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Dedicated to Professor William R. Wade on his 60-th birthday

Abstract. A general summability method of different orthogonal series is
given with the help of an integrable function θ. As special cases the trigono-
metric Fourier, Walsh-, Walsh-Kaczmarz-, Vilenkin- and Ciesielski-Fourier se-
ries and the Fourier transforms are considered. For each orthonormal system
a different Hardy space is introduced and the atomic decomposition of these
Hardy spaces are presented. A sufficient condition is given for a sublinear
operator to be bounded on the Hardy spaces. Under some conditions on θ it
is proved that the maximal operator of the θ-means of these Fourier series is
bounded from the Hardy space Hp to Lp (p0 < p ≤ ∞) and is of weak type
(1,1), where p0 < 1 is depending on θ. In the endpoint case p = p0 a weak
type inequality is derived. As a consequence we obtain that the θ-means of a
function f ∈ L1 converge a.e. to f . Some special cases of the θ-summation are
considered, such as the Cesàro, Fejér, Riesz, de La Vallée-Poussin, Rogosinski,
Weierstrass, Picar, Bessel and Riemann summations. Similar results are veri-
fied for several-dimensional Fourier series and Hardy spaces and for the multi-
dimensional dyadic derivative.

1. Introduction

Lebesgue [38] proved that the Fejér means σnf of the trigonometric Fourier series
of a function f ∈ L1 converge a.e. to f as n → ∞. It is known that the maximal
operator of the Fejér means is of weak type (1, 1), i.e.

sup
ρ>0

ρλ(σ∗f > ρ) ≤ C‖f‖1 (f ∈ L1)

(see Zygmund [100]) and that σ∗ is bounded from the classical H1 Hardy space to
L1 (see Móricz [42, 43, 44] and Weisz [80, 84]), where σ∗ := supn∈N |σn|. The author
[80, 84, 85] verified that σ∗ is also bounded from Hp to Lp whenever 1/2 < p <∞.
The same results are known for the Walsh system (see Fine [23], Schipp [53], Fu-
jii [26] and Weisz [77]), for the Walsh-Kaczmarz system (see Gát [28] and Simon
[59, 58]), for the Vilenkin system (see Simon [57] and Weisz [83]) and for the Ciesiel-
ski system (see Weisz [92]).

Butzer and Nessel [7] and recently Bokor, Schipp, Szili and Vértesi [5, 48, 49, 62,
63] considered a general method of summation, the so called θ-summability. They
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proved that if θ̂ can be estimated by a non-increasing integrable function, then the
θ-means of a function f ∈ L1(R) converge a.e. to f . This convergence result is
also proved there for the θ-means of trigonometric Fourier series (see also Stein and
Weiss [60]). As special cases they considered the Weierstrass, Picar, Bessel, Fejér,
de La Vallée-Poussin and Riesz summations.

In this survey paper we summarize the results appeared in this topic in the
last 10–20 years. With the help of an integrable function θ a general summabil-
ity method (called θ-summability) of different orthogonal series is considered. As
special cases the trigonometric Fourier, Walsh-, Walsh-Kaczmarz-, Vilenkin- and
Ciesielski-Fourier series and the Fourier transforms are examined. For each or-
thonormal or biorthonormal system we introduce a different Hardy space. The
atomic decomposition of each Hardy space is presented. With the help of the
atomic decomposition a sufficient condition is given for a sublinear operator to be
bounded from the Hardy space to the Lp space. Under some weak conditions on θ
it is proved by the preceding theorem that the maximal operator of the θ-means of
these Fourier series is bounded from the Hardy space Hp to Lp (p0 < p ≤ ∞) and
is of weak type (1,1), where p0 < 1 is depending on θ. In the endpoint case p = p0

a weak type inequality is derived. For p < p0 the result is not true in general. As
a consequence we obtain that the θ-means of a function f ∈ L1 converge a.e. to f .
Some special cases of the θ-summation are considered, such as the Cesàro, Fejér,
Riesz, de La Vallée-Poussin, Rogosinski, Weierstrass, Picar, Bessel and Riemann
summations. Similar results are verified for several-dimensional Fourier series and
Hardy spaces and for the multi-dimensional dyadic derivative.

2. θ-summability of Fourier series

We consider the unit interval [0, 1) and the Lebesgue measure λ on it. We also use
the notation |I| for the Lebesgue measure of the set I. We briefly write Lp instead of
the real Lp([0, 1), λ) space while the norm (or quasi-norm) of this space is defined
by ‖f‖p := (

∫
[0,1)

|f |p dλ)1/p (0 < p ≤ ∞). The space Lp,∞ = Lp,∞([0, 1), λ)
(0 < p <∞) consists of all measurable functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p <∞,

while we set L∞,∞ = L∞. Note that Lp,∞ is a quasi-normed space. It is easy to
see that

Lp ⊂ Lp,∞ and ‖ · ‖p,∞ ≤ ‖ · ‖p

for each 0 < p ≤ ∞.
Let M denote either Z or N. Suppose that φn and ψn (n ∈ M) are real or

complex valued uniformly bounded functions and
∫ 1

0

φnψm dλ =

{
1, if n = m

0, if n 6= m.

This means that the system

Ψ := (φn, ψn, n ∈M)

is biorthogonal.
For a function f ∈ L1 the nth Fourier coefficient with respect to Ψ is defined by

f̂(n) :=
∫

[0,1)

fφn dλ.
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Denote by sΨn f the nth partial sum of the Fourier series of f ∈ L1, namely,

sΨn f :=
∑

k∈M,|k|≤n

f̂(k)ψk (n ∈ N).

Obviously,

sΨn f(x) =
∫ 1

0

f(t)DΨ
n (t, x) dt,

where the Dirichlet kernels are defined by

DΨ
n (t, x) :=

∑

k∈M,|k|≤n

φk(t)ψk(x) (n ∈ N, t, x ∈ [0, 1)).

The Fejér means σΨ
n f (n ∈ N) of an integrable function f are given by

σΨ
n f :=

1
n+ 1

n∑

k=0

sΨk f =
∑

k∈M,|k|≤n

(
1− |k|

n+ 1

)
f̂(k)ψk.

If

KΨ
n :=

1
n+ 1

n∑

k=0

DΨ
k

denotes the n-th Fejér kernel, then

σΨ
n f(x) =

∫ 1

0

f(t)KΨ
n (t, x) dt (f ∈ L1, t, x ∈ [0, 1)).

The maximal Fejér operator is defined by

σΨ
∗ f := sup

n∈N
|σΨ

n f |.

Recall that the Fourier transform of an integrable function f ∈ L1(R) is defined
by

(1) f̂(t) =
1√
2π

∫ ∞

−∞
f(x)e−ıtx dx.

We are going to introduce the θ-summability, which was considered in Butzer
and Nessel [7]. More recently Bokor, Schipp, Szili and Vértesi [48, 5, 49, 62, 63] in-
vestigated the uniform convergence of the θ-means and some interpolation problems
for continuous functions.

In what follows we consider two types of θ-summations. First suppose that the
sequence

θ = (θ(k, n+ 1), k ∈ Z, n ∈ N)
of real numbers is even in the first parameter, more precisely, θ(−k, n + 1) =
θ(k, n+ 1) for each k ∈ Z, n ∈ N. We suppose that

(2) θ(0, n+ 1) = 1, lim
n→∞

θ(k, n+ 1) = 1, (θ(k, n+ 1))k∈Z ∈ `1
for each n, k ∈ N. For this first type we will investigate the Cesàro summability.

For the other type of θ-summations let θ ∈ L1(R) be an even continuous function
satisfying

(3) θ(0) = 1, θ̂ ∈ L1(R), lim
x→∞

θ(x) = 0,
(
θ(

k

n+ 1
)
)

k∈Z
∈ `1

for each n ∈ N. Note that this last condition is satisfied if θ is non-increasing on
(c,∞) for some c ≥ 0 or if it has compact support. We write

θ(k, n+ 1) = θ(
k

n+ 1
).

We consider several well known summability methods of this type.
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Besides (2) or (3) one of the following conditions is always supposed.

(i) θ ∈ L1(R) and |ti+2θ̂(i+1)(t)| ≤ C for all i = 0, . . . , N where N ∈ N
and θ̂(N+1) 6= 0. In this case let p0 = 1/(N + 2).

(ii) θ ∈ L1(R), |tα+1θ̂(t)| ≤ C and |tα+1θ̂′(t)| ≤ C for some 0 < α ≤ 1.
Moreover, |Kθ

n| ≤ Cn and |(Kθ
n)′| ≤ Cn2. Let p0 = 1/(α+ 1).

(iii) θ denotes the (C,α) or Riesz summation for 0 < α ≤ 1 ≤ γ <∞ (see
Examples 1 and 3). Let p0 = 1/(α+ 1).

(iv) θ is twice continuously differentiable on R except of finitely many
points, θ′′ 6= 0 except of finitely many points and finitely many inter-
vals, the left and right limits limx→y±0 xθ

′(x) ∈ R does exist at each
point y ∈ R and limx→∞ xθ′(x) = 0. Let p0 = 1/2.

Butzer and Nessel [7, pp. 248-251] verified that if θ is even, limx→∞ θ(x) = 0
and θ, θ′ and xθ′′(x) are integrable functions, then θ̂ ∈ L1(R). Using this one can
show that θ̂ ∈ L1(R) follows from (iv) and from the other conditions of (3) (see
Weisz [96, Theorem 4]). Moreover, if

(4) lim
x→∞

xθ(x) = 0

then (iv) implies (i) with N = 0. This can similarly be proved as Lemma 5.3 in
Weisz [94].

The θ-means of f ∈ L1 are defined by

σΨ,θ
n f(x) :=

∑

k∈M
θ(k, n+ 1)f̂(k)ψk(x)

=
∫ 1

0

f(t)KΨ,θ
n (t, x) dt,

where the KΨ,θ
n kernels satisfy

KΨ,θ
n (t, x) :=

∑

k∈M
θ(k, n+ 1)φk(t)ψk(x) (n ∈ N, t, x ∈ [0, 1)),

which is well defined by (3). We define the maximal θ-operator by

σΨ,θ
∗ f := sup

n∈N
|σΨ,θ

n f | (f ∈ L1).

If θ(x) := (1− |x|) ∨ 0, then we get the Fejér kernels and means.
The constants C are absolute constants and the constants Cp are depending only

on p and may denote different constants in different contexts.
Under some conditions we have proved in [96] that if the maximal Fejér-operator

σΨ
∗ is bounded on a quasi-normed space then so is σΨ,θ

∗ . Let X and Y be two
complete quasi-normed spaces of measurable functions, L∞ be continuously em-
bedded into X and L∞ be dense in X. Suppose that if 0 ≤ f ≤ g, f, g ∈ Y then
‖f‖Y ≤ ‖g‖Y. If fn, f ∈ Y, fn ≥ 0 (n ∈ N) and fn ↗ f a.e. as n → ∞, then
assume that ‖f−fn‖Y → 0. Note that the spaces Lp and Lp,∞ (0 < p ≤ ∞) satisfy
these properties.

Theorem 1. Assume that (3) and (iv) are satisfied. Moreover, suppose that

(5)
∫ 1

0

|KΨ
n (t, x)| dt ≤ C (n ∈ N, x ∈ [0, 1))

and

(6) |DΨ
n (t, x)| ≤ C

|t− x| (t, x ∈ [0, 1), t 6= x)
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for all n ∈ N. If σΨ
∗ : X → Y is bounded, i.e.

(7) ‖σΨ
∗ f‖Y ≤ C‖f‖X (f ∈ X ∩ L∞),

then σΨ,θ
∗ is also bounded,

(8) ‖σΨ,θ
∗ f‖Y ≤ C‖f‖X (f ∈ X).

Obviously, (5) yields that σ∗ is bounded on L∞, namely,

‖σΨ
∗ f‖∞ ≤ C‖f‖∞ (f ∈ L∞).

If Ψ do not satisfy (6) then we suppose a little bit more on θ.

Theorem 2. Instead of (6) assume (4). Then Theorem 1 holds also.

For the question, how to prove (7) for Hardy spaces, see Section 5.

3. Some summability methods

In this section we consider several summability methods introduced in the book
of Butzer and Nessel [7] and some other popular ones as special cases of the θ-
summation. Of course, there are a lot of other summability methods which could
be considered as special cases. It is easy to see that (2), (3) and (4) are satisfied
all in the next examples. The elementary computations are left to the reader.

Example 1. (C,α) or Cesàro summation. Let

θ1(k, n+ 1) =

{
Aα

n−|k|
Aα

n
if |k| ≤ n

0 if |k| ≥ n+ 1

where

Aα
n :=

(
n+ α

n

)
=

(α+ 1)(α+ 2) . . . (α+ n)
n!

(0 < α <∞). The Cesàro operators are given by

σΨ,θ1
n f(x) :=

1
Aα

n

∑

k∈M,|k|≤n

Aα
n−|k|f̂(k)ψk(x)

=
1
Aα

n

n∑

k=0

Aα−1
n−ks

Ψ
k f.

If α = 1 then we get

Example 2. Fejér summation. Let

θ2(x) =

{
1− |x| if |x| ≤ 1
0 if |x| > 1.

σΨ,θ2
n is the nth Fejér operator:

σΨ,θ2
n f(x) :=

∑

k∈M,|k|≤n

(
1− |k|

n+ 1

)
f̂(k)ψk(x)

=
1

n+ 1

n∑

k=0

sΨk f(x).

It is known that

θ̂2(x) =
1√
2π

( sinx/2
x/2

)2

and
|θ̂′2(x)| ≤

C

x2
.
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Hence (i) with N = 0 and (ii) with α = 1 are valid.

The Fejér summation can also be generalized in the next way.

Example 3. Riesz summation. Let

θ3(x) :=

{
(1− |x|γ)α if |x| ≤ 1
0 if |x| > 1

for some 0 ≤ α, γ <∞. The Riesz operators are given by

σΨ,θ3
n f(x) :=

∑

k∈M,|k|≤n

(
1−

∣∣∣ k

n+ 1

∣∣∣
γ)α

f̂(k)ψk(x).

The Riesz means are called typical means if γ = 1, Bochner-Riesz means if γ = 2
and Fejér means if α = γ = 1. If 1 ≤ α <∞ and 0 < γ <∞ then θ3 satisfies (iv)
and if 0 < α ≤ 1 ≤ γ <∞ then (ii) is true (see Weisz [87]).

Example 4. de La Vallée-Poussin summation. Let

θ4(x) =





1 if |x| ≤ 1/2
−2|x|+ 2 if 1/2 < |x| ≤ 1
0 if |x| > 1

and

σΨ,θ4
n f(x) :=

∑

k∈M,|k|≤n

((
− 2

|k|
n+ 1

+ 2
)
∧ 1

)
f̂(k)ψk(x).

One can show that
σΨ,θ4

2n+1f = 2σΨ,θ2
2n+1f − σΨ,θ2

n f

and since θ4(x) = 2θ2(x)− θ2(2x), we have

|θ̂4(x)| ≤ C

x2
, |θ̂′4(x)| ≤

C

x2
.

Hence we get the conditions (i) with N = 0, (ii) with α = 1 and (iv). Note that we
could generalize this summation if we take in the definition of θ4 another number
than 1/2.

Example 5. Jackson-de La Vallée-Poussin summation. Let

θ5(x) =





1− 3x2/2 + 3|x|3/4 if |x| ≤ 1
(2− |x|)3/4 if 1 < |x| ≤ 2
0 if |x| > 2

and

σΨ,θ5
n f(x) :=

∑

k∈M,|k|≤2n+1

((
1− 3

2

( |k|
n+ 1

)2

+
3
4

( |k|
n+ 1

)3)

∧ 1
4

(
2− |k|

n+ 1

)3
)
f̂(k)ψk(x).

One can find in Butzer and Nessel [7] that

θ̂5(x) =
3√
8π

( sinx/2
x/2

)4

.

Therefore we can show by elementary computations that

|θ̂(i)5 (x)| ≤ C

x4
, (i = 0, 1, 2, 3),

and so (i) with N = 2, (ii) and (iv) are true.
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Example 6. The summation method of cardinal B-splines. For m ≥ 2 let

Mm(x) :=
1

(m− 1)!

l∑

k=0

(−1)k

(
m

k

)
(x− k)m−1

(x ∈ [l, l + 1), l = 0, 1, . . . ,m− 1) and

θ6(x) =
Mm(m/2 +mx/2)

Mm(m/2)
.

Note that θ6 is even and θ6(x) = 0 for |x| ≥ 1 (see also Schipp and Bokor [48]).
Then

σΨ,θ6
n f(x) :=

∑

k∈M,|k|≤n

Mm(m
2 + m

2
k

n+1 )
Mm(m

2 )
f̂(k)ψk(x).

It is shown in Schipp and Bokor [48] that

θ̂6(x) =
1

πmMm(m/2)

( sinx/m
x/m

)m

.

It is easy to see that

|θ̂(i)6 (x)| ≤ C

xm
, (i = 0, 1, . . . ,m− 1).

Thus (i) with N = m− 2, (ii) and (iv) are satisfied.

Example 7. This example generalizes Examples 4, 5, 6. Let

0 = α0 < α1 < . . . < αm

and β0, . . . , βm (m ∈ N) be real numbers, β0 = 1, βm = 0. Suppose that θ7 is even,
θ7(αj) = βj (j = 0, 1, . . . ,m), θ7(x) = 0 for x ≥ αm, θ7 is a polynomial on the
interval [αj−1, αj ] (j = 1, . . . ,m). In this case (iv) is true.

Example 8. Rogosinski summation. Let

θ8(x) =

{
cosπx/2 if |x| ≤ 1
0 if |x| > 1

and
σΨ,θ8

n f(x) :=
∑

k∈M,|k|≤n

cos
( πk

2(n+ 1)

)
f̂(k)ψk(x).

Since

θ̂8(x) =
sin(x− π/2)

2(x2 − (π/2)2)
(see e.g. Schipp and Bokor [48]), we can verify that

|θ̂8(x)| ≤ C

x2
, |θ̂′8(x)| ≤

C

x2

and so (i), (ii) and (iv) are satisfied.

Example 9. Weierstrass summation. Let

θ1(x) = e−|x|
γ

for some 0 < γ <∞. The θ-means are given by

σΨ,θ9
n f(x) :=

∑

k∈M
e−(

|k|
n+1 )γ

f̂(k)ψk(x)(n ∈ N).

Of course, we can take another index set than N. For example we can change
( 1

n+1 )γ by t:

V Ψ,θ9
t f(x) :=

∑

k∈M
e−t|k|γ f̂(k)ψk(x),
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or e−t by r:
WΨ,θ9

r f(x) :=
∑

k∈M
r|k|

γ

f̂(k)ψk(x).

θ9 satisfies (i) for all N ∈ N and (iv). One can compute that

(9) |θ̂9(x)| ≤ C

x2
(x ∈ (0,∞))

if γ ≥ 1. Thus θ9 satisfies also (ii) with α = 1 if 1 ≤ γ < ∞. Note that if γ = 1
then we obtain the Abel means (see e.g. [7]).

Example 10. Generalized Picar and Bessel summations. Let

θ10(x) =
1

(1 + |x|γ)α

for some 0 < α, γ <∞ such that αγ > 1. The θ-means are given by

σΨ,θ10
n f(x) :=

∑

k∈M

1(
1 + ( |k|

n+1 )γ
)α f̂(k)ψk(x).

Since (9) is true in this case, too, one can show (see Weisz [94, p. 201]) that θ10
satisfies (iv) and (i) for N = −[−αγ] − 2 if 1 < αγ < ∞ and (ii) for α = 1 if
2 < αγ <∞. Originally the summation is called Picar if α = 1 and Bessel if γ = 2.

Example 11. Let

θ11(x) :=

{
1 if |x| ≤ 1
|x|−α if |x| > 1

for some 1 < α <∞. We have

σΨ,θ11
n f(x) :=

∑

k∈M,|k|≤n

f̂(k)ψk(x) +
∑

k∈M,|k|>n

∣∣∣ k

n+ 1

∣∣∣
−α

f̂(k)ψk(x).

We can prove as in Example 10 that θ11 satisfies (iv) and (i) for N = −[−α]− 2 if
1 < α <∞ and (ii) if 2 < α <∞.

Example 12. Riemann summation. Let

θ12(x) =
( sinx/2

x/2

)2

=
√

2π θ̂2(x).

Then
θ̂12(x) =

√
2π θ2(x) =

√
2πmax(0, 1− |x|)

and so
|θ̂′12(x)| =

√
2π 1(−1,1)(x) ≤ C/x2.

The Riemann means are given by

σΨ,θ12
n f(x) :=

∑

k∈M

( sin k/(2(n+ 1))
k/(2(n+ 1))

)2

f̂(k)ψk(x).

If we change 1/(n+1) to µ then we get the usual form of the Riemann summation,

V Ψ,θ12
µ f(x) :=

∑

k∈M

( sin kµ/2
kµ/2

)2

f̂(k)ψk(x) (µ ∈ (0,∞)).

Thus (i) with N = 0, (ii) and (iv) are true. Note that the Riemann summation
was considered in Bari [1], Zygmund [100], Gevorkyan [32, 33, 34] and also in
Weisz [82, 86].
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4. Orthonormal systems

In this section we consider five orthonormal or biorthogonal systems and the
Fourier transforms.

4.1. Trigonometric system. The trigonometric system is defined by

T := (exp(2πın·), n ∈ Z),

where ı :=
√−1. In this case

DTn (t, x) =
∑

|k|≤n

e−2πıkte2πıkx =
∑

|k|≤n

e2πık(x−t) (n ∈ N, t, x ∈ [0, 1)).

For this last expression we use the notation DTn (x− t). So DTn (x− t) := DTn (t, x).
Similarly, KT ,θ

n (x − t) := KT ,θ
n (t, x). The inequalities (5) and (6) are proved e.g.

in Zygmund [100] or Torchinsky [65].

4.2. Walsh system. Let

r(x) :=

{
1 if x ∈ [0, 1

2 )
−1 if x ∈ [ 12 , 1)

extended to R by periodicity of period 1. The Rademacher system (rn, n ∈ N) is
defined by

rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The Walsh functions are given by

wn(x) :=
∞∏

k=0

rk(x)nk (x ∈ [0, 1), n ∈ N)

where n =
∑∞

k=0 nk2k, (0 ≤ nk < 2). Let

W := (wn, n ∈ N).

Since wn(t)wn(x) = wn(x+̇t) = wn(x−̇t), we use also the notation DWn (x − t)
and KW,θ

n (x − t). For the definition of the dyadic addition +̇ see Schipp, Wade,
Simon and Pál [50]. Conditions (5) and (6) are proved in Schipp, Wade, Simon and
Pál [50] and Fine [22, 23].

4.3. Walsh-Kaczmarz system. The Kaczmarz rearrangement of the Walsh sys-
tem is also considered. For n ∈ N there is a unique s such that n = 2s +

∑s−1
k=0 nk2k,

(0 ≤ nk < 2). Define

κn(x) := rs(x)
s−1∏

k=0

rs−k−1(x)nk (x ∈ [0, 1), n ∈ N)

and κ0 := 1. Let
K := (κn, n ∈ N).

It is easy to see that κ2n = w2n = rn (n ∈ N) and

{κk : k = 2n, . . . , 2n+1 − 1} = {wk : k = 2n, . . . , 2n+1 − 1}.
We use again the notation DKn (x− t) and KK,θ

n (x− t). Inequality (5) is proved in
Gát [28] and Simon [59]. Note that (6) is not true for the Walsh-Kaczmarz system
(see Shneider [54]).
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4.4. Vilenkin system. The Walsh system is generalized as follows. We need a
sequence (pn, n ∈ N) of natural numbers whose terms are at least 2. We suppose
always that this sequence is bounded. Introduce the notations P0 = 1 and

Pn+1 :=
n∏

k=0

pk (n ∈ N).

Every point x ∈ [0, 1) can be written in the following way:

x =
∞∑

k=0

xk

Pk+1
, 0 ≤ xk < pk, xk ∈ N.

If there are two different forms, choose the one for which limk→∞ xk = 0. The
functions

rn(x) := exp
2πıxn

pn
(n ∈ N)

are called generalized Rademacher functions.
The Vilenkin system is given by

vn(x) :=
∞∏

k=0

rk(x)nk

where n =
∑∞

k=0 nkPk, 0 ≤ nk < pk. Recall that the functions corresponding to
the sequence (2, 2, . . .) are the Rademacher and Walsh functions (see Vilenkin [66]
or Schipp, Wade, Simon and Pál [50]). Let

V := (vn, n ∈ N).

Again, DVn (x − t) := DVn (t, x) and KV,θ
n (x − t) := KV,θ

n (t, x). The inequalities (5)
and (6) are due to Simon [57].

4.5. Ciesielski system. The Walsh system can be generalized also in the following
way. First we introduce the spline systems as in Ciesielski [16, 15]. Let us denote
by D the differentiation operator and define the integration operators

Gf(t) :=
∫ t

0

f dλ, Hf(t) :=
∫ 1

t

f dλ.

Define the χn, n = 1, 2, . . ., Haar system by χ1 := 1 and

χ2n+k(x) :=





2n/2, if x ∈ ((2k − 2)2−n−1, (2k − 1)2−n−1)
−2n/2, if x ∈ ((2k − 1)2−n−1, (2k)2−n−1)
0, otherwise

for n, k ∈ N, 0 < k ≤ 2n, x ∈ [0, 1).
Let m ≥ −1 be a fixed integer. Applying the Schmidt orthonormalization to the

linearly independent functions

1, t, . . . , tm+1, Gm+1χn(t), n ≥ 2,

we get the spline system (f (m)
n , n ≥ −m) of order m. For 0 ≤ k ≤ m + 1 and

n ≥ k −m define the splines

f (m,k)
n := Dkf (m)

n , g(m,k)
n := Hkf (m)

n

of order (m, k). Let us normalize these functions and introduce a more unified
notation,

h(m,k)
n :=

{
f

(m,k)
n ‖f (m,k)

n ‖−1
2 for 0 ≤ k ≤ m+ 1

g
(m,−k)
n ‖f (m,−k)

n ‖2 for 0 ≤ −k ≤ m+ 1.

The system (h(m,k)
i , h

(m,−k)
i , i ≥ |k| −m} is biorthogonal. We get the Haar system

if m = −1, k = 0 and the Franklin system if m = 0, k = 0.
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Starting with the spline system (h(m,k)
n , n ≥ |k| − m) we define the Ciesielski

system (c(m,k)
n , n ≥ |k| −m − 1) in the same way as the Walsh system arises from

the Haar system, namely,

c(m,k)
n := h

(m,k)
n+1 (n = |k| −m− 1, . . . , 0)

and

c
(m,k)
2ν+i :=

2ν∑

j=1

A
(ν)
i+1,jh

(m,k)
2ν+j (0 ≤ i ≤ 2ν − 1).

As mentioned before,
c(−1,0)
n = wn (n ∈ N)

is the usual Walsh system. It is known (see Schipp, Wade, Simon, Pál [50] or
Ciesielski, Simon, Sjölin [13]) that

A
(ν)
i+1,j = A

(ν)
j,i+1 = 2−ν/2wi(

2j − 1
2ν+1

).

The system
C := C(m,k) := (c(m,k)

n , c(m,−k)
n , n ≥ |k| −m− 1)

is uniformly bounded and biorthogonal whenever |k| ≤ m+ 1.
For the Ciesielski systems we have to modify slightly the definitions of partial

sums, θ-means and kernel functions as follows.
Let

sCnf :=
n∑

j=|k|−m−1

f̂(j)c(m,−k)
j (n ∈ N),

DCn(t, x) :=
n∑

j=|k|−m−1

c
(m,k)
j (t)c(m,−k)

j (x) (n ∈ N, t, x ∈ [0, 1)),

σCnf :=
1

n+ 1

n∑

k=0

sCnf =
−1∑

j=|k|−m−1

f̂(j)c(m,−k)
j +

n∑

j=0

(
1− |j|

n+ 1

)
f̂(j)c(m,−k)

j ,

KC
n :=

1
n+ 1

n∑

k=0

DCn (n ∈ N),

σC,θ
n f(x) :=

−1∑

j=|k|−m−1

f̂(j)c(m,−k)
j +

n∑

j=0

θ
( j

n+ 1

)
f̂(j)c(m,−k)

j ,

KC,θ
n (t, x) :=

−1∑

j=|k|−m−1

c
(m,k)
j (t)c(m,−k)

j +
n∑

j=0

θ
( j

n+ 1

)
c
(m,k)
j (t)c(m,−k)

j .

Inequalities (5) and (6) are due to the author [92, 96].

4.6. Fourier transforms. The definition (1) of the Fourier transform can be ex-
tended to f ∈ Lp(R) (1 ≤ p ≤ 2) (see e.g. Butzer and Nessel [7]). It is known that
if f ∈ Lp(R) (1 ≤ p ≤ 2) and f̂ ∈ L1(R) then

f(x) =
1√
2π

∫

R
f̂(u)eıxu du (x ∈ R).

This motivates the definition of the Dirichlet integral sFt f (t > 0):

sFt f(x) :=
1√
2π

∫ t

−t

f̂(u)eıxu du
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=
1√
2π

∫

R
f(u)DFt (x− u) du = (f ∗DFt )(x),

where ∗ denotes the convolution and

DFt (x) :=
1√
2π

∫ t

−t

eıxu du

is the Dirichlet kernel. It is easy to see that

|DFt (x)| ≤ C

x
(t > 0, x 6= 0).

The Fejér means σFT f are defined by

σFT f(x) :=
1
T

∫ T

0

sFt f(x) dt

=
1√
2π

∫ T

−T

(
1− |t|

T

)
f̂(t)eıxt dt

=
1√
2π

∫

R
f(u)KF

T (x− u) du = (f ∗KF
T )(x) (T > 0)

where

KF
T (u) :=

1
T

∫ T

0

DFt (u) dt =
2
√

2√
π

sin2 Tu
2

Tu2

is the Fejér kernel. Remark that∫

R
KF

T (u) du =
√

2π (T > 0)

(see Zygmund [100, Vol. II. pp. 250-251]).
The θ-means of f ∈ Lp(R) (1 ≤ p ≤ 2) are defined by

σF,θ
T f(x) :=

1√
2π

∫

R

(
θ(
t

T
)
)
f̂(t)eıxt dt

=
1√
2π

∫

R
f(u)KF,θ

T (x− u) du (x ∈ R, T > 0),

where

KF,θ
T (x) :=

1√
2π

∫ ∞

−∞
θ
( t

T

)
eıxt dt.

The definition of the θ-means can be extended to tempered distributions as follows:

σF,θ
T f := f ∗KF,θ

T (T > 0).

One can show that σF,θ
T f is well defined for all tempered distributions f ∈ HF

p

(0 < p ≤ ∞) and for all functions f ∈ Lp (1 ≤ p ≤ ∞) (cf. Stein [61]). Note that
the Hardy spaces HF

p are defined in the next section.
The maximal Fejér and θ-operators are defined by

σF,θ
∗ f := sup

T>0
|σF,θ

T f |.

If θ(x) := (1 − |x|) ∨ 0, then we get the maximal Fejér operator. In this case we
leave the θ in the notation. Now Theorem 1 reads as follows (see Weisz [96]).

Theorem 3. If (3) and (iv) hold and if

‖σF∗ f‖Y ≤ C‖f‖X (f ∈ X ∩ L∞),

then
‖σF,θ
∗ f‖Y ≤ C‖f‖X (f ∈ X),

where X and Y is defined in Theorem 1.
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For the trigonometric system and for Fourier transforms we will suppose one of
the conditions (i)–(iv), for the Walsh and Vilenkin systems we will suppose (iii) or
(iv) and for the Walsh-Kaczmarz and Ciesielski systems (iv).

5. Hardy spaces

For different function systems different Hardy spaces are considered. In order
to have a common notation for the dyadic, Vilenkin and classical Hardy spaces we
define the Poisson kernels PGt (G ∈ {T ,W,K,V, C,F}). Set

P Tt (x) :=
∞∑

j=−∞
e−t|j|e2πıjx (x ∈ R, t > 0),

PFt (x) :=
ct

(t+ |x|2) (x ∈ R, t > 0),

PWt (x) := PKt (x) := 2n1[0,2−n)(x) if n ≤ t < n+ 1 (x ∈ R),

PVt (x) := Pn1[0,P−1
n )(x) if n ≤ t < n+ 1 (x ∈ R),

P Ct (x) :=

{
PFt (x) if k ≤ m

PWt (x) if k = m+ 1
(x ∈ R).

We remark that the numbersm and k are appeared in the definition of the Ciesielski
systems.

For a tempered distribution f the non-tangential maximal function is defined
by

fG∗ (x) := sup
t>0

|(f ∗ PGt )(x)| (x ∈ R)

where G ∈ {T ,W,K,V, C,F}.
For 0 < p < ∞ the Hardy space HG

p (R) consists of all tempered distributions f
for which

‖f‖HG
p (R) := ‖fG∗ ‖p <∞.

Now let HF
p := HF

p (R) and

HG
p := HG

p ([0, 1)) := {f ∈ HG
p (R) : supp f ⊂ [0, 1)},

where G ∈ {T ,W,K,V, C}. Define HG
∞ := L∞.

Note that HW
p is the dyadic Hardy space. It is known (see Stein [61], Weisz [94])

that
HG

p ∼ Lp (1 < p ≤ ∞).

The intervals [k2−n, (k + 1)2−n), (0 ≤ k < 2n) (resp. [kP−1
n , (k + 1)P−1

n ), (0 ≤
k < Pn)) are called dyadic (resp. Vilenkin) intervals.

Now some boundedness theorems for Hardy spaces are given. To this end we
introduce the definition of the atoms. The atomic decomposition is a useful char-
acterization of the Hardy spaces by the help of which some boundedness results,
duality theorems, maximal inequalities and interpolation results can be proved.
The atoms are relatively simple and easy to handle functions. If we have an atomic
decomposition, then we have to prove several theorems for atoms, only. A first
version of the atomic decomposition was introduced by Coifman and Weiss [17] in
the classical case and by Herz [35] in the martingale case.

A function a ∈ L∞ is called a p-atom for the HT
p space if

(a) supp a ⊂ I, I ⊂ [0, 1) is a generalized interval,
(b) ‖a‖∞ ≤ |I|−1/p,
(c)

∫
I
a(x)xj dx = 0, where j ≤ [1/p− 1].
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Under a generalized interval we mean an interval [(a, b)] or a set [(0, a)]∪ [(b, 1)]
(0 ≤ a < b ≤ 1). For the space HC

p we suppose only that I ⊂ [0, 1) is an interval.
For HF

p we consider intervals I ⊂ R. For HW
p and HK

p (resp. for HV
p ) we assume

that I ⊂ [0, 1) is a dyadic (resp. Vilenkin) interval and instead of (c) we suppose

(c’)
∫

I
a(x) dx = 0.

The basic result of atomic decomposition is the following one.

Theorem 4. A tempered distribution f is in HG
p (0 < p ≤ 1, G ∈ {T ,W,K,V, C,F})

if and only if there exist a sequence (ak, k ∈ N) of p-atoms for HG
p and a sequence

(µk, k ∈ N) of real numbers such that
∞∑

k=0

µka
k = f in the sense of distributions,

∞∑

k=0

|µk|p <∞.

(10)

Moreover,

(11) ‖f‖HG
p
∼ inf

( ∞∑

k=0

|µk|p
)1/p

where the infimum is taken over all decompositions of f of the form (10).

For the Walsh, Walsh-Kaczmarz and Vilenkin systems the first sum in (10) is
taken in the sense of martingales. The proof of this theorem can be found e.g. in
Latter [37], Lu [39], Coifman and Weiss [17], Coifman [18], Wilson [98, 99] and
Stein [61] in the classical case and in Weisz [75, 74] for martingale Hardy spaces.

If I is an interval then let Ir = 2rI be an interval with the same center as I, for
which I ⊂ Ir and |Ir| = 2r|I| (r ∈ N).

The following result gives a sufficient condition for V to be bounded from HG
p to

Lp. For p0 = 1 it can be found in Schipp, Wade, Simon and Pál [50] and in Móricz,
Schipp and Wade [41], for p0 < 1 see Weisz [80].

Theorem 5. Suppose that
∫

[0,1)\Ir

|V a|p0 dλ ≤ Cp0

for all p0-atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1. If the sublinear
operator V is bounded from Lp1 to Lp1 (1 < p1 ≤ ∞) then

(12) ‖V f‖p ≤ Cp‖f‖HG
p

(f ∈ HG
p )

for all p0 ≤ p ≤ p1. Moreover, if p0 < 1 then the operator V is of weak type (1, 1),
i.e. if f ∈ L1 then

(13) λ(|V f | > ρ) ≤ C

ρ
‖f‖1 (ρ > 0).

Note that (13) can be obtained from (12) by interpolation. For the basic defini-
tions and theorems on interpolation theory see Bergh and Löfström [3] and Bennett
and Sharpley [2] or Weisz [74, 94]. This theorem can be regarded also as an al-
ternative tool to the Calderon-Zygmund decomposition lemma for proving weak
type (1, 1) inequalities. In many cases this theorem can be applied better and more
simply than the Calderon-Zygmund decomposition lemma.

We formulate also a weak version of this theorem.
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Theorem 6. Suppose that

sup
ρ>0

ρp λ
(
{|V a| > ρ} ∩ {[0, 1) \ Ir}

)
≤ Cp

for all p-atoms a and for some fixed r ∈ N and 0 < p < 1. If the sublinear operator
V is bounded from Lp1 to Lp1 (1 < p1 ≤ ∞), then

‖V f‖p,∞ ≤ Cp‖f‖HG
p

(f ∈ HG
p ).

Using these two theorems and Theorems 1, 2 and 3 we can prove the next result
(see Weisz [90, 97, 94, 96]).

Theorem 7. Besides (3) we suppose one of the conditions (i)–(iv) for the trigono-
metric system and for Fourier transforms, (iii) or (iv) for the Walsh and Vilenkin
systems, (iv) for the Ciesielski system, (iv) and (4) for the Walsh-Kaczmarz system.
If p0 < p ≤ ∞ and G ∈ {T ,W,K,V, C} then

(14) ‖σG,θ
∗ f‖p ≤ Cp‖f‖HG

p
(f ∈ HG

p ),

where p0 < 1 is defined in the conditions (i)–(iv). Moreover,

(15) ‖σG,θ
∗ f‖p0,∞ ≤ Cp0‖f‖HG

p0
(f ∈ HG

p0
).

In particular, if f ∈ L1 then

(16) sup
ρ>0

ρ λ(σG,θ
∗ f > ρ) ≤ C‖f‖1.

For the Fejér summability inequalities (14) and (16) were proved by Móricz [42,
43, 44, (p = 1)] and Weisz [80, 84, 85] for the trigonometric system, Schipp [53]
and Weisz [77] for the Walsh system, Gát [28] and Simon [59, 58] for the Walsh-
Kaczmarz system, Simon [57] and Weisz [83] for the Vilenkin system and by
Weisz [92] for the Ciesielski system.

Note that (14) is not true for p ≤ p0 in general, there are counterexamples in
Colzani, Taibleson and Weiss [19] and Simon [58] for the trigonometric and Walsh
systems. For p = p0 (15) is weaker than (14) and, in general, for p < p0 (15) does
not hold either.

Inequality (16) and the usual density argument of Marcinkiewicz and Zyg-
mund [40] implies

Corollary 1. Under the conditions of Theorem 7 if f ∈ L1 then

σG,θ
n f → f a.e. as n→∞,

where G ∈ {T ,W,K,V, C}. Moreover,

σF,θ
T f → f a.e. as T →∞.

6. θ-summability of multi-dimensional Fourier series

In this section the preceding results are generalized for d-dimensional Fourier
series. For a set X 6= ∅ let Xd be its Cartesian product X× . . .×X taken with itself
d-times. The d-dimensional biorthogonal system

Ψd = Ψ⊗ · · · ⊗Ψ

is defined by the Kronecker product of the one-dimensional biorthogonal system
Ψ := (φn, ψn, n ∈M) taken with itself d-times. Then

Ψd := (φn, ψn, n ∈Md),

where φn := φn1⊗· · ·⊗φnd
and ψn := ψn1⊗· · ·⊗ψnd

(n = (n1, . . . , nd)). This means
that we take the Kronecker product of the same function systems. We define the
d-dimensional trigonometric (T d), Walsh (Wd), Vilenkin (Vd) and Ciesielski (Cd)
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systems in this way. In the definition of the d-dimensional Vilenkin (resp. Ciesielski)
systems we allow different one-dimensional Vilenkin (resp. Ciesielski) systems. The
more-dimensinal Walsh-Kaczmarz system is not considered in this section.

For f ∈ L1[0, 1)d the Fourier coefficients with respect to Ψd are defined by

f̂(n) :=
∫

[0,1)d

fφn dλ (n ∈Md).

Let

sΨ
d

n f(x) :=
∑

k∈Md,|k|≤n

f̂(k)ψk(x)

=
∫

[0,1)d

f(t)(DΨ
n1

(t1, x1) · · ·DΨ
nd

(td, xd)) dt (x ∈ [0, 1)d
, n ∈ Nd),

where k ≤ n (k, n ∈ Nd) means that ki ≤ ni for all i = 1, . . . , d.
The Fejér means σΨd

n f (n ∈ Nd) of f ∈ L1[0, 1)d are given by

σΨd

n f(x) :=
1∏d

i=1(ni + 1)

d∑

j=1

nj∑

kj=0

sΨ
d

k f(x)

=
∑

k∈Md,|k|≤n

( d∏

i=1

(
1− |ki|

ni + 1

))
f̂(k)ψk(x)

=
∫

[0,1)d

f(t)(KΨ
n1

(t1, x1) · · ·KΨ
nd

(td, xd)) dt

(x ∈ [0, 1)d
, n ∈ Nd).

In case each θi (i = 1, . . . , d) satisfies (3) and one of the conditions (i)–(iv), the
θ-means of f ∈ L1[0, 1)d are defined by

σΨd,θ
n f(x) :=

∑

k∈Md

( d∏

i=1

θi

( ki

ni + 1

))
f̂(k)ψk(x)

=
∫

[0,1)d

f(t)(KΨ,θ1
n1

(t1, x1) · · ·KΨ,θd
nd

(td, xd)) dt,

(x ∈ [0, 1)d
, n ∈ Nd). For the Ciesielski system we have to take again some necessary

modifications in the above definitions. We define the restricted and non-restricted
maximal Fejér and θ-operators by

σΨd

2 f := sup
2−τ≤nj/nk≤2τ

j,k=1,...,d

|σΨd

n f |, σΨd

∗ f := sup
n∈Nd

|σΨd

n f |

and
σΨd,θ

2 f := sup
2−τ≤nj/nk≤2τ

j,k=1,...,d

|σΨd,θ
n f |, σΨd,θ

∗ f := sup
n∈Nd

|σΨd,θ
n f |,

respectively, where τ ≥ 0 is given.
In the more-dimensional case the Fourier transform of a function f ∈ L1(Rd) is

introduced by

f̂(u) =
1

(2π)d/2

∫

Rd

f(x)e−ıu·x dx (u ∈ Rd),

where u · x =
∑d

k=1 ukxk (u, x ∈ Rd).
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The Fejér and θ-means of f ∈ Lp(Rd) (1 ≤ p ≤ 2) are defined by

σF
d,θ

T f(x) :=
1

(2π)d/2

∫

Rd

( d∏

i=1

(
θi(

ti
Ti

)
))
f̂(t)eıx·t dt

=
1

(2π)d/2

∫

Rd

f(u)(KF,θ1
T1

(x1 − u1) . . .K
F,θd

Td
(xd − ud)) du,

(x ∈ Rd, T ∈ Rd
+). The definition of the θ-means can be extended to tempered

distributions as follows:

σF
d,θ

T f := f ∗ (KF,θ1
T1

⊗ . . .⊗KF,θd

Td
) (T ∈ Rd

+).

Again, σF
d,θ

T f is well defined for all tempered distributions f ∈ HFd

p (0 < p ≤ ∞)
and for all functions f ∈ Lp(Rd) (1 ≤ p ≤ ∞) (cf. Stein [61]).

For a given τ ≥ 0 the restricted and non-restricted maximal Fejér and θ-operators
are given by

σF
d,θ

2 f := sup
2−τ≤Tj/Tk≤2τ

j,k=1,...,d

|σFd,θ
T f |, σF

d,θ
∗ f := sup

T∈Rd
+

|σFd,θ
T f |.

If each θi(x) := (1− |x|) ∨ 0 (i = 1, . . . , d), then we get the Fejér means.
Theorems 1, 2 and 3 hold in the more-dimensional case, too.

Theorem 8. Assume that (3) and (iv) hold for each θi (i = 1, . . . , d). If (5) and
(6) are satisfied then

‖σGd

∗ f‖Y ≤ C‖f‖X (f ∈ X ∩ L∞),

implies
‖σGd,θ
∗ f‖Y ≤ C‖f‖X (f ∈ X),

where X and Y are defined in Theorem 1 and G ∈ {T ,W,V, C,F}. If we assume
(4) instead of (6), then the same holds.

In the more-dimensional case we define three kinds of Hardy spaces. Let

fG
d,2

∗ (x) := sup
t>0

|(f ∗ (PGt ⊗ . . .⊗ PGt ))(x)|

fG
d

∗ (x) := sup
t∈Rd

+

|(f ∗ (PGt1 ⊗ . . .⊗ PGtd
))(x)|

f
Gd

i∗ (x) := sup
tk>0,k=1,...,d;k 6=i

|(f ∗ (PGt1 ⊗ . . .⊗ PGti−1
⊗ PGti+1

⊗ . . .⊗ PGtd
))(x)|

(x ∈ Rd, i = 1, . . . , d). For 0 < p < ∞ the Hardy spaces HGd,2
p (R × . . . × R),

HGd

p (R× . . .×R) and HGd
i

p (R× . . .×R) consist of all tempered distributions f for
which

‖f‖
HGd,2

p (R×...×R)
:= ‖fGd,2

∗ ‖p <∞,

‖f‖HGd
p (R×...×R) := ‖fGd

∗ ‖p <∞
and

‖f‖
H
Gd

i
p (R×...×R)

:= ‖fGd
i∗ ‖p <∞,

respectively, where G ∈ {T ,W,V, C,F} and i = 1, . . . , d.
Now let

HFd,2
p := HFd,2

p (R×. . .×R), HFd

p := HFd

p (R×. . .×R), H
Fd

i
p := H

Fd
i

p (R×. . .×R)

and

HGd

p := HGd

p ([0, 1)× . . .× [0, 1)) := {f ∈ HGd

p (R× . . .× R) : supp f ⊂ [0, 1)d},
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where G ∈ {T ,W,V, C}. We define HGd,2
p and HGd

i
p analogously (i = 1, . . . , d). For

G ∈ {T ,W,V, C,F},
HGd,2

p ∼ HGd

p ∼ H
Gd

i
p ∼ Lp (1 < p ≤ ∞)

(see Stein [61], Weisz [94]). Moreover HGd
i

1 ⊃ L(logL)d−1, namely,

‖f‖
H
Gd

i
1

≤ C + C‖|f |(log+ |f |)d−1‖1,

where G ∈ {T ,W,V, C} and i = 1, . . . , d.

6.1. The Hardy spaces HGd,2
p . To obtain some boundedness result for the oper-

ator σG
d,θ

2 we consider the Hardy space HGd,2
p . Now the situation is similar to the

one-dimensional case. A dyadic (resp. Vilenkin) rectangle is the Kronecker product
of dyadic (resp. Vilenkin) intervals.

A function a ∈ L∞ is a cube p-atom for the HT d,2
p space if

(a) supp a ⊂ I, I ⊂ [0, 1)d is a generalized cube,
(b) ‖a‖∞ ≤ |I|−1/p,
(c)

∫
I
a(x)xj dx = 0, for all multi-indices j = (j1, . . . , jd) with |j| ≤

[d(1/p− 1)].

We suppose for HCd,2
p that I ⊂ [0, 1)d is a cube, for HFd,2

p that I ⊂ Rd is a
cube, for HWd,2

p (resp. for HVd,2
p ) that I ⊂ [0, 1)d is a dyadic (resp. Vilenkin) cube.

Furthermore, in case G ∈ {W,V}, for HGd,2
p we assume instead of (c)

(c’)
∫

I
a(x) dx = 0.

The basic result of atomic decomposition is the following one.

Theorem 9. A tempered distribution f is in HGd,2
p (0 < p ≤ 1,G ∈ {T ,W,V, C,F})

if and only if there exist a sequence (ak, k ∈ N) of cube p-atoms for HGd,2
p and a

sequence (µk, k ∈ N) of real numbers such that
∞∑

k=0

µka
k = f in the sense of distributions,

∞∑

k=0

|µk|p <∞.

(17)

Moreover,

(18) ‖f‖
HGd,2

p
∼ inf

( ∞∑

k=0

|µk|p
)1/p

where the infimum is taken over all decompositions of f of the form (17).

Again, for the Walsh and Vilenkin systems the first sum in (17) is taken in the
sense of martingales.

For a rectangle R = I1 × . . . × Id ⊂ Rd let Rr := 2rR := Ir
1 × . . . × Ir

d (r ∈ N).
The following result generalizes Theorem 5.

Theorem 10. Suppose that ∫

[0,1)d\Ir

|V a|p0 dλ ≤ Cp0

for all cube p0-atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1. If the sublinear
operator V is bounded from Lp1 to Lp1 (1 < p1 ≤ ∞) then

(19) ‖V f‖p ≤ Cp‖f‖HGd,2
p

(f ∈ HGd,2
p )
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for all p0 ≤ p ≤ p1. Moreover, if p0 < 1 then the operator V is of weak type (1, 1),
i.e. if f ∈ L1 then

(20) λ(|V f | > ρ) ≤ C

ρ
‖f‖1 (ρ > 0).

Again, (20) follows from (19) by interpolation. The following theorem is due to
the author (see Weisz [78, 88, 76, 95, 93, 94]). Let p0 := max{pj,0, j = 1, . . . , d},
where pj,0 is the number defined in (i)–(iv) for θj .

Theorem 11. Assume that (3) holds for each θj (j = 1, . . . , d). Furthermore sup-
pose one of the conditions (ii)–(iii) for the trigonometric system and for Fourier
transforms, (iii) for the Walsh and Vilenkin systems and for the Ciesielski sys-
tem we consider the Fejér summability. If max{p0, d/(d + 1)} < p ≤ ∞ and
G ∈ {T ,W,V, C,F} then

‖σGd,θ
2 f‖p ≤ Cp‖f‖HGd,2

p
(f ∈ HGd,2

p ).

In particular, if f ∈ L1 then

sup
ρ>0

ρ λ(σG
d,θ

2 f > ρ) ≤ C‖f‖1.

The last weak type inequality implies

Corollary 2. Under the conditions of Theorem 11 if f ∈ L1 then

σG
d,θ

n f → f a.e.

as n → ∞ and 2−τ ≤ nj/nk ≤ 2τ (j, k = 1, . . . , d), where G ∈ {T ,W,V, C}.
Moreover,

σF
d,θ

T f → f a.e.

as T →∞ whenever 2−τ ≤ Tj/Tk ≤ 2τ (j, k = 1, . . . , d).

This corollary was proved first by Marcinkiewicz and Zygmund [40] for the
trigonometric Fourier series and for the Fejér means.

6.2. The Hardy spaces HGd

p . In the investigation of the operator σG
d,θ
∗ we use the

Hardy spaces HGd

p . The atomic decomposition for HGd

p is much more complicated.
One reason of this is that the support of an atom is not a rectangle but an open set.
Moreover, here we have to choose the atoms from L2 instead of L∞. This atomic
decomposition was proved by Chang and Fefferman [10, 11, 12, 20, 21], Bernard [4]
and Weisz [73, 81, 89, 94]. For an open set F ⊂ [0, 1)d denote byM(F ) the maximal
dyadic subrectangles of F . First we define the atoms for the Hardy space defined
for the Fourier transforms. Taking the obvious changes we get the atoms for the
trigonometric system and for the Ciesielski system.

A function a ∈ L2 is a p-atom for the HFd

p space if

(a) supp a ⊂ F for some open set F ⊂ Rd with finite measure,
(b) ‖a‖2 ≤ |F |1/2−1/p,
(c) a can be further decomposed into the sum of “elementary particles”

aR ∈ L∞, a =
∑

R aR, where R ⊂ F are dyadic rectangles, such that
(α) supp aR ⊂ 5R,
(β) for all i = 1, . . . , d and R we have
∫

R
aR(x)xk

i dxi = 0 (k ≤ N(p) := [2/p− 3/2]),
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(γ) aR ∈ CN(p)+1 such that ‖aR‖∞ ≤ dR and
∥∥∥∂k1

1 . . . ∂kd

d aR

∥∥∥
∞
≤ dR

|I1|k1 · · · |Id|kd

for all 0 ≤ ki ≤ N(p) + 1 (i = 1, . . . , d) with
∑

R

d2
R|R| ≤ Cp|F |1−2/p,

where R = I1 × . . .× Id.
Moreover, a can also be decomposed into the sum of “elementary
particles” αR ∈ L2, a =

∑
R∈M(F (1)) αR, satisfying

(d) supp αR ⊂ 5R,
(e) for all i = 1, . . . , d and R ∈M(F (1)),∫

R
αR(x)xk

i dxi = 0 (k ≤ N(p)),

(f) for every disjoint partition Pl (l = 1, 2, . . .) of M(F (1)),
(∑

l

‖
∑

R∈Pl

αR‖22
)1/2

≤ |F |1/2−1/p,

where F (1) := {Ms(1F ) > 1/100} and Ms is the strong maxi-
mal function

Msf(x) := sup
x∈R

1
|R|

∫

R

|f | dλ (x ∈ Rd),

the supremum is taken over all rectangles R ⊂ Rd with sides
parallel to the axes.

This definition is a little bit simpler for the dyadic and Vilenkin Hardy spaces.
A function a ∈ L2 is a p-atom for the HWd

p space if

(a) supp a ⊂ F for some open set F ⊂ [0, 1)d,
(b) ‖a‖2 ≤ |F |1/2−1/p,
(c) a can be further decomposed into the sum of “elementary particles”

aR ∈ L2, a =
∑

R∈M(F ) aR in L2, satisfying
(d) supp aR ⊂ R ⊂ F ,
(e) for all i = 1, . . . , d and R ∈M(F ) we have∫

[0,1)

aR(x) dλ(xi) = 0,

(f) for every disjoint partition Pl (l = 1, 2, . . .) of M(F ),
( ∑

l

‖
∑

R∈Pl

aR‖22
)1/2

≤ |F |1/2−1/p.

Note that for the Vilenkin system we take instead of the (maximal) dyadic
rectangle (maximal) Vilenkin rectangle.

Theorem 12. A tempered distribution f is in HGd

p (0 < p ≤ 1,G ∈ {T ,W,V, C,F})
if and only if there exist a sequence (ak, k ∈ N) of p-atoms for HGd

p and a sequence
(µk, k ∈ N) of real numbers such that

∞∑

k=0

µka
k = f in the sense of distributions,

∞∑

k=0

|µk|p <∞.

(21)
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Moreover,

‖f‖
HGd

p
∼ inf

( ∞∑

k=0

|µk|p
)1/p

where the infimum is taken over all decompositions of f of the form (21).

The corresponding results to Theorems 4 and 12 for the HGd

p space are much
more complicated. First we consider the two-dimensional case. Since the definition
of the p-atom is very complex, to obtain a usable condition about the boundedness
of the operators, we have to introduce simpler atoms.

If d = 2, a function a ∈ L2[0, 1)2 is called a simple p-atom for the HT d

p and HCd

p

spaces, if

(a) supp a ⊂ R, R ⊂ [0, 1)2 is a rectangle,
(b) ‖a‖2 ≤ |R|1/2−1/p,
(c)

∫
[0,1)

a(x)xk
i dλ(xi) = 0, for i = 1, 2 and k ≤ [2/p− 3/2].

For Fourier transforms we change the unit interval by R. For the Walsh and
Vilenkin system instead of (c) we assume

(c’)
∫
[0,1)

a(x) dλ(xi) = 0 for i = 1, 2

and we use dyadic and Vilenkin rectangles.
Note that HGd

p cannot be decomposed into rectangle p-atoms, a counterexample
can be found in Weisz [74]. However, the following result says that for an operator
V to be bounded from HGd

p to Lp (0 < p ≤ 1) it is enough to check V on simple
p-atoms and the boundedness of V on L2.

Theorem 13. Suppose that d = 2, 0 < p0 ≤ 1 and there exists η > 0 such that

(22)
∫

[0,1)2\Rr

|V a|p0 dλ ≤ Cp02
−ηr,

for all simple p0-atoms a and for all r ≥ 1. If the sublinear operator V is bounded
from L2 to L2, then

(23) ‖V f‖p ≤ Cp‖f‖HGd
p

(f ∈ HGd

p )

for all p0 ≤ p ≤ 2. In particular, if p0 < 1 then the operator V is of weak type
(HGd

i
1 , L1), i.e. if f ∈ HGd

i
1 for some i = 1, . . . , d then

(24) sup
ρ>0

ρλ(|V f | > ρ) ≤ C‖f‖
H
Gd

i
1

.

Inequality (24) follows from (23) by interpolation. In some sense the space HGd
i

1

plays the role of the one-dimensional L1 space.
Theorem 13 for two-dimensional classical Hardy spaces is due to Fefferman [20]

and for martingale Hardy spaces to Weisz [81]. Unfortunately, the proof of this
theorem works for two dimensions, only. In the proof we decreased the dimension
by 1 and we used the fact that every one-dimensional open set can be decomposed
into the disjoint union of maximal dyadic intervals, which is obviously not true for
higher dimensions. Journé [36] even verified that the preceding result do not hold
for dimensions greater than 2. So there are fundamental differences between the
theory in the two-parameter and three- or more-parameter cases. Fefferman asked
in [21] whether one can find sufficient conditions for the sublinear operator to be
bounded from HGd

p to Lp in higher dimensions. In what follows we answer this
question.

Now let us extend the definition of the two-parameter simple atoms.
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Let d ≥ 3. A function a ∈ L2[0, 1)d is called a simple p-atom for the HT d

p and
HCd

p spaces, if there exist intervals Ii ⊂ [0, 1), i = 1, . . . , j for some 1 ≤ j ≤ d − 1
such that

(a) supp a ⊂ I1 × . . . Ij ×A for some measurable set A ⊂ [0, 1)d−j ,
(b) ‖a‖2 ≤ (|I1| · · · |Ij ||A|)1/2−1/p,
(c)

∫
Ii
a(x)xk

i dxi =
∫

A
a dλ = 0 for i = 1, . . . , j and k ≤ [2/p− 3/2].

Of course if a ∈ L2 satisfies these conditions for another subset of {1, . . . , d} than
{1, . . . , j}, then it is also called simple p-atom.

For the other Hardy spaces we take the obvious changes, for example for the
dyadic Hardy space we suppose instead of (c) that

(c’)
∫

Ii
a dλ =

∫
A
a dλ = 0 for all i = 1, . . . , j.

As in the two-parameter case, HGd

p cannot be decomposed into simple p-atoms.
It is easy to see that the condition (22) can also be formulated as follows:∫

(Ir
1 )c×I2

|V a|p0 dλ+
∫

(Ir
1 )c×Ic

2

|V a|p0 dλ ≤ Cp02
−ηr

and the corresponding inequality holds for the dilation of I2, where Hc denotes the
complement of the set H and R = I1×I2. For higher dimensions we generalize this
form. The next theorem is due to the author [89, 94].

Theorem 14. Let d ≥ 3. Suppose that the operators Vn are linear for every n ∈ Nd

and
V ∗ := sup

n∈βd

|Vn|

is bounded on L2. Suppose that there exist η1, . . . , ηd > 0, such that for all simple
p0-atoms a and for all r1 . . . , rd ≥ 1∫

(I
r1
1 )c×...×(I

rj
j )c

∫

A

|V a|p0 dλ ≤ Cp02
−η1r1 · · · 2−ηjrj .

If j = d− 1 and A = Id ⊂ [0, 1) is an interval, then we assume also that∫

(I
r1
1 )c×...×(I

rd−1
d−1 )c

∫

(Id)c

|V a|p0 dλ ≤ Cp02
−η1r1 · · · 2−ηd−1rd−1 .

Then
‖V ∗f‖p ≤ Cp‖f‖HGd

p
(f ∈ HGd

p )

for all p0 ≤ p ≤ 2. In particular, if p0 < 1 and f ∈ HGd
i

1 for some i = 1, . . . , d then

(25) λ(|V f | > ρ) ≤ C

ρ
‖f‖

H
Gd

i
1

(ρ > 0).

Applying Theorems 8, 13 and 14 we can prove the next result (see Weisz [90, 97,
94, 96]).

Theorem 15. Assume that (3) holds for each θj (j = 1, . . . , d). Furthermore
suppose one of the conditions (i)–(iv) for the trigonometric system and for Fourier
transforms, (iii) or (iv) for the Walsh and Vilenkin systems and (iv) for the Ciesiel-
ski system. If p0 < p ≤ ∞ and G ∈ {T ,W,K,V, C} then

‖σGd,θ
∗ f‖p ≤ Cp‖f‖Hp (f ∈ HGd

p ).

In particular, if f ∈ HGd
i

1 and i = 1, . . . , d then

sup
ρ>0

ρ λ(σG
d,θ
∗ f > ρ) ≤ C‖f‖

H
Gd

i
1

.
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Corollary 3. Under the conditions of Theorem 15 if f ∈ H
Gd

i
1 (⊃ L(logL)d−1),

G ∈ {T ,W,V, C}, i = 1, . . . , d, then

σG
d,θ

n f → f a.e., as n→∞.

Moreover, if f ∈ HFd
i

1 then

σF
d,θ

T f → f a.e., as T →∞.

Gát [30, 31] proved for the Fejér means and for Walsh-Fourier series that this
corollary do not hold for f ∈ L1.

7. The d-dimensional dyadic derivative

The one-dimensional differentiation theorem

f(x) = lim
h→0

1
h

∫ x+h

x

f(t) dt a.e. (f ∈ L1[0, 1))

is well known. In the multi-dimensional case

f(x) = lim
h→0

1∏d
j=1 hj

∫ x1+h1

x1

. . .

∫ xd+hd

xd

f(t) dt a.e.

if f ∈ L(logL)d−1[0, 1)d. If τ−1 ≤ |hi/hj | ≤ τ , then it holds for all f ∈ L1[0, 1)d

(see Zygmund [100]).
In this section the dyadic analogue of this result will be formulated. Butzer and

Wagner [8] introduced the concept of the dyadic derivative as follows. For each
function f defined on [0, 1) set

(dnf)(x) :=
n−1∑

j=0

2j−1(f(x)− f(x+̇2−j−1)),

(x ∈ [0, 1)). This definition was extended to the multi-dimensional case by Butzer
and Engels [6],

(dnf)(x) :=
d∑

i=1

ni−1∑

ji=0

2j1+...+jd−d

×
1∑

εi=0

(−1)ε1+...+εdf(x1+̇ε12−j1−1, . . . , xd+̇εd2−jd−1),

n ∈ Nd, x ∈ [0, 1)d. Then f is said to be dyadically differentiable at x ∈ [0, 1)d if
(dnf)(x) converges as n→∞. It was verified by Butzer and Wagner [9] that every
Walsh function is dyadically differentiable and

lim
n→∞

(dnwk)(x) = kwk(x) (x ∈ [0, 1), k ∈ N).

The d-dimensional version follows easily from this,

lim
n→∞

(dnwk)(x) =
( d∏

i=1

ki

)
wk(x) (x ∈ [0, 1)d

, n, k ∈ Nd).

Let W be the function whose Walsh-Fourier coefficients satisfy

Ŵ (k) :=

{
1 if k = 0
1/k if k ∈ N, k 6= 0.

The d-dimensional dyadic integral of f ∈ L1[0, 1)d is introduced by

If(x) := f ∗ (W × . . .×W )(x)
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:=
∫ 1

0

. . .

∫ 1

0

f(t)W (x1+̇t1) · · ·W (xd+̇td) dt.

Notice that W ∈ L2[0, 1) ⊂ L1[0, 1), so I is well defined on L1[0, 1)d.
For a given τ ≥ 0 we will consider the restricted and non-restricted maximal

operators

I2f := sup
|ni−nj |≤τ,i,j=1,...,d

|dn(If)|, I∗f := sup
n∈Nd

|dn(If)|.

Theorem 16. Suppose that f ∈ HWd,2
p ∩ L1 and

(26)
∫ 1

0

f(x) dxi = 0 (i = 1, . . . , d).

Then

‖I2f‖p ≤ Cp‖f‖HWd,2
p

for all d/(d+ 1) < p <∞. Especially, if f ∈ L1, then

(27) λ(I2f > ρ) ≤ C

ρ
‖f‖1 (ρ > 0).

Corollary 4. If τ ≥ 0 is arbitrary and if f ∈ L1[0, 1)d satisfies the condition (26)
then

dn(If) → f a.e. as n→∞ and |ni − nj | ≤ τ, i, j = 1, . . . , d.

Theorem 16 and Corollary 4 are due to the author [79, 94]. In the one-
dimensional case (27) and Corollary 4 was proved by Schipp [52] and in the two-
dimensional case by Gát [29].

We note that without the condition (26) we can prove Theorem 16 only for p = 1.

Theorem 17. If p ≥ 1, then

‖I2f‖p ≤ Cp‖f‖HWd,2
p

(f ∈ HWd,2
p ).

For the operator I∗ the following theorem was verified in Weisz [91, 94].

Theorem 18. If (26) is satisfied and 1/2 < p <∞ then

‖I∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp).

In particular, if f ∈ HWd
i

1 for some i = 1, . . . , d then

sup
ρ>0

ρ λ(I∗f > ρ) ≤ C‖f‖
H
Wd

i
1

.

Corollary 5. If f ∈ HWd
i

p (⊃ L(logL)d−1) satisfies (26), then

dn(If) → f a.e., as n→∞.

Note that this result for f ∈ L logL is due to Schipp and Wade [51] in the
two-dimensional case.

Similarly to the dyadic derivative we can define the Vilenkin derivative (see
Onneweer [45]) and we can prove similar results (see Pál and Simon [46, 47], Gát
and Nagy [27] and Simon and Weisz [56, 55].
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[41] F. Móricz, F. Schipp, and W. R. Wade. Cesàro summability of double Walsh-Fourier series.

Trans. Amer. Math. Soc., 329:131–140, 1992.
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[65] A. Torchinsky. Real-variable methods in harmonic analysis. Academic Press, New York,
1986.

[66] N. J. Vilenkin. On a class of complete orthonormal systems. Izv. Akad. Nauk. SSSR, Ser.
Math., 11:363–400, 1947.

[67] W. R. Wade. Decay of Walsh series and dyadic differentiation. Trans. Amer. Math. Soc.,
277:413–420, 1983.
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