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DISCRETE APPROXIMATION OF THE SOLUTION OF THE
DIRICHLET PROBLEM BY DISCRETE MEANS

MARGIT PAP

Dedicated to Professor W. Wade on his 60th birthday

Abstract. In paper [7] using spherical functions we had constructed contin-
uous and discrete approximation processes on the sphere S2. In this paper
we show that these processes give approximations of the solution of three di-
mensional Dirichlet problem. We give also an estimation for the rate of the
convergence.

1. Introduction: The three dimensional Laplace equation and
Dirichlet problem

Let consider the three dimensional Laplace equation

∂2Φ
∂x2

1

+
∂2Φ
∂x2

2

+
∂2Φ
∂x2

3

= 0,

and let x = (x1, x2, x3) = (ρ cos θ, ρ sin θ cosϕ, ρ sin θ sinϕ) = ρv and u = (u1, u2, u3) =
(cos θ′, sin θ′ cosϕ′, sin θ′ sinϕ′).

It is known that the spherical polynomials

Pλm(ξ) =
∑

0≥`≥m/2
(−1)`

Γ(m− `+ λ)
Γ(λ)`!(m− 2`)!

(2ξ)m−2`

are generated by

(1− 2ξρ+ ρ2)−λ =
∞∑
m=0

Pλm(ξ)ρm.

For λ = 1/2 P
1/2
m (ξ) = Pm(ξ) are the Legendre polynomials. Consequently the

Poisson kernel of the three dimensional Laplace equation:

Φ(x, u) =
1− xx′

(1− 2ux′ + xx′)3/2

can be expressed in the following way

Φ(x, u) = (1− ρ2)
∞∑
m=0

P 3/2
m (uv′)ρm =

∞∑

`=0

(2`+ 1)ρ`P 1/2
` (uv′) =
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∞∑

`=0

(2`+ 1)ρ`P`(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)).

Theorem A (see [6] pg. 20). If f ∈ C(S2) then the function

f(ρv) =
∫

S2

1− ρ2

(1− 2ρuv′ + ρ2)3/2
f(θ′, ϕ′) sin θ′dθ′dϕ′

=
∞∑

`=0

(2`+ 1)ρ`
∫

S2
f(θ′, ϕ′)P`(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)) sin θ′dθ′dϕ′

is solution of the three dimensional Dirichlet problem in the three dimensional unit
sphere.

2. Spherical functions

In this section we will summarize some results connected with spherical func-
tions. In the three dimensional case spherical functions can be introduced as matrix
elements t`jk of unitary irreducible representations of the matrix group SU(2) ([11,
p. 278]), where

SU(2) = {g ∈ SL(2) : g∗ = g−1}
is the set of second order unitary matrices.

For k = 0 we obtain the classical (zonal) spherical functions. The functions
{√2`+ 1t`j0 : ` = 0, 1, . . . ,−` ≤ j ≤ `} constitute an orthonormal system with
respect to the invariant measure on three dimensional unit sphere S2 and the cor-
responding Fourier series is convergent in L2(S2).

Using the irreducible property of the representation we show that the kernel
function of Laplace- Fourier series can be expressed by Legendre polynomials P`.
Using this property of the kernel function the approximation processes given in
paper [7] can be considered as approximations of the Dirichlet-problem on the
three dimensional unit sphere.

If g ∈ SU(2), then it can be written in the following form :

g =
(
α β

−β α

)
, |α|2 + |β|2 = 1, α, β ∈ C.

Every element from SU(2) can be represented with the so called Euler angles,
namely there exist θ ∈ (0, π), ϕ ∈ [0, 2π), ψ ∈ [−2π, 2π) so that:

g =
(
eiϕ/2 0

0 e−iϕ/2

)(
cos(θ/2) i sin(θ/2)
i sin(θ/2) cos(θ/2)

)(
eiψ/2 0

0 e−iψ/2

)

:= k(ϕ)a(θ)k(ψ),
where |α| = cos(θ/2),Argα = (ϕ+ ψ)/2,Arg β = (ϕ− ψ + π)/2.

Denote by
[t`jk]j,k∈I`

= T `

` ∈ N, j ∈ I` := {−`,−` + 1, . . . , `} the matrix of this representation regarding to
a certain base.

If g has the form g(θ) = a(θ) let define

P `jk(cos θ) := t`jk(a(θ)) =
√

(`− j)!
(`+ k)!(`− k)!(`+ j)!

2j−lij−k(cos(θ/2))j+k(sin(θ/2))j−k

× d`+j

dy`+j
[
(y − 1)`+k(y + 1)`−k

] |y=cos θ.

(2.1)
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If g = k(ϕ)a(θ)k(ψ) ∈ SU(2), then the correspondent t`jk has the following form

(2.2) t`jk(g(θ, ϕ, ψ)) = e−i(jϕ+kψ)P `jk(cos θ),

where (θ, ϕ, ψ) are the Euler angles.
For k = 0 we obtain t`j0(g) = e−ijϕP `j0(cos θ) := Y`j(ϕ, θ), ` ∈ N, j ∈ I` which

are called spherical functions.
Let denote by S2 the three dimensional unit sphere. The normalized spherical

functions √
2`+ 1t`j0(ϕ, θ), ` ∈ N, j ∈ I`

form an orthonormal system regarding to the scalar product generated by the fol-
lowing continuous measure on the unit sphere

(2.3)
∫

S2
f(x)dµ(x) :=

1
4π

∫ 2π

0

∫ π

0

f(ϕ, θ) sin θdθdϕ.

i.e.

(2.4)
√

(2`+ 1)(2`′ + 1)
∫

S2
t`m0(g)t`

′
m′0(g)dµ(g) = δmm′δ``′ .

Moreover, every function f from L2(S2) can be represented in the following form

(2.5) f(ϕ, θ) =
∞∑

`=0

(2`+ 1)
k=∑̀

k=−`
C`kt

`
k0(ϕ, θ),

where

(2.6) C`k =
1
4π

∫ 2π

0

∫ π

0

f(ϕ′, θ′)t`k0(ϕ′, θ′) sin θ′dθ′dϕ′

are the Laplace-Fourier coefficients and the series being convergent in L2(S2) with
respect to the measure on S2. Let denote by

(2.7) χ`(θ, θ′, ϕ, ϕ′) :=
∑̀

k=−`
t`k0(θ′, ϕ′)t

`
k0(θ, ϕ)

the character of the representation T `.
Taking into account that the representation T ` of SU(2) is unitary and irre-

ducible (see [11] p. 284), we obtain that

χ`(θ, θ′, ϕ, ϕ′) = χ`(h−1g) = spur(T `(h−1g)) = tl00(h
−1g)

= P l00(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′))

= Pl(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′)).

(2.8)

Then the Fourier-Laplace series can be written in the following way

f(ϕ, θ) =
∞∑

`=0

(2`+1)
∫

S2
f(θ′, ϕ′)P`(cos θ cos θ′+sin θ sin θ′ cos(ϕ−ϕ′)) sin θ′dθ′dϕ′

Let denote g = a(θ)k(ϕ), h = a(θ′)k(ϕ′) and denote by (Snf)(g) the partial sum
of the series:

(2.9) (Snf)(g(θ, ϕ))

=
n∑

`=0

(2`+ 1)
∫

S2
f(θ′, ϕ′)Pl(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′))d sin θ′dθ′dϕ′.

In what follows we will give the discrete analogies of (2.3), (2.4), (2.6) and (2.9).
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3. Discretisation

Let denote by λNk ∈ (−1, 1), k ∈ {1, . . . , N} the roots of Legendre polynomials
PN of order N , and for j = 1, . . . , N, let

`Nj (x) :=
(x− λN1 ) . . . (x− λNj−1)(x− λNj+1) . . . (x− λNN )

(λNj − λN1 ) . . . (λNj − λNj−1)(λ
N
j − λNj+1) . . . (λ

N
j − λNN )

,

be the corresponding fundamental polynomials of Lagrange interpolation. Denote
by

(3.1) ANk :=
∫ 1

−1

`Nk (x)dx, (1 ≤ k ≤ N),

the corresponding Cristoffel-numbers. In paper [7] we gave the set of nodal points
in [0, π]× [0, 2π] and the discrete measure regarding to the orthonormality property
of the spherical functions is also valid. In what follows we will summarise the results
mentioned before. Let denote by

(3.2) X = {zkj = (θk, ϕj) = (arccosλNk ,
2πj

2N + 1
) : k = 1, N, j = 0, 2N}

the set of nodal points, and

µN (zkj) :=
ANk

2(2N + 1)
.

Let define the following discrete integral on the set of nodal points X

(3.3)
∫

X

fdµN :=
N∑

k=1

2N∑

j=0

f(zkj)µN (zkj) =
N∑

k=1

2N∑

j=0

f(θk, ϕj)
ANk

2(2N + 1)
.

Theorem B. Let N ∈ N, N ≥ 1, then the finite collection of normalized spherical
functions

{
√

2`+ 1t`m0 : S2 → C |m ∈ I`, ` ∈ {0, . . . , N − 1}}
form an orthonormal system on the set of nodal points X regarding to the discrete
integral defined by (3.3), i.e.

(3.4)
√

2`+ 1
√

2`′ + 1
∫

X

t`m0t
`′
p0dµN = δ``′δmp (`, `′ < N,m ∈ I`, p ∈ I`′).

In paper [7] it was also proved that (3.3) tends to the invariant measure on SU(2)
given by (2.3), namely

Theorem C. For all f ∈ C(S2),

lim
N→∞

∫

X

fdµN =
∫

S2
fdµ.

4. (C,α) kernel of Laplace-Fourier series

Let denote g = a(θ)k(ϕ), h = a(θ′)k(ϕ′). Let n < N and denote by

(4.1) (IN,nf)(g) = (IN,nf)(θ, ϕ) :=
n∑

`=0

(2`+ 1)
∑̀

k=−`
cN`kt

`
k0(θ, ϕ),

the n−th partial sum of discrete Laplace-Fourier series of f , where cN`k is given by

(4.2) cN`k =
∫

X

t`k0fdµN =
N∑
m=1

2N∑

j=0

f(θm, ϕj)t`k0(θm, ϕj)
ANm

2(2N + 1)
.
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IN,nf is n-th partial sum of the discrete Fourier-Laplace series of the function f
defined on the unit sphere S2. We can observe that

(4.3) (IN,nf)(θ, ϕ) =
∫

X

f(θ′, ϕ′)

(
n∑

l=0

(2`+ 1)
∑̀

k=−`
t`k0(θ′, ϕ′)t

`
k0(θ, ϕ)

)
dµN .

Then the discrete Fourier-Laplace sum can be expressed in the following way:

(4.4) (IN,nf)(g(θ, ϕ)) = (IN,nf)(θ, ϕ)

=
n∑

`=0

(2`+1)
∫

X

f(h(θ′, ϕ′))Pl(cos θ cos θ′+sin θ sin θ′ cos(ϕ−ϕ′))dµN (h(θ′, ϕ′)).

It can be seen the analogy between the (IN,nf) and the partial sum of Laplace-
Fourier series given by (2.9).

Let denote by

Dn(h−1g) :=
n∑

`=0

(2`+ 1)χ`(h−1g)

=
n∑

`=0

(2`+ 1)P`(cos θ cos θ′ + sin θ sin θ′ cos(ϕ− ϕ′))

(4.5)

the kernel function and by

(4.6) Kα
n :=

1
Aαn

n∑

`=0

Aαn−`(2`+ 1)χ`, Aαn :=
(α+ 1)(α+ 2) . . . (α+ n)

n!
,

the (C,α) kernels of the Laplace-Fourier series. From (1.14) of [3] we get that for
α = 2

(4.7) K2
n :=

1
A2
n

n∑

`=0

A2
n−`(2`+ 1)χ` ≥ 0.

Using the orthonormality properties (2.4), (3.4) and the definition of χk it is easy
to check that

(4.8)
∫

X

K2
n(h

−1g)dµN (h) =
∫

S2
K2
n(h

−1g)dµ(h) = 1.

The last two properties show that K2
n has the two important properties of Fejér

kernel. Let introduce the analogue of de la Valée-Poussin kernel denoted by

(4.9) Mn :=
1
n2

(A2
3nK

2
3n − 2A2

2nK
2
2n +A2

nK
2
n).

Note that the partial sum of order n of Mn is equal to

(4.10) Sn[Mn] = Dn.

Let denote by Tn = span{t`k0, ` ∈ {0, 1, . . . , n − 1}, k ∈ I`}. From the orthonor-
mality property of spherical functions and (4.10) follows that

(4.11)
∫

S2
f(h)Mn(h−1g)dµ(h) =

∫

X

f(h)Mn(h−1g)dµ(h) = f(g),

for all f ∈ Tn. Denote by

(4.12) (Vnf)(g) :=
∫

S2
f(h)Mn(h−1g)dµ(h)

and

(4.13) (Vn,Nf)(g) :=
∫

S2
f(h)Mn(h−1g)dµN (h) (f ∈ C(S2), g ∈ SU(2)).
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the continuous and discrete summmation processes corresponding to the Mn ker-
nels. Taking into account that χl can be expressed by P`, (see (2.8)) (4.12) (4.13)
can be considered as approximation processes of the three dimensional Dirichlet
problem on the unit sphere. In paper [7] it was proved the following theorem

Theorem D. For all f ∈ C(S2),
1)

(4.14) ||Vnf − f || → 0 if n→∞
2)

(4.15) ||Vn,Nn
f − f || → 0 if n→∞, so that 3n < Nn

where the norm is the maximum norm.

In the rest of the paper we give estimation for the rate of the convergence of
the approximation processes defined by (4.12) and (4.13). For this we will use the
modulus of continuity and Jackson type theorem for spherical functions.

5. Jackson type inequality for spherical functions

Let denote by

(5.1) Enf = inf
g∈Tn

||f − g|| = ||f − g∗||.

Taking into account that Tn is a finite dimensional space, the existence of g∗ ∈ Tn
is assured. The generalized translation operator is defined by

(5.2) (Thf)(x) =
1

2π sinh

∫

(x,y)=cosh

f(y)dt(y),

where the integral is taken on the circle (x, y) = cosh of the unit sphere. Let denote
by

(5.3) Ω(f, h) = sup
0<t≤h

||Thf − f ||

the modulus of continuity of the function f . In [8] S. Pawelke proved a Jackson
type inequality for spherical functions, namely

Theorem E. For every function f ∈ C(S2) there is a linear combination of spher-
ical functions Gnf ∈ Tn so that

(5.4) ||f −Gnf || ≤ KΩ(f ;
1
n

),

where K is a constant independent from f .

Consequently Enf ≤ KΩ(f ; 1
n ).

Combining Theorem D. and Theorem E. we can obtain the following Theorem.

6. Main result

Theorem 1. There exists a positive constant M so that, for all f ∈ C(S2),
1)

||Vnf − f || ≤MΩ(f ;
1
n

)

2)

||Vn,Nnf − f || ≤MΩ(f ;
1
n

) if 3n < Nn

where the norm is the maximum norm.
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Proof. From (4.7) and (4.8) we obtain that

||Vnf || ≤ 1
n2

(A2
3n + 2A2

2n +A2
n)||f || ≤

(3n+ 2)2

n2
||f || ≤ 25||f ||.

We obtain in similar way that ||Vn,N || ≤ 25||f ||. Consequently the operators
Vn, Vn,Nn

: C(S2) → C are uniformly bounded. From relation (4.1) we obtain
that these operators are projection operators on Tn. Let Enf = infg∈Tn ||f − g|| =
||f − g∗||, then Vng∗ = g∗. Using Theorem E we obtain that

||Vnf − f || = ||Vnf − g∗ + g∗ − f || ≤ ||Vnf − Vng
∗||+ ||g∗ − f ||

≤ (||Vn||+ 1)||f − g∗|| ≤ 26Enf ≤ 26KΩ(f ;
1
n

).

In a similar way it can be obtained the result for Vn,Nn . ¤

References

[1] G. Andrews, R. Askey, and R. Roy. Special Functions, volume 71 of Encyclopedia of Mathe-
matics and its Applications. Cambridge University Press, 1999.

[2] R. Askey. Mean convergence of orthogonal series and Lagrange interpolation. Acta Math.
Acad. Sci. Hung., 23:71–85, 1972.

[3] R. Askey and G. Gasper. Positive Jacobi polynomial sums, ii. Amer. J. Math., 98:709–737,
1976.

[4] P. Barone. A discrete orthogonal transform based on spherical harmonics. J. Comput. Appl.
Math., 33(1):29–34, 1990.

[5] J. Bokor and F. Schipp. l∞ system approximation generated by ϕ summation. Automatica,
33(11):2019–2024, 1997.

[6] Loo-keng Hua. Starting with the unit circle. Springer-Verlag, 1981.
[7] M. Pap and F. Schipp. Discrete approximation on the sphere. Annales Univ. Sci. Budapest,

Sect. Comp., 22:299–315, 2003.
[8] S. Pawelke. Ein Satz vom Jacksonschen Typ für algebraische Polynomen. Acta Sci. Math.,

33:323–336, 1972.
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Hungary
E-mail address: papm@ttk.pte.hu


