, 60(3):363-368, 1996.
[6] G. Ş. Sălăgean. Subclasses of univalent functions. In Complex analysis-fifth RomanianFinnish seminar, Part 1 (Bucharest, 1981), volume 1013 of Lecture Notes in Math., pages 362-372. Springer, Berlin, 1983.
[7] D. R. Wilken and J. Feng. A remark on convex and starlike functions. J. London Math. Soc. (2), 21(2):287-290, 1980.

Received March 28, 2005.

School of Mathematical Sciences,
Faculty of Sciences and Technology, Universiti Kebangsaan Malaysia,
Bangi 43600 Selangor, Malaysia
E-mail address: maslina@pkrisc.cc.ukm.my

[^0]: 2000 Mathematics Subject Classification. 30C45.
 Key words and phrases. convex function, starlike function, normalised, univalent.
 The work presented here was supported by IRPA grant 09-02-02-10029EAR, Malaysia.

